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Abstract

Molecular dynamics can be used as a very effective, general-purpose approach to gen-

erate atomic configurations for a material or chemical compound that are consistent with

prescribed experimental conditions. It is an ideal companion to ab initio electronic structure

methods, that allow one to evaluate the inter-atomic forces from first principles, avoiding

the time-consuming and at times inaccurate process of designing an empirical model. Un-

fortunately, ab initio methods are still computationally demanding, and so it is desirable

to modify the properties of the dynamics to get a more effective exploration of phase space

than allowed by the intrinsic system’s dynamics. A very effective approach to manipulate the

sampling behaviour of a molecular dynamics simulation exploits non-Markovian, Generalized

Langevin Equations (GLEs) that have been used in the past to model the coupling of the

system with a physical bath. Within this framework, the impact of the correlated noise on

static and dynamic properties of the trajectory can be predicted analytically in the harmonic

limit. One can therefore optimize the performances of the GLE a priori, and obtain effects

that range from effective sampling of all the relevant time scales, to fine-tuned control of

the disturbance of dynamics for different frequency ranges, to the design of non-equilibrium

trajectories that can be used to model zero-point energy and other nuclear quantum effects

and even to evaluate matrix functions with linear scaling effort. Correlated noise can also be

combined with imaginary time path integral molecular dynamics, to obtain fast and system-

atic convergence of properties that depend on the quantum nature of light nuclei – that are

paramount for materials that contain hydrogen. This review will introduce the theoretical

basis of the GLE thermostat framework and will briefly discuss the many ways it can be used

to manipulate the sampling properties of molecular dynamics. The practical implementation

will also be covered, and a few selected applications in the context of ab initio molecular

dynamics will be presented as examples.

Simulating on a computer the behaviour of matter at the atomic scale can be invaluable in as-

sisting the interpretation of experiments, predicting the properties of materials and determining

the reactivity of chemical compounds. The accuracy and predictive power of computational
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modeling is growing constantly, partly because of the exponential increase in hardware perfor-

mance, and partly because of methodological advances in simulation techniques. In particular,

ab initio simulations that explicitly take into account the quantum nature of electrons have the

advantage that they do not require previous knowledge of the system’s properties. Extensions

to density functional theory (DFT) [1] to treat more accurately electronic correlations [2] and

dispersion forces [3–5] are opening up the possibility of studying materials that exhibit at the

same time subtle electronic properties, complex structural features and rich long-time dynamics.

In simple systems, such as crystals and isolated molecules, it is often sufficient to determine the

properties of a few selected configurations, corresponding to the minima of the potential energy.

For more complex problems such as liquids, or whenever thermal fluctuations are expected to

play an important role, an effective simulation will have to generate thousands of configurations

so as to compute average values consistent with the reference experimental conditions.

Molecular dynamics (MD) proceeds by integrating Hamilton’s equations for the atoms, and is

particularly effective in generating sequences of configurations to compute ensemble averages,

and under appropriate condition also dynamical properties. Contrary to Monte Carlo sampling,

that can be made very efficient but requires deep insight into the problem at hand [6], MD gen-

erally yields good sampling performances even when straightforwardly applied to to an unknown

system – which makes it an ideal complement to the first-principles evaluation of the electronic

structure [7].

The generality of the MD approach does not imply that it is not possible to better its perfor-

mances by modifying Hamilton’s equations. Whenever one is interested in computing properties

in constant-temperature conditions, it is possible to introduce so-called thermostats, that intro-

duce fluctuations in the total energy consistent with canonical Boltzmann sampling. In the last

few years, a remarkably flexible framework based on a non-Markovian Generalized Langevin

Equation (GLE) has been developed [8, 9], that makes it possible to achieve an exquisite con-

trol over the sampling properties of a molecular dynamics trajectory, to enhance its sampling

efficiency [10–12] and even to model inexpensively the quantum nature of light nuclei [13], also

in conjunction with path integral methods [14, 15].

Here, we will review the theoretical foundations of the GLE thermostat framework, and its

application to efficient constant-temperature MD and to the modelling of nuclear quantum

effects. Particular attention will be paid to the implications of these techniques in the context

of ab initio electronic structure calculations.

1 Constant-temperature molecular dynamics

Let us consider for a start the case of a particle of mass m described by position q and momen-

tum p, subject to a one-dimensional potential V . Molecular dynamics amounts at integrating

Hamilton’s equations

q̇ =p/m

ṗ =− V ′(q),
(1)
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to generate a trajectory (p(t), q(t)), out of which one wants to extract physical quantities, such

as the constant-temperature expectation values of an observable O(p, q).

A trajectory is said to be ergodic for canonical sampling if, in the limit of an infinitely long

trajectory, the time average of the observable along the trajectory is equivalent to the average

over the Boltzmann distribution at an inverse temperature β = 1/kBT :

〈O〉 =

∫
O(p, q)e

−β
[

p2

2m
+V (q)

]
dpdq ≡ lim

ttot→∞

1

ttot

∫ ttot

0
O (p(t), q(t)) dt. (2)

In practice, the length of a simulation will be limited by computational cost considerations, and

it is therefore important that the statistical error inherent in a finite trajectory is as small as

possible, particularly in the computationally-demanding case of ab initio modelling.

The statistical efficiency of an MD strategy to compute the observable O can be assessed by

computing the autocorrelation time of the observable [6, 16]

τO =

∫ ∞
0
〈O(t)O(0)〉 dt, (3)

which is nothing but the integral of the autocorrelation function

〈O(t)O(0)〉 = lim
ttot→∞

1

ttot − t

∫ ttot−t

0

(O(p(t+ s), q(t+ s))− 〈O〉) (O(p(t), q(t))− 〈O〉)
σ2(O)

ds, (4)

where we introduced the mean and variance of O, 〈O〉 and σ2(O). In fact, the statistical error

in a trajectory of length ttot is ε2 ≈ σ2(O)τO/ttot.

Note that in practice it is much harder to converge the autocorrelation function (4) than it is

to converge the expectation value of O, and that in general it is almost impossible to obtain

an accurate estimate of the autocorrelation time from a first-principles simulation. Whenever

possible, one should perform preliminary simulations using empirical forcefields to estimate the

order of magnitude of τO, so that the feasibility of an ab initio treatment of the problem can be

established, and a conservative estimate of the statistical error can be determined.

It is easy to see that Eqs.(1) alone are not sufficient to perform constant-temperature sampling.

Hamiltonian dynamics conserves the total energy, and it will be necessary to modify the equa-

tions of motion to allow for energy fluctuations. Over the years, many strategies have been

designed to this aim, starting from the simple and elegant Andersen thermostat [17], to veloc-

ity rescaling and Berendsen thermostat [18] (which do not guarantee canonical sampling and

should be avoided), to deterministic thermostat of the Nosé-Hoover kind [19–21], and stochastic

thermostat based on Langevin dynamics [22–24], which are the basis of the approach discussed

here.

1.1 Langevin dynamics

Langevin dynamics was originally introduced as a model for Brownian motion [25], and in its

original form describes the motion of the position q of a free particle subject to viscous drag from

the surrounding medium −γq̇, and to a stochastic force ξ that arises because of the collisions

with surrounding molecules:

q̈ + γq̇ − ξ = 0. (5)
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Figure 1: Sample trajectory of potential (blue), kinetic(red) and total (black) energy (upper

panels) and position (lower panels) for a one-dimensional harmonic oscillator of frequency ω = 1

and mass m = 1, at temperature kBT = 1, subject to Langevin dynamics with friction γ. Panel

(a): γ = 0; panel (b): γ = 1; panel (c): γ = 103. Not that in the over-damped case (c) the

diffusion in configuration space is greatly slowed down.
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In this simplified model, it is assumed that the interactions between the Brownian particle and

its surroundings are instantaneous, which implies that the friction term only depends on the

instantaneous value of the velocity, and that the noisy force term (which is a Gaussian variate)

has no correlation in time, i.e. 〈ξ(t)ξ(0)〉 = δ(t). The model can be also seen as describing the

interaction of a system with an infinite thermal bath, and in this sense it has been used for a

long time [22] to modify Hamilton’s equations to sample the constant-temperature ensemble:

q̇ =p/m

ṗ =− V ′(q)− γp+
√

2mγ/βξ(t).
(6)

The friction γ determines the impact of the Langevin terms onto the dynamics of the system,

and how quickly the total energy of the system fluctuates. One should not think that a larger

value of γ necessarily implies more efficient sampling of the canonical ensemble (see Figure 1).

It is instructive to consider the case of a harmonic potential V (q) = mω2q2/2, for which the

Langevin dynamics can be solved analytically [26] so that the correlation times of potential,

kinetic and total energies can be computed to obtain [9]

τK (ω) =
1

2γ
, τV (ω) =

1

2γ
+

γ

2ω2
, τH (ω) =

1

γ
+

γ

4ω2
. (7)

The correlation time of the kinetic energy decreases monotonically as the friction term is in-

creased, but τV and τH both have an optimal, “critical damping” value corresponding to min-

imum correlation times, and the sampling efficