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Abstract

Atomistic spin dynamics simulations has evolved to become a powerful and versatile tool

for simulating dynamic properties in magnetic materials. It has a wide range of applications,

for instance switching of magnetic states in bulk and nano magnets, dynamics of topological

magnets like skyrmions and vortices and domain wall motion. In this review, we focus on

calculations of spin wave excitations in low dimensional magnets and the effect on relativistic

and temperature effects in such structures and compare the results with experimental values.

In general, we find good agreement. For material specific studies, the atomistic spin dynam-

ics is combined with electronic structure calculations within the density functional theory

from which the required parameters are calculated, such as magnetic exchange interactions,

anisotropy and Dzyaloshinskii-Moriya vectors.

1 Introduction

Establishing an understanding of materials invariably involves performing measurements of their

properties. This gives information about the interactions of the material and the properties that

result from these interactions. This applies e.g. to electron and heat conductivity, supercon-

ductivity, magnetism and structural properties. When it comes to crystal structures they are

typically identified using x-ray diffraction[1], neutron scattering[2] or x-ray absorption fine struc-

ture (XAFS)[3]. For surfaces, low-energy electron diffraction (LEED) gives information about

the atomic arrangement[4] and in an extension, the nature of the chemical interactions that

favour a particular structure.

Probing magnetic structures and magnetic excitations is most frequently done with neutron

scattering experiments, both in the elastic and inelastic mode[2]. Elastic neutron scattering ex-

periments are important in that they give information about the magnetic ground state structure,

e.g. a ferromagnetic, antiferromagnetic or non-collinear arrangement of the atomic spins[5]. In-

elastic measurements probe both energy and momentum transfer and have the capability to map

out the excitation spectrum of the material, i.e. the magnon dispersion relationship. Such mea-

surements are important since the excitation spectrum reflects the strength of the interatomic
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exchange parameters as well as the magnetic anisotropy constant and possibly the values of the

Dzyaloshinskii-Moryia interaction. It was for the power of this experimental technique that the

Nobel prize in physics was awarded to Brockhouse and Shull in 1994, with the motivation: for

pioneering contributions to the development of neutron scattering techniques for studies of con-

densed matter. It is of relevance for this review to note that in these experiments, the differential

cross section determines if a magnetic excitation can be observed [2].

For low dimensional systems and nano-magnets, neutron scattering experiments have not shown

to be as useful as for bulk materials, since rather large samples have to be used in these experi-

ments. Hence it was for a long time only possible to measure magnetic excitations of the bulk,

while magnons of surfaces and thin films were eluding experimental investigations. This was

the situation until the work of Ref.[6], where it was shown that spin-polarized EELS (SPEELS)

can detect surface and interface magnons. Several intriguing results were found in these works,

e.g. that the magnon dispersion of a monolayer of Fe on W(110) has a much softer magnon

curve[7] compared to bulk Fe, and to early theories[8]. The possibility to experimentally de-

tect excitations of buried interfaces was also shown to be possible[9]. In all these experimental

works it was found that only the low-lying acoustic magnon mode had significant intensity in

the experiments, a seemingly intriguing fact since optical modes should be possible from the ex-

perimental geometry, and they were even suggested from the theory of Ref.[9]. An explanation

was proposed[10], that relates the SPEELS data to the differential cross section and dynamic

structure factor, something we will return to later on in this review.

In parallel to the development of novel experimental methods there has been development

also on the theory side, where in particular atomistic spin-dynamics (ASD), that couple elec-

tronic structure theory[11] to the equation of motion of atomistic spins, has proven particularly

successful[12, 13, 14, 15]. There have by now been several publications of softwares that solve

the atomistic spin-dynamics equation.

Theories based on ASD have been successful in describing many recent experiments of the

magnetisation dynamics, for instance magnon dispersions of surfaces[10, 16, 17], all-thermal

switching of Fe-Gd alloys[18] and thermal domain-wall motion[19]. This highlight is focused on

the ASD method, and how it reproduces experimental magnon dispersions, in particular for low

dimensional systems. Here, we will present results obtained by employing ASD, with other the-

ories, e.g. frozen magnon calculations or dynamical susceptibility calculations as used in Ref.[9],

and discuss reasons for the different results obtained. We will in addition outline how finite tem-

peratures enters naturally the ASD theory, both from the equations of motion of of the atomistic

spins[14], but also from the possibility to evaluate the inter-atomic exchange interactions at finite

temperature, as demonstrated in Ref.[20]. We end this introduction with a comment that the

possibility of calculating inter-atomic exchange[11] from ab-initio methods,is to spin-dynamics

simulations, what the Hellman-Feynman force is for molecular dynamics simulations.

Before presenting a few recent applications of the Uppsala atomistic spin dynamics package,

UppASD [14] on the studies of magnetic excitations in low dimensional systems we will briefly

discuss magnons in other systems. The main part will be dedicated to spin-wave excitations in

solids, including a few examples of dispersion curves for bulk materials and thin films.
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2 Magnetic excitations in solids

When studying solids and trying to describe their properties, besides the physics of the con-

stituent particles of the materials, like atoms or electrons, we deal also with quasiparticles. The

quasiparticles can be viewed as the quanta of collective excitations. For example phonons rep-

resent the quanta of collective lattice (atoms) vibrations in a solid while magnons represent the

quanta of spin-excitations. These quasiparticles behave as bosons.

Let us start by considering the simple example of a ferromagnetic spin-chain. The spins are

interacting with each other via the exchange interaction, which we now consider, for simplicity, to

connect only the nearest-neighbours. The only excitations that are eigenstates of the Heisenberg

Hamiltonian are collective excitations, which involve a small canting of many of the spins in the

system. Thus the systems enters an excited state (as can be seen in Fig. 1) where every spin

will deviate from its initial equilibrium orientation, in such a way to accommodate one spin-flip

over the whole spin-chain. This process will give rise to excitations that have the character

of a wave, creating ’spin-waves’. In Fig. 1 we give the simple example of a ferromagnetic

spin chain and its corresponding spin-wave excitation spectrum. The spin-wave excitations are

characterised by a wave-vector ~q and energy E(~q), with a dispersion relation that reminds the

electronic energy bands in solids. We mention here that in the limit of small wave vectors, we

have a characteristic excitation energy dispersion relation relative the magnetic ordering of the

systems. Thus, for a ferromagnetic material (as exemplified in Fig. 1) close to the Brillouin zone

centre there is a quadratic dependency of the dispersion relation on the wavevector, while for

an antiferromagnetic system, this relation is linear (E(q) ∝ q).

Figure 1: Simple case of a ferromagnetic spin chain in its ground state. While trying to flip one

spin at one site, the energy cost is too high and the spin-flip is ’smeared’ over the whole system,

thus creating a so-called ’spin-wave’. This state represents an excited state of the spin chain,

characterised by a wavelength λ or analogous by a wavevector q. The characteristic energy

dispersion curve E(q) for a ferromagnetic chain is represented on the right-hand side. (Figure

adapted from Coey [21])

3



3 Investigation tools

We have at our disposal experimental techniques as well as theoretical methods for investigating

magnetic excitations in solids. Nowadays it is possible to measure the response of magnetic

systems to external stimuli, within different energy ranges and on different time scales. Moreover,

theoretical models can be applied in order to simulate and predict properties and responses of

different magnetic systems.

3.1 Experimental techniques

The most popular family of methods for the investigation of magnetic excitations in solids are

scattering experiments. In a scattering experiment a beam of particles (neutrons, electrons,

photons) is sent towards the material under investigation. The particles can collide with the

system both with conservation of energy and momentum (elastic scattering) and with transfer of

energy or momentum (inelastic scattering). The elastic scattering experiments give information

about the underlaying structure of materials, while inelastic experiments provide insight related

to the excitations created in the solid. If the incident particles gain or lose energy or momentum,

this translates into the creation or annihilation of the quasiparticles characteristic to the excita-

tions. When investigating the physics of magnetic excitations, inelastic scattering experiments

represent one of the best choices. Since the scattering can be made with neutrons, electrons or

light, this makes these experiments versatile, by giving us access to different length scales: e.g.

probing bulk samples with neutron scattering and thin films by electron scattering. See also the

diagram in Fig. 2 for a schematic representation. The inelastic neutron scattering was one of the

first techniques used to determine the spin wave excitation spectra. The neutrons have a long

penetration depth, thus being employed for the study of bulk materials. On the other hand,

electrons have a shorter penetration depth, thus being suitable for the investigation of magnetic

excitations in thin magnetic films. Thus, one can use light in Brillouin light scattering (BLS) in

order to study magnetic excitations with long wavelengths (generated by dipolar interactions)

or employ electrons to study short wavelength excitations, due to exchange interactions.

Moreover, we have access to a wide range of energies depending on the type of inelastic scattering

experiment used (see Fig. 2). Since all experimental techniques discussed so far are based on

scattering theory, it is important to analyse them in a proper theoretical framework, which

involves the differential cross section and the dynamical structure function. The latter will be

discussed in this manuscript in some detail.

3.2 Theoretical methods

Besides the different experimental techniques, for the study of magnetic excitations in solids, we

have at our disposal different theoretical approaches as well: mathematical models and computer

simulations. An important tool is represented by theoretical simulations, due to their strong

predictive power and capability to be materials specific. By employing computer simulations, we

can make predictions regarding the properties of different materials or even design materials with

desired features. Establishing the link between experiments and theoretical methods allows us to

4



Figure 2: Energy and momentum transfer range achieved in inelastic scattering experiments

when using: photons, electrons or neutrons. Diagram reproduced from Refs. [22] and [23].

understand better the experimental results and get a deeper insight into the physical phenomena.

In the same time, this leads to a constant improvement of the theoretical tools as well.

One way of estimating the spin-wave excitation spectra is by employing the frozen magnon ap-

proach [24, 25, 5]. This method consists in performing first principles spin-spiral calculations.

For each calculation, a different spin-spiral is considered to be fixed in the system, thus the name

’frozen magnon’. For each case the total energy of the system is calculated and the excitation en-

ergy is determined by the total energy differences between different cases (each case represented

by a different spin-spiral). Another method for the simulation of magnetic excitations in solids,

consists in calculating the dynamical susceptibility of magnetic systems. Different groups use

slightly different approaches for determining the dynamical susceptibility and to simulate the

magnon spectra. Different versions of this method is described in the work of Cooke et al. [26],

Savrasov et al. [27], Costa and Mills [28] and references therein. We mention here the approach

employed by Costa et al. [28, 29] that leads to the determination of the magnon dispersion

spectra. In their approach, the description of the ground-state properties of the system is made

by a tight-binding method with parameters extracted from fitting the ab initio bulk electronic

structure. Additionally, Costa et al. employ a one-parameter scheme where the Coulomb in-

teraction (U) value can also be modified. They describe the spin waves excitations spectra by

means of the random phase approximation (RPA), calculating the transverse frequency depen-

dent susceptibility. The main difference between the adiabatic magnon approximation and the

RPA method regards the treatment of the particle-hole excitations. These excitations, known

also as Stoner excitations, [30] are neglected in the adiabatic case. They are not relevant at low

energies but can become significant at higher energies or large wave-vectors. Therefore one would
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expect theories based on the adiabatic approach to break down at the Brillouin zone boundary.

Similar to the method described above, another approach for the determination of magnetic

excitations is by calculating the dynamical susceptibility within linear response time-dependent

density functional theory [31, 32].

Focusing now on the ASD method, our theoretical investigation of magnetic excitations is per-

formed within a multi-code and multi-scale approach. The systems of interest are investigated

by means of ab initio density functional theory (DFT) methods and atomistic spin dynamics

(ASD) [14], e.g. as provided in the UppASD (Uppsala Atomistic Spin Dynamics) package. The

first step is represented by the determination of the ground-state properties of the system by

means of ab initio calculations. We shall describe this first step in detail in Section 3.3. In the

second step, the quantities calculated by ab initio methods are used as input for atomistic spin

dynamics simulations, see Section 3.4, by using the ab initio magnetic moments, exchange pa-

rameters, Dzyaloshinskii-Moriya interactions and anisotropies mapped onto a spin-Hamiltonian.

We then employ the atomistic Landau-Lifshitz-Gilbert equation and evaluate the dynamical

structure factor (the quantity which is accessible in scattering experiments). From the dynam-

ical structure factor we then identify the spin-wave excitation spectra as they would appear in

a scattering experiment.

Figure 3: Bridging the gap: the ASD link between ab initio methods and micromagnetics

simulations.

This means that the static and dynamic magnetic properties are being studied with different

techniques and computational methods, at the subatomic level (first principles) as well as on a

larger scale up to almost micrometer level (in ASD). Investigations of the dynamics for large sys-

tems (micrometers) or for longer observation times (nanoseconds) is possible with the massively

parallelised version of the UppASD package.

Maybe the most accurate way of treating magnetisation dynamics is from first principles by

means of the time-dependent magnetisation density functional theory (TD-SDFT) or time-
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dependent current density functional theory (TD-CDFT). However, both TD-SDFT and TD-

CDFT work best for finite systems and are not yet efficient for extended systems. Another well

established method which addresses and describes the magnetisation dynamics are micromag-

netic simulations (valid for time-scales longer than 1 ps (picosecond) and length-scales larger

than nanometers). In micromagnetism, the system of interest is divided in domains which are

approximated by macro-spins and their dynamics described by the phenomenological Landau-

Lifshitz-Gilbert equation. As is sketched in Fig. 3, the ASD method fills the gap between

TD-DFT and micromagnetics, acting on sub-picosecond time-scales and on a sub-nanometer

length scale, by treating atomic moments instead of spin density.

3.3 First Principles Calculations

Whenever one is interested in investigating magnetic excitations in solids, in the first step

of the study a thorough description of the ground state properties of the system is given by

employing various first-principles methods. The ab initio codes frequently used here are the

Vienna Ab-initio Software Package (VASP) [33, 34] and codes based on the Korringa-Kohn-

Rostoker (KKR) [35, 36] method within multiple scattering theory (MST). First we set-up the

system: bulk, surface or multi-layers. For magnetic multi-layers we use a slab representing the

substrate, having on one side the magnetic over-layer and a large region of vacuum, simulating

the surface. The interlayer distances are relaxed according to the forces using the projector

augmented wave method (PAW) as implemented in the VASP program [33, 34]. After obtaining

the optimised (relaxed) geometry, the Heisenberg exchange interactions are calculated e.g. by

KKR or real-space LMTO methods. We frequently employ either RS-LMTO-ASA or the SPR-

KKR package [36, 37]. In the latter, Green’s functions formalism is used and the Kohn-Sham-

Dirac equation is solved, which means that we have a fully relativistic formulation of the problem

at hand: accounting for relativistic effects, such as the spin-orbit coupling (SOC). In this way

we can access a large set of ab initio calculated quantities (spin and orbital moments, magnetic

anisotropies, exchange interactions, Dzyaloshinkii-Moryia interactions), thus fully characterising

the system of interest in its ground-state. In most of the examples presented in this review, we

used the local spin density approximation (LSDA) for the exchange-correlation potential and a

basis set consisting of s, p, d and f orbitals. For the self-consistent calculations we typically

employ between 4-500 k-points in the two dimensional Brillouin zone, while a much more dense

k-point grid of 2000 k-points is used in the calculation of Heisenberg exchange parameters and

Dzyaloshinskii-Moriya interactions, sufficient to obtain a convergence on a microRydberg level

for these parameters. All these quantities (magnetic moments and exchange) are later used

within a generalised Hamiltonian for atomic spin dynamics simulations.

The exchange parameters Jij and Dzyaloshinskii-Moriya (DM) vectors Dij are obtained from the

relativistic generalisation [38, 39] of the real-space method of infinitesimal rotations of Liecht-

enstein, Katsnelson and Gubanov (LKG) [11, 40] with the ferromagnetic configuration chosen

as the reference state for mapping. We calculate the full exchange tensor J̄ij is calculated. This

can be decomposed into its isotropic part Jij and its anti-symmetric part, which corresponds to

the DM-vectors.

Having calculated the exchange parameters Jij , they can be Fourier transformed to obtain the
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so-called adiabatic magnon spectrum. In the simple case of a single layer (corresponding to one

atom per cell), the energy of a spin wave with respect to a ferromagnetic ground state is given

by

E(q) =
∑
j 6=0

J0j [exp (iq · R0j)− 1] , (1)

where Rij is the relative position vector connecting sites i and j. From this it is straightforward

to calculate the spin wave dispersion ω(q). [5] For systems with more than one atom per cell,

as is the case for thin films consisting of more than one monolayer, the spin wave energies are

given by the eigenvalues of the general N ×N matrix here expressed in block form

[∑N
j J

ij
0 − J ii(q) −J ij(q)

−J ij(q)∗
∑N

i J
ji
0 − J jj(q)

]
, (2)

where N is the number of atoms per cell (i.e. in this case the number of magnetic layers). The

whole procedure relies on an adiabatic approximation in which the slow motion of the spins is

decoupled from the fast motion of the itinerant electrons, a situation that is justified at low

energy scales and for systems with reasonably large exchange splitting.

Adiabatic magnon spectra

As mentioned above, by applying a Fourier transformation on the exchange parameters obtained

from first principles calculations, we are able to generate the adiabatic magnon dispersion spec-

tra. Below we shall present a few examples of such spectra both for bulk materials as well as

for thin magnetic layers.

Bulk systems

In Fig. 4, we reproduce the results obtained by Halilov et al. [25] for bulk Co. In Fig. 4(a), Co

is present in the face-centred cubic crystal structure which is a Bravais lattice, namely having

one-atom per unit cell. As discussed in the previous section, this gives rise to one branch in

the spin-wave excitation spectra. When dealing with non-primitive lattices, such as hexagonal-

closed-packed structures, which have two atoms per unit cell as shown in Fig. 4(b), there are

two branches that appear in the magnon spectra. From analogy to phonons dispersion, the

lowest-laying branch is called ’acoustic’ branch while the branches appearing at higher energies

are denoted as ’optical’ branches.

Thin films

Fig. 5(a) displays the calculated adiabatic magnon spectrum obtained for 8 ML Co/Cu(001),

using Eq. (2) with Jij values obtained using the LKG method. [11, 40] The most notable feature is

the presence of several branches, one for each Co layer present. This is in contrast to experimental

observations, where only the lowest (”acoustic”) branch [41] (filled circles in Fig 4) as well as
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Figure 4: Adiabatic magnon spectra for (a) fcc bulk Co and (b) hcp bulk Co as calculated by

Halilov et al. [25].[Fig.4 reprinted from Ref. [25]]. On the right-hand side panel, the corresponding

Brillouin zones are represented, together with the high-symmetry points and lines.

the second lowest branch [29] are observed. Vollmer et al. [41] conclude that this indicates the

shortcomings of a direct interpretation of their data in terms of a näıve Heisenberg model.

Fig. 5(b) displays the adiabatic magnon spectrum obtained for 3 ML Fe/Cu(001). Unfortunately,

there are no experimental data to compare with. The values for the spin wave stiffness, D, can

be estimated from the calculated adiabatic magnon spectra by measuring the curvature of the

dispersions as q → 0. For this system we find D being approximately 210 meV Å2. For the 1

ML Co on Cu(001) case we obtain a value of the order of 420 meV Å2 - a 15 % overestimate of

the experimentally determined value of 360 meV Å2, but considerably softer than the theoretical

value determined by Pajda et al. [42] of 532 ± 9 meV Å2 obtained by a real-space adiabatic

approach. For 1 ML Fe on Cu(001) we obtain a lower value, of 260 meV Å2 compared to the

value of 331 meV Å2 by Pajda et al. [42].

In Fig. 6 we present the simulated adiabatic magnon spectra for a system with 6 layers of Fe on

Ir(001), together with very recent experimental data [9] obtain by SPEELS. The experimental

points have been taken from Fig.2 in Ref. [9].

3.4 Atomistic Spin Dynamics

The set of site-resolved ab initio parameters (including spin and orbital moments, magnetic

anisotropies, exchange interactions and Dzyaloshinkii-Moryia interactions) obtained in this way

is used as a starting point for the spin dynamics simulations. In order to study the magnetisation

dynamics, we employ atomistic spin dynamics simulations, in the step that follows the electronic

structure part of each investigation. In practice, the first step of our approach is to map the

itinerant electron system onto an effective Heisenberg Hamiltonian with classical spins:
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(a) (b)

Figure 5: : (Color online) Adiabatic magnon spectra (full lines) obtained from SPR-KKR

calculations for (a) 8 ML Co/Cu(001) together with experimental SPEELS data [41] (circles)

and (b) 3 ML Fe/Cu(001).

Figure 6: (colour online) Adiabatic magnon spectra (full lines) obtained from SPR-KKR cal-

culations for 6 ML Fe/Ir(001). The black dots represent recent experimental data obtained by

SPEELS [9]. On the right hand side, the corresponding surface Brillouin zone is represented,

where we specify the high-symmetry points.

H = −1

2

∑
i 6=j

Jij ~mi · ~mj︸ ︷︷ ︸
exchange

+
∑
i

Ki(~mi ·~eK)2︸ ︷︷ ︸
anisotropy

− 1

2

∑
i 6=j

Qµνij m
µ
im

ν
j︸ ︷︷ ︸

dipolar

+
∑
i,j

D̃ij(~mi × ~mj)︸ ︷︷ ︸
Dzyaloshinskii−Moryia

− ~Bext ·
∑
i

~mi︸ ︷︷ ︸
external

,

which includes exchange interactions Jij , anisotropiesKi, dipolar interactionsQµνij , Dzyaloshiskii-

Moriya (DM) vectors [43, 44] D̃ij and the Zeeman term Bext ·m, where mi represents the

magnetic moment vector and Bext is the applied magnetic field. The exchange integrals, spin

moments, anisotropies etc. are obtained, as mentioned before, from first principles calculations.

UppASD may be used a material specific method which can treat arbitrary types of magnetic

ordering (ferromagnetic, antiferromagnetic, helimagnets etc) or start from random magnetic

configurations.

Within the adiabatic approximation, we separate the fast variables (the electrons) from the slow

variables (the atomic moments), and the equation of motion for the atomic spins is given in
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terms of the atomistic Landau-Lifshitz-Gilbert (LLG) equation, as derived in Ref. [12]:

∂ ~mi

∂t
= − γ

1 + α2
~mi × ~Beff

i︸ ︷︷ ︸
precession

− γ

1 + α2

α

m
[~mi × [~mi × ~Beff

i ]]︸ ︷︷ ︸
damping

. (3)

The temporal evolution of the atomic spins at finite temperature is governed by Langevin dy-

namics, through coupled stochastic differential equations, the Landau-Lifshitz-Gilbert (LLG)

equations, written here in the Landau-Lifshitz form (Eq. 3).

Figure 7: Schematic representation of the torques acting on each individual spin, according to

Eq. 3.

In LLG we have a damping parameter α present. γ represents the gyromagnetic ratio. The

determination of the proper damping is a problem in itself. There have been several efforts

in calculating the damping parameter from first principles theory [45, 46, 47, 48, 49], with

overall encouraging results when compared to experimental data. However, more experience

is needed before one can conclude how realistic one-electron theory can capture the damping

parameter, which in principle should be a tensorial quantity, material specific and depending on

both temperature and frequency.

In the second step of the simulation, we evolve the effective field ~Beff for each individual atomic

moment according to the LLG equation of motion:

~Beff
i = − ∂H

∂ ~mi
,where ~Beff

i = ~Bi + ~Bfl
i (t) (4)

The finite temperature effects are included in the fluctuating (stochastic) magnetic fields ~Bfl
i (t),

via Langevin dynamics. The Langevin approach gives a more concrete description than the

Fokker-Planck equation, but it is mathematically equivalent to it [50].

Temperature fluctuations are included via a stochastic Gaussian shaped magnetic field Bfl
i (t)

with properties 〈 ~Bfl
i (t)〉 = 0 and

〈Bfl,k
i (t)Bfl,l

j (t′)〉 = 2Dδijδklδ(t− t′), D =
α

(1 + α2)

kBT

µBm
, (5)
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where i and j denote lattice sites, k and l the carteisian components and α is the Gilbert damping

parameter which eventually brings the system to thermal equilibrium. It should be noted that

the simulations carried out in this work are for atomistic spins. Hence the gyromagnetic factor

in this simulations is simply the ratio between the magnetic moment and the angular momentum

of an atom. An anisotropy in the gyromagnetic factor, with respect to the orientation of the

atomic spin, would appear in the first principles part of our calculation, where the spin and

orbital magnetic moments are calculated. It is known that this effect is rather small for transition

metals (e.g. as reported by Hjortstam et al. [51] and Stöhr [52]). The dependence on any possible

anisotropy of the damping parameter is less known. However, for most of our calculations the

thermal fluctuations do not force the moments to deviate too much from the easy magnetisation

axis, and hence a possible tensorial form of the damping parameter would not influence our

results by a significant amount.

The coupled equations of motion (3) can be viewed as describing the precession of each spin

about an effective interaction field, with complexity arising from the fact that, since all spins

are moving, the effective field is not static. In our calculations we evolve the stochastic LLG

equations using a semi-implicit method introduced by Mentink et al. [53]

The principal advantage of combining first-principles calculations with the ASD approach is that

it allows us to address the dynamical properties of spin systems at finite temperatures. [14, 54, 55]

We focus in particular on two important quantities, the space- and time-displaced correlation

function:

Ck(r− r′, t) = 〈mk
r(t)mk

r′(0)〉 − 〈mk
r(t)〉〈mk

r′(0)〉, (6)

where the angular brackets signify an ensemble average and k the cartesian component, and its

Fourier Transform, the dynamical structure factor:

Sk(q, ω) =
1√

2πN

∑
r,r′

eiq · (r−r′)
∫ ∞
−∞

eiωtCk(r− r′, t)dt, (7)

where q and ω are the momentum and energy transfer, respectively. The dynamical structure

factor, S(q, ω) is the quantity probed in neutron scattering experiments of e.g. bulk systems [56],

is analogously applied here to interpret SPEELS measurements. By plotting the peak positions

of the structure factor along particular directions in reciprocal space, the spin wave dispersions

as they would appear in a scattering experiment, may be obtained. [16, 14, 54, 55]

All codes/methods used, the KKR, the real-space LMTO electronic structure methods, as well

as the UppASD spin-dynamics method, are versatile and their performances have been tested

on a wide range of systems and properties ( see [57, 35] and [14, 58, 16] and references therein).

We have recently done a massive parallell implementation using MPI of the UppASD program

that allow the treatment of much larger structures (nm to µ m) and longer observation times.

We have so far tested the program with good scalability for systems with ≥ 1.5 · 109 atoms

running on 13 824 processors on a Cray XE6 supercomputer. In addition, we have also ported

the program to graphics processors units (GPU) using the CUDA framework with promising

scalability.
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4 Spin-waves excitation spectra from atomistic spin-dynamics

simulations

4.1 Bulk ferromagnets

As a first demonstration of our methodology we start with the well studied materials Fe and Co.

There are plenty of measured and calculated magnon dispersions for these materials published in

the literature, in this context it is worth mentioning the frozen magnon calculations by Halilov et.

al [25] based on direct spin spirals configurations in reciprocal space and alternatively, if exchange

interactions calculated in real space are Fourier transformed, it yields the adiabatic magnon

dispersions, a method that has been employed by Pajda et. al. [42] and others. Another method

that has been employed recently and differs a bit from the other mentioned are calculations of

the Kohn Sham susceptibility through linear response and from that estimation of the magnon

dispersion. The strength of this method is that it includes longitudinal fluctuations on the same

footing as transversal fluctuations but to the expense of time consuming calculations restricting

the method so far to simple systems.

Our methodology, as outlined in Section 3.4, is much in line with the second method mentioned

above, namely we first calculate exchange interactions (and related parameters) but instead

of a direct Fourier transform we perform spin dynamics calculations at finite temperature and

from the induced fluctuations we obtain the excitation spectra through the dynamical structure

factor.

In Figure. 8 the calculated magnon dispersion spectra of bcc Fe at T=10 K is displayed with

a damping parameter α = 0.003, all the other interactions were calculated from first principles

theory. As expected from the low temperature and damping, the overall spectra is in good

agreement with previous adiabatic calculations and also experiment and in particular the theory

captures the onset of a Kohn anomaly in the Γ−H direction arising from long range exchange

interactions (in the simulations all interactions up to Rmax = 7×alat were included). As known

for ferromagnets close to the Γ-point, the magnon dispersion follows the relation ω(q) ≈ Dq2,

where D is the exchange spin wave stiffness constant. Extracting value of D is however a

very delicate matter due to the oscillatory behaviour of the exchange interactions in bcc Fe.

Following the procedure as outlined in Ref.[59] and complementary calculations from direct

fitting of the magnon dispersion gives value of D ≈ 270 meVÅ2, which is in fair agreement with

the experimental value of 314 meVÅ2 [60].

In Figure 9 we show the magnon dispersion calculated for hcp Co at T=10 K and α = 0.003.

Since there are two atoms in the hcp unit cell, two magnon branches are expected.In order to

sample both branches, the momentum transfer need to be varied as it is often done in neutron

scattering and discussed in Section.4.1. If the sampled wave vectors q are confined in the first

Brillouin zone, Fig.9(a), the intensity of the dynamical structure factor is dominated by the

acoustic branch. By varying the momentum transfer, for instance shifting the sampled wave

vectors outside the first Brillouin zone, Fig.9(b), the intensity of the dynamical structure factor

is reversed so that the optical branch dominates. This is analysed in more detail below.
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Figure 8: (Color online) Calculated magnon dispersion spectra for bcc Fe at T=10 K and the

corresponding Brillouin zone.

(a) (b)

Figure 9: (Color online) Magnon dispersion of hcp Co at T=10 K from atomistic spin dynamics.

In (a) q-vectors in the first Brillouin zone and in (b) q-vectors shifted by b3 were sampled where

b3 is a reciprocal lattice vector in c-direction.

Analysis of the dynamical structure factor

In the analysis of magnon dispersions as obtained from neutron scattering, the susceptibility

was shown to be written in the following form [61]

¯̄χ(q + τ , ω) =
1

2
(1 + cosφ) ¯̄χAc(q, ω) +

1

2
(1− cosφ) ¯̄χOp(q, ω), (8)

where ¯̄χAc and ¯̄χOp are the susceptibilites originating from accoustic and optical branch, re-

spectively, q is a reciprocal vector within the primitive Brillouin zone (BZ), τ = [hkl] =

hb1 + kb2 + lb3, φ = τ ·ρ, where ρ is a vector connecting two sublattices. In this manner,

by changing the momentum transfer by varying τ , the intensity of the accoustic and optical

branches is changing. If we take the hcp Co as an example, ρ = [0 0 0.5]c and it follows that

φ = lπ. Inside the primitive BZ, the phase φ = 0 and in the limit q → 0, in Eq. (8) the

acoustic term will dominate and will be detected in experiment. If we go outside the first BZ, it

is possible to have a situation where the optical term dominates, on the expense of the acoustic

response, for instance by choosing τ = [001], as illustrated in Fig. 9(b). If there are more than
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two atoms in the unit cell, the analysis becomes more complicated but the principle is the same.

4.2 Bulk antiferromagnets

As a prototype for a bulk antiferromagnet we choose the transition metal oxide NiO. The

transition metal oxides (TMO) are well studied in the context of density functional theory since

in order to reproduce the antiferromagnetic order and the formation of a gap in the electronic

band structure, correlation effects must be included beyond the local density approximation

(LDA). The most straight forward method that works reasonably is the LDA+U approximation,

which goes back to Lopez-Aquilar and C. Quintana [62] in 1984 and Anisimov [63] in 1991 that

adds a Hubbard-like term on top of the LDA. For ”typical” values of the Hubbard U (4-8 eV) , the

electronic band structure agrees rather well with experimental observations and the ground state

is antiferromagnetic. We performed LDA+U calculations using the SPR-KKR program in scalar

relativistic mode and full potential. U was varied between 4-8 eV and exchange constants were

calculated up to arbitrary distance, however the exchange interactions are rather short ranged

due to the presence of a gap that acts as an additional screening. The exchange interactions are

rather dependent on choice of U value and here we show only results for U=7 eV that yields a

calculated Neel temperature using Monte Carlo simulations of ≈ 390 K which is underestimated

compare to experimental value of 523 K. However, it is worth noting that decreasing U to 4 eV

yields to calculated Neel temperature of 520 K in good agreement with experimental value.

(a) (b)

Figure 10: (Color online) (a) Simulated spin wave spectra for antiferromagnetic NiO at T=10

K using LDA+U approximation with U=7 eV. (b) Adiabatic magnon spectra for NiO as pub-

lished by Jacobsson et al. [64], calculated using the FLEUR code, within LDA+U for U=8 eV.

(reprinted Fig.9 from [64]) The experimental data correspond to results published in Ref. [65].

In general, the values of the exchange parameters for transition metal oxides depend quite

strongly on the exchange-functional used in the calculation, and consequently the spin-waves

excitation spectra reflects this dependency. We show in Fig. 10(a) the example of magnon

spectra for NiO, simulation from atomistic spin dynamics at T=10K and damping α = 0.01

using with exchange parameters calculated with SPR-KKR within LDA+U, with U=7 eV. As

we can notice, with the chosen value of U, the magnon dispersion is slightly overestimated and

reaches higher energies than the experimentally measured excitation[65]. Recent studies [66, 64]

have shown that there is a strong dependence of the exchange parameters on the value of U
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used in the calculations. As an example in Fig 10(b), we chose to reprint Fig.9 from Ref. [64]

which represents the calculated adiabatic magnon spectra for NiO. The calculation has been

performed the FLEUR code and within LDA+U for a value of U=8 eV. For the chosen U-

value, the exchange parameters are slightly underestimated and the calculated magnon mode

lays at lower energies than the experimental data. For a detailed investigation of the exchange

parameter dependence on the value of U, we refer the reader to the above mentioned study [64].

4.3 Ferromagnetic thin-films

Even though the bulk spin-wave excitations spectra have been accessible to experimental in-

vestigations for many decades, the study of magnon dispersion curves for thin films is a recent

achievement for both experiment and theory. Moreover, the reduced dimensionality of the sys-

tems (2D of thin films vs. 3D of bulk) leads to unexpected and sometimes exotic phenomena:

non-collinear or frustrated magnetic order, chiral states and broken time-reversal symmetry etc.

4.3.1 Fe on W(110)

In an excellent demonstration of the capabilities of the SPEELS method, Prokop and co-

workers [7] were able to apply the method to a single magnetic layer. The considered system was

a monolayer of Fe on W(110), a prototypical low-dimensional ferromagnetic system that has ear-

lier been studied by a number of different experimental methods[67, 68]. In addition to showing

the possibility to probe magnons in magnetic monolayers, the main result found by Prokop et al.

was that the measured magnon energies were significantly softened compared to bulk magnons.

This observed softening was also found to be in strong contrast with previous theoretical RPA

based calculations [69] of the system, despite the fact that similar calculations [29] have earlier

agreed quite well with SPEELS results. In order to address the observed discrepancy between

theory and experiment, the system was studied by a combination of first principles calculations

and ASD simulations [16].

The first-principles calculations based on KKR and LMTO theory showed that while the mag-

netic order of the ML of Fe on W(110) was indeed ferromagnetic, it was only quite weakly so. Cal-

culated exchange interactions showed that these interactions were long-ranged but also slightly

frustrated where especially the next-nearest neighbor coupling favored an anti-ferromagnetic

arrangement of the magnetic moments. Depending on the cut-off of the exchange interactions

and on the numerical details of the first principles calculations, the weak and slightly frustrated

exchange interactions would actually, in some situations, tend to favour a non-collinear spin-

spiral ground-state ordering of the Fe moments, which was also noticed in an earlier theoretical

investigation[70]. The weak ferromagnetic ordering driven by the exchange interactions, is also

strengthened by the strong magnetocrystalline anisotropy energy occurring in the system. En-

hanced by the heavy substrate, the MAE for the system is 4.2 meV/atom and favors an easy

axis in the film plane.

Already from the calculated exchange parameters, a notable softening of the exchange compared

with bulk Fe was noticed and could be explained in terms of the geometry and hybridisation

effects with the W(110) substrate. However, to further examine the effect of thermal fluctuations

on the magnon spectra, ASD simulations were performed using the calculated exchange param-
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eters. As it is well known, one of the limitations of the Heisenberg model is that the exchange

interactions Jij , which are approximated to be constant in the model, are actually depending

on the reference configuration for which the interaction parameters are calculated from. While

this is a draw-back of methods based on the Heisenberg Hamiltonian, it actually also gives an

opportunity to model the effect of finite temperatures on the exchange interactions. Typically

that is used by comparing exchange strengths calculated from ferromagnetic reference states,

which would correspond to zero temperature, with interactions calculated from a disordered non-

collinear reference state that would then emulate interactions at high temperatures. Typically,

the disordered high-temperature state is modelled using the coherent potential approximation

(CPA) for collinear but random magnetic disorder which results in the disordered local moments

approximation (DLM). In Ref. [16] both ferromagnetic and fully disordered reference states were

considered but also a partially disordered state was modelled by means of uncompensated, or

partial, DLM configurations (pDLM). The idea with pDLM is that by not considering a 50-50

up/down spin configuration, one should shift the relation so that a finite but reduced net mag-

netisation is present in the calculation of the exchange interactions. By comparing with the

average magnetisation for a given temperature T, a suitable pDLM ratio which correspond to

the same magnetisation can be chosen and assumed to be a good description of the temperature

present in the system. The pDLM concept has earlier in other situations and a recent systematic

investigation of the approach can be found in Ref.[71].

(a) (b)

Figure 11: (a) Calculated exchange interaction parameters Jij for a ML Fe on W(110) as a

function of distance (in lattice constant alat). The Jijs labelled FMA were obtained using the

“frozen magnon” approximation while the other curves was calculated using the LKGM method

for a ferromagnetic solution (LKGM), and disordered local moment state (DLM). Also shown are

the calculated exchange interaction parameters for bulk bcc Fe. The inset shows the geometry

of the ML and position of neighbour j relative to site 0. (b) Comparison between magnon

dispersion curves along the [001] direction for a ML Fe on W(110). The dots are experimentally

obtained data [7], whereas the thick purple line represents our numerically obtained data. For

comparison, the experimental spin wave spectrum of bulk bcc Fe (corresponding to a spin wave

stiffness constant of 280 meV Å2) [72] is also displayed.

As the magnon spectra for the Fe/W(110) system was measured at 120K, a pDLM configuration
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corresponding to a magnetisation of 85% of the saturation magnetisation was used to calculate

exchange parameters for the ASD simulations and it was found that the pDLM interactions

gave an additionally softened magnon spectra compared with the exchange interactions calcu-

lated from the low-temperature ferromagnetic reference state. The thermal fluctuations in the

simulations, which are governed by Langevin dynamics also gave rise to further softening of the

magnon spectra. In conclusion, the simulated magnon spectra was in good agreement with the

measured data, and the combined first-principles calculations and atomistic simulations could

provide an answer to the previously unexplained softening of the magnons as a combination of

the effect of the electronic structure of the ML system with finite temperature effects [16].

In the section above, we discussed data of the calculated [16] spin wave spectra of a single Fe

layer on top of W(110) and compared it with the experimentally determined spectra [7] and

found a good agreement.

We now turn our attention to the magnons of a Fe bilayer on W(110). Experimentally, the

magnon dispersion has been measured by SPEELS [73] where in addition the magnon lifetimes

were determined [74]. In Fig. 12 we show our calculated magnon dispersion along symmetry

lines in the first Brilloiun zone together with experimental data. Along the line Γ̄− H̄, one may

observe a very good agreement between experiment and theory (Fig. 12(a)). If the momentum

transfer is changed, so that one goes outside the first Brillouin zone, the different spin wave

branches can be determined. This is analysed in detail in Section 4.1. In Fig. 12(b) we show

the obtained magnon dispersion, where the optical modes can be clearly observed.

(a) (b)

Figure 12: (Color online) Spin wave dispersion spectra obtained from ASD simulations of 2 ML

Fe/W(110) at T=300 K and α = 0.01. (a) Sampling inside the first Brilloiun zone (τ = [00])

(b) Sampling shifted by vector τ = [10]. Experimental values obtained by SPEELS are marked

by white squares [73].

As we mentioned in Sec. 4.1, making use of Eq. 8 in order to describe the susceptibilities as in

neutron scattering theory [61], we can probe the magnetic excitations outside the first Brillouin

zone.

Given a reciprocal vector q within the primitive Brillouin zone (BZ), we probe the magnon

spectrum within the first BZ, as we show in Fig 12(a). Now let’s consider τ = [hkl] = hb1 +
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kb2 + lb3. By changing the momentum transfer by varying τ , we can now probe outside the

first BZ. In this way, the intensity of the acoustic and optical branches is changing (Fig. 12(b)).

We now analyse the data in Fig 12, using the discussion around Eq. 8 the case of the Fe bilayer

on W(110), τ = [0 1√
2

0.5]a and the reciprocal vectors are restricted in the film-plane (l=0),

then it follows that φ = hπ + kπ. Inside the primitive BZ, the phase φ = 0 and in the limit

q → 0, in Eq. (8) the acoustic term will dominate and will be detected in experiment. If we go

outside the first BZ, it is possible to have a situation where the optical term dominates, on the

expense of the acoustic response, for instance by choosing τ = [10], as illustrated in Fig. 9(b).

Relativistic effects

Udvardi and Szunyogh [75] predicted an asymmetry in the magnon spectrum arising from the

Dzyaloshinskii-Moriya interaction. Later on it was experimentally detected by Zakeri et al. [76]

in a Fe bilayer on W(110). The spin wave asymmetry ∆E is defined as the difference in the

spin wave energy ω(q) between q and −q, i.e ∆E = ω(q) − ω(−q). If Dzyaloshinskii-Moriya

interactions are absent, i.e. very weak effect from spin-orbit interaction, the asymmetry is zero

for every wave vector q. In Fig. 10, we show our calculated spin wave asymmetry for the Fe

bilayer on W(110) for wave vectors ranging from −H̄ to H̄ in the two dimensional Brillouin

zone, using theoretically determined Dzyaloshinskii-Moriya interaction parameters

The simulations were performed at room temperature, as in experiment, with realistic damping.

We obtain a qualitatively good agreement with experiment but the amplitude of the calculated

spin wave asymmetry is slightly overestimated ( ≈ 12meV compared to ≈ 8meV in experiment).

There are several explanations to this discrepency, primarily the asymmetry is sensitive to the

value of the Dzyaloshinskii-Moriya interaction which is very delicate to calculate from ab-initio

theory. The assumption made in the calculations of an atomically sharp interface between Fe

and W may also be a limiting factor.

Figure 13: (Color online) Calculated spin wave asymmetry for the magnon spectrum of 2 ML

Fe/W(110), using theoretically determined Dzyaloshinskii-Moriya interactions. The experimen-

tal values have been obtained by Zakeri et al. [76] for M ‖ [1̄10].
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4.3.2 Fe on Cu(001)

The Fe multilayers on a Cu(001) substrate represent a rather complex system, since Fe doesn’t

naturally exist in the fcc phase at low temperatures, thus making it difficult to grow thicker

layers of Fe with good quality. It is also well known, from theory, that bulk fcc Fe exhibits a

complicated magnetic phase diagram with many magnetic configurations with similar energies.

The same thing is true for thick Fe layers on Cu. However, for thin Fe layers (1 to 3 ML), it

is generally accepted that Fe adopts a ferromagnetic configuration. In the case of thicker layers

there are several proposed magnetic configurations, for instance Sandratskii[77] proposed that

the magnetic structure takes the form ↓↑↑ for the three upper layers. We performed Monte

Carlo simulations using calculated exchange parameters starting from either a ferromagnetic

configuration or the proposed magnetic structure of Sandratskii as reference state for the 3 ML

case. Regardless of the starting configuration, we always obtained the ferromagnetic alignment

as the ground state magnetic configuration for 3 ML Fe on Cu001. However, the spin waves

(Fig. 14) are soft which is reflected in the calculated adiabatic spin wave stiffness constant D

= 210 meV Å2, which is lower than what we obtain for 1 ML of Fe on Cu001, namely D= 260

meV Å2. We would like to point out that the ASD method gives a more realistic description of

the magnon spectra (Fig 14) than the adiabatic approximation (Fig. 5(b)).

The spectra of 3 ML Fe/Cu(001) presented in Fig. 14 present rather soft magnon curves. The

optical branch for the Fe system is more pronounced at low temperatures but it is suppressed

close to the Γ̄-point for reciprocal vectors inside the Brillouin zone. For realistic conditions,

i.e. at room temperature and for larger damping, the intensity of the optical branches is very

weak and smeared traces of those branches remains visible mostly in the X−M region. As we

mentioned before, it is very difficult to grow thick layers of fcc Fe on a Cu substrate and as a

consequence there are no experimental data available for this system.

(a) (b)

Figure 14: (Color online) Spin wave dispersion spectra obtained from ASD simulations of 3 ML

Fe/Cu(001) at (a) T= 1K and small damping constant α = 3 × 10 −4 and (b) T = 300 K and

realistic damping constant α = 0.05
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4.3.3 Fe on Ir(001)

In a recent paper[9] Zakeri and coworkers provide experimental data of collective magnetic

excitations of thin film systems, among which also 6 layers of Fe on Ir(001). In this experimental

study, SPEELS method was used to map out magnon energies. The mentioned experimental

results (Fig.3 in the work of Ref.[9]) show only one mode which is detected with reasonably

high intensity. We reproduced the experimental data representing the acoustic branch (yellow

circles) in Fig. 15 and compared it to the UppASD simulated magnon spectrum.

We point out that all the optical modes (as well as the acoustic mode) calculated by first princi-

ples theory, or as obtained from a Heisenberg Hamiltonian, for multilayer magnetic systems, are

indeed allowed excitations. In Fig. 6 presented above, we show the adiabatic magnon spectrum

for 6 ML Fe/Ir(001) and obviously all modes appear with equal probability and intensity. From

the ASD results (Fig. 15), it is clear that the acoustic mode has the highest intensity and is

clearly visible if scattering processes with momentum transfer within the first Brillouin zone are

considered. The energies and wave vector transfers probed in experiment are: energy loss up to

150 meV and ∆K‖ between 0.5 and 0.8 Å−1, for both Γ̄-X̄ and Γ̄-M̄ (Fig. 2e,f in Ref. [9]), even

up to 250 meV energy loss at the X̄-point (Fig. 3b in Ref. [9]). For these energy and wave-vector

transfer ranges, the first and second low-energy modes should be observed in experiment, if the

data in Fig. 6 were to be used without further processing.

Figure 15: Simulated spin-wave excitation spectra for 6 Fe layers on Ir(001) at 300K. The exper-

imental points represent recently published SPEELS data [9] measured at room temperature.

The structural parameters used in this calculation were the same as reported in Ref.[9]. We

considered Heisenberg exchange, using the expression of Ref. [11] as implemented in Ref. [37].

The spin-dynamics simulations were performed at the same temperature as the experimental

data of Ref. [9], i.e. 300 K. From Fig. 15 it is clear that the measured acoustic branch reported

in the SPEELS experiment is reproduced by theory. It is also clear that all optical branches

along Γ̄-X̄ and Γ̄-M̄ directions have either very weak intensity or are vanishing altogether, which

explains their absence in the measurements. Fig. 15 also shows that it is possible that a very

weak signal from the first optical branch could be detected in experimental investigations, at

least if momentum transfers not too close to the zone-center are considered. The first optical
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mode along the M̄ -X̄ direction should be detectable, although Stoner excitations may play a

role in this case.

Our simulations show the vanishing optical modes in the first Brillouin zone. This is in agreement

with what it is observed also in neutron scattering experiments [61], where the optical modes are

detected only in the extended zone, and previous spin dynamics studies on thin films [10, 16, 17].

4.3.4 Co on Cu(001)

The fcc Co/Cu(001) system represents a model system for the study of magnetic phenomena in

thin films, since it does not exhibit strong structural, chemical or magnetic instabilities. [78, 79] It

was therefore a natural candidate for investigation with SPEELS, and became the first ultrathin

system in which its magnon spectrum was measured using this method. [41] The system could

be described to a good level of accuracy within the context of the nearest-neighbour Heisenberg

model on a semi-infinite substrate. In this case a surface mode exists with a dispersion curve

~ω(surf) = 8JS(1 − cos(qa0)) along the 〈110〉 direction, where J is the exchange coupling, S is

the magnitude of the spin per primitive unit cell, q is the length of the magnon wave vector and

a0 = 2.55 Å. The fit of this curve to the measured SPEELS data gave JS = 15.0 ± 0.1 meV,

which compares well with the value of JS = 14.7± 1.5 meV obtained from neutron data of bulk

fcc Co at long wave lengths [80] (i.e. in the regime q < 0.3 Å−1).

The Halle group followed up their initial report for the 8 ML film [41] with results relevant

to Co/Cu(001) systems with decreasing thickness down to 2.5 ML. [81, 82] These experiments

demonstrated a very weak reduction in the energies required to excite the spin waves, relative

to the bulk. [80] However, for all the thicknesses reported, the surface mode at the surface

Brillouin zone boundary (the X point) is well below the bulk band edge, at around 240 meV.

This difference is for the most part caused by the reduced number of nearest neighbours (NN) at

the surface (only 8 atoms) with respect to the bulk case, where there are 12 NN present. [41] For

energy ranges where Stoner excitations are important, no direct comparison between calculated

and experimental data for bulk Co is possible at the moment.

Theoretical investigations of Co/Cu(001) thin films have been carried out using both the adi-

abatic approximation [38, 42] and the random phase approximation (RPA) to a description of

the spin response of the itinerant electron system. [28, 29]

As explained above, the adiabatic approximation becomes questionable at higher energies and/or

large wave-vecors, since Stoner excitations become relevant. In order to address this issue, Costa

et al. [28, 29] have developed a theory that explicitly takes these excitations into account. Their

approach successfully describes the SPEELS measurements for the 8 ML Co/Cu(001) system:

their calculated magnon spectrum is in agreement with the experiment over all the Γ − X line

and correctly predicts a broadening of the “acoustic” spin wave peaks, along with an absence

of standing spin waves giving rise to “optical” branches. Their work strongly indicates that

the process known as Landau damping, through which the spin waves decay into the Stoner

continuum, is at play in the Co/Cu(001) system.

At present, the UppASD method cannot handle one-particle Stoner excitations (these are re-

sponsible for the longitudinal fluctuations of the magnetic moments) on equal footing with the
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transversal fluctuations, although recently efforts have been made to include these effects in the

LLG-equation, both directly[83] and indirectly[84]. However, the UppASD method allows to

address an alternative source of damping, namely due to the temperature, and we have per-

formed simulations for different thicknesses of Co overlayers (1, 2, 3, 5 and 8 atomic layers)

under two very different conditions (Figs. 16, 17, 18 and 20). First we performed simulations at

low temperature (1 K), where the damping constant α in Eq. (3) is set to 3 × 10 −4, a value

that ensures a very weak coupling to the temperature bath. In this case the temperature effects

are deliberately kept to low. In addition, we perform simulations in more realistic conditions,

namely at room temperature (T=300 K) and a physically more plausible damping constant

α = 0.05. For the case of 1 ML on Cu(001) and Cu(111) since the critical temperature of 1

ML Co/Cu(111) is estimated at 255 K and lays below the room temperature, the simulations

for both systems were performed at T= 200 K. In this way we make sure that the simulation

conditions are below the Curie temperature. All these results are discussed in detail in the

following sections.

2 and 3 ML Co/Cu(001)

Qualitatively, the 2 ML and 3 ML case are not so different so we only display the calculated

dynamic structure factor for 2 ML Co in Fig. 16. Having more than one layer on top of Cu(001),

(a) (b)

Figure 16: (Color online) Spin wave dispersion spectra obtained from ASD simulations of 2 ML

Co/Cu(001) at (a) T= 1K and small damping constant α = 3 × 10 −4 and (b) T = 300 K and

realistic damping constant α = 0.05

we expect, apart from the acoustic branch also optical branches to appear in the magnon spectra,

similar to what is found in the adiabatic spectra. In the case of 2 ML we expect one branch of

each kind, but as noticed in Fig. 16(a), even at very low temperature (T= 1 K) and extremely

small damping, the optical branch is very weak, especially at small wave vectors, close to the Γ-

point. The reason for this has been discussed above and it is not pursued further here. Moreover,

we note in Fig. 16 that eventhough the microscopical interactions used in the Hamiltonian are

the same, for both Figs. 16(a) and 16(b), the spin-wave excitation spectra are different. Not only

has the finite temperature the effect of broadening the magnon dispersion curves, in addition

there is a shift in the excitation energies themselves (this can be better seen in Fig. 17). This is
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due to the fact that Fig. 16 represents data from a dynamical object, which is naturally different

when estimated at different temperatures. We exemplify a similar case for another system, this

time containing 5 layers of Co on a Cu(001) substrate (Fig. 18).

The spectra of Co layers on Cu(001) are rather different from what we have seen in the pre-

vious Sec. 4.3.2 for Fe layers on Cu(001). The fcc Fe/Cu001 system is more complex than

the Co/Cu001, as we discussed before. Since fcc Co exists in a wide range of temperatures, it

can be grown without problems in very thin (1ML) or thick layers. Comparing the spectra of

Fe/Cu(001) presented in Sec. 4.3.2, Fig. 14 to the Co/Cu001 magnon spectra, we notice that they

are quite different, with the most striking feature being the overall stiffness of the Co magnon

curves with respect to Fe. However, we should keep in mind that the critical temperature for

the 3 ML Fe/Cu(001) is much lower than for the analogous Co system. Similar to what we have

observed in the case of Fe/Cu001, the optical branch of the Co systems is suppressed close to

the zone centre (near the Γ̄-point, for reciprocal vectors laying within the first Brillouin zone).

When increasing the temperature in the simulation, the magnon curves become smeared and

broadened, with the optical branches being the most affected by the change in temperature.

Figure 17: Simulated spin-wave excitation spectra for 1 layer of Co on a Cu(001) substrate. The

thin light line represents the magnon dispersion curve simulated at a low temperature of T=1

K, while the softer and broader (smeared) curve represents the magnon excitation estimated at

T= 300K.

8 ML Co/Cu(001)

Recently effort is being made for the experimental determination of the layer-resolved exchange

coupling. Theoretical studies are able to predict the size and type of inter- and intra-layer

exchange coupling in almost any type of systems. In a very recent work [85], the EELS technique

has been used to probe Co layers of different thincknesses (from 4 to 8 layers) deposited on a

Cu(001) substrate. Rajeswari et al. [85] compared the measured dispersion curves of the so-

called ’surface’ and ’standing’ modes with calculated values [29, 17]. The initial idea was to

develop an experimental method that could probe the layer-resolved exchange coupling, but

this remains a challenge for the experimental groups. The main achievement resulted from the

comparison between the measured and calculated dispersion curves, resides in the possibility
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Figure 18: Simulated magnon dispersion spectra for 5 ML Co/Cu(001) at 300 K with two

different damping parameter values: α= 0.0003 and 0.05. The stochastic field that simulates

the presence of thermal fluctuations in the system is influenced both by the temperature and

the damping parameter.

of benchmarking the existent theoretical models used to calculate the exchange interactions

and simulate the magnon spectra. The EELS data have been compared with three different

theoretical methods: (i) the strategy employed by Costa et al. [29], (ii) the approach described

in this review [17] and (iii) a less realistic model of a nearest-neighbour Heisenberg model, with

constant exchange coupling constant. We reprinted Fig.3 from Ref [85] (see Fig. 19).

The main conclusion from the experimental study of Rajeswari et al. [85] is that the best fit

to the experimental data is provided by the less realistic nearest neighbour Heisenberg model

with a constant exchange parameter of 15 meV, since there is no metal known to have only

significant nearest neighbour exchange interaction. The experiments are equally well reproduced

by the first principles calculated layer-resolved exchange parameters [17], scaled to 85% of their

value. Clearly a nearest neighbour model is not a realistic description, especially for metals.

Also the necessity of downscaling the calculated exchange interactions by 15% in order to give

a very good fit of the measured data, is most likely due to the fact that we evaluated the

exchange parameters for a collinear configuration, instead of the disordered non-collinear finite

temperature configuration. It has been recently proven that the latter gives weaker exchange

interactions. [20] We expect that, in addition, by going beyond the ’rigid-spin’ approximation and

by including longitudinal fluctuations in our calculations, the values of the exchange parameters

will be further decreased leading to softer dispersion curves and consequently a better agreement

with the experimental data.

Fig. 20 displays the spin wave spectra on the full 8 ML Co stack on Cu(001), as obtained

from the spin-dynamics simulations. It is immediately noticed that the contrast between the

calculated spectrum based on the dynamical structure factor (Fig. 20(a)) with the spectrum

directly obtained from first-principles (Fig. 5(a)) is strong for values of q close to the Γ̄-point.

In Fig. 20, there is little trace of the ’optical’ branches even in the case of low temperature and

damping. We also note that at 300 K, the magnon energies at the zone boundaries are reduced

by roughly 25 meV, similar to the 2 ML case. The suppression of optical branches arising from
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Figure 19: Co multilayers (5, 6, 7 and 8) on Cu(001) substrate. The empty symbols represent

the dispersion of the so-called ’surface mode’, while the filled symbols represent the dispersion

of the so-called ’standing mode’. (a) The solid and dashed lines represent the standing and

surface modes estimated from the calculated exchange parameters from Bergqvist et al. [17].

(b) The solid and dashed lines represent fits to the experimental data made by the simple

nearest-neighbour Heisenberg model, with a constant exchange parameter. The insets display

the exchange parameters values used for the fitting: (a) Bergqvist et al. [17] and (b) constant

exchange of JS=15 meV. (We reproduced here Fig. 3 from Rajeswari et al. [85]

a dynamical treatment has also been pointed out by Costa et al. [28, 29]. We also note that the

agreement between the theoretical acoustic branch that we calculated and experiment is rather

good.

1 ML Co/Cu(001) vs. Co/Cu(111)

Magnon spectra for different surface orientations

Fig. 21 displays the spin wave spectra in a 1 ML thick Co layer on Cu(001). The values of

the exchange parameters In the low temperature case (Fig. 21(a)), the spectra obtained from

the atomistic spin dynamics simulations is almost indistinguishable from the adiabatic spectra.

We point out that these results are obtained from a calculation of the dynamical structure

factor S(q, ω). In order to facilitate the comparison between the spin wave spectra for a single

layer of Co on Cu for different orientations of the substrate, we performed the calculations for
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(a) (b)

Figure 20: (Color online) Spin wave dispersion spectra obtained from ASD simulations of 8 ML

Co/Cu(001) at (a) T= 1K and small damping constant α = 3 × 10 −4 and (b) T = 300 K and

realistic damping constant α = 0.05. Experimental values obtained by SPEELS are marked by

white squares [41], while data measured by EELS is marked by yellow circles and red circles [86]

representing the first optical branch.

both Cu(001) and Cu(111) orientations (discussed in detailed below), at the same value of the

temperature, i.e. T= 200 K. Increasing the temperature and damping (Fig. 21(b)) causes some

broadening of the dynamical structure factor and as a result the magnon energy at the BZ

boundary (X and M points) decreases slightly. However, overall the effects of temperature and

dynamic treatment are not significant in this case.

Fig. 21 shows primarily that the surface magnons depend critically on the orientation of the

substrate, since for the [111] oriented substrate, the magnon dispersion is softer then for the

[001] oriented surface. This reflects the combination of the geometry and the range and nature of

the Heisenberg exchange interactions. The main difference resides in the geometry of the system:

the close-packed nature of the [111] surface with respect to the open-structure character of the

[001]. This leads to stronger nearest neighbour exchange interactions (1.89 mRyd) for the [001]

orientation and consequently stiffer spin-wave dispersion spectrum than in the case of the [111]

orientation, characterised by much weaker exchange (1.06 mRyd) and a softer magnon curve.

This can be noticed from the data presented in Fig. 21.

5 Conclusions and Outlook

In this review we have outlined some of the details about atomistic spin-dynamics simulations

and how such simulations can be coupled to first principles theory for the electronic structure,

in order to calculate magnetic moments and relevant magnetic parameters (exchange interac-

tion, Dzyakloshinskii-Moryia interaction and magnetic anisotropy). The atomistic description

of magnetisation dynamics has several appealing aspects as compared to micromagnetic simu-

lations. Firstly it identifies a correct smallest unit to consider as a dynamical object, i.e. the

atomic spin. This is an obvious advantage since it connects to the building block of a mate-

rial, the atom. In addition, this approach has no problems with considering antiferromagnetic,
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(a) (b)

(c) (d)

Figure 21: (Color online) Spin wave dispersion spectra obtained from ASD simulations of (a)

1 layer of Co/Cu(001) and (b) 1 layer of Co/Cu(111), both at T= 200 K and realistic damping

constant α = 0.05. The corresponding Brillouin zones for the 001-orientation (c) and for the

111-orientation (d).

ferromagnetic or ferrimagnetic materials, which is also an advantage, and it allows also for on

the fly evaluation of the relevant parameters used in the simulation, so that their tempera-

ture dependence may correctly be incorporated. In this review we have focused primarily on

how this multi-scale technique can be used for calculating magnon dispersion relationships, for

both bulk and surfaces, although it can in principle be applied to a wide range of problems

connected to magnetisation dynamics. Here, we have made a comparison between theoretical

magnon dispersions for one to a few layers of Fe and Co on different substrates, such as W

(110), Cu (001) and Cu(111). In general, the agreement between observations and theory is

good, e.g. the measured acoustic modes of the surface systems are in general softer compared to

bulk magnons, which is reproduced by theory. In addition, the optical modes, although being

allowed excitations in principle, are not visible or only weakly visible in the experiments, a fact

which is captured by theory. This is explained here, as well as in Ref. [10], by focusing on the

scattering nature of the SPEELS experiments, where the differential cross section and hence

dynamical structure function are relevant quantities. Thus it is argued here that a natural way

to understand SPEELS experiments is to consider time and space displaced spin-correlations,

as manifested in the dynamical structure function S(q, ω). A further development of this theory
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for SPEELS is to consider that the penetration depth of electrons in this experiment is not

as long-ranged as e.g. for neutrons in a corresponding neutron scattering experiment, and to

consider Stoner excitations which become relevant for larger values of the momentum transfer.

Elevated temperatures have in the current implementation of atomistic spin-dynamics the effect

of softening shifting and broadening the magnon excitation spectrum, even though the exchange

parameters are calculated at zero temperature. This is due to that S(q, ω) samples, via the spin-

correlations, a true dynamical object. This is different from a static approximation, as is done

when adopting the adiabatic magnon approximation, as outlined in Section 3.3 in this review.

In some cases finite temperatures can modify the magnon frequency with up to 15%, depending

on system [17]. A further development for these thin film systems is to include also temperature

dependent exchange interactions, as was done in Ref. [20] for bulk bcc Fe, and possibly be also

to consider the temperature dependence of the Dzyakloshinskii-Moryia interaction. In this way

most of the relevant temperature effects are included in the simulations.

Our ambition is to further develop the methods that we currently use by extending even more

their range of applicability. We are already working on finding a better way of treating complex

(non-collinear) magnetic structures and their properties from ab initio, allowing longitudinal

fluctuations of magnetic moments in ASD, giving an estimate of the magnon lifetimes (which

is already probed experimentally) and trying to find a reliable way for calculating the damping

parameter α. An improved implementation of dipolar interactions based on Fast Multipole

Method (FMM) in the UppASD is almost ready. This will allow us to investigate also dipolar

magnons, besides the exchange magnons. This comes in addition to the massive parallelisation

already implemented for UppASD, as described before. Another development of the method

described here is to couple spin- and lattice-dynamics. This is far from a trivial task since the

time-scales are similar. It should be noted that already in the original article that derive the

atomistic spin-dynamics equations [12], a suggestion for how to couple spin- and lattice-dynamics

was made. The most efficient numerical scheme for performing this has most likely not been

found yet. However, given the experimental interest in these coupled dynamical objects, e.g.

the dynamics of multiferroic materials, such a development is highly interesting.

Finally, we mention that further challenges both for theory and experiments is to consider new

geometries and new surface systems, e.g. magnetic clusters or molecular magnets [87] that

may be exchange coupled to a substrate [88]. An analysis of the magnetisation dynamics of

such systems is highly challenging both from an experimental and theoretical point of view, in

particular since the dynamics of molecular magnets most likely requires a quantum description,

and one would have to incorporate this part with the classical description of atomistic spin-

dynamics approach. A further direction of research for SPEELS experiments as well as atomistic

spin-dynamics simulations is the emerging field of magnonics, where the generation and detection

of magnetic excitations, e.g. magnons, skyrmions and merons, is of crucial importance. This

field is however, outside the scope of the current review.
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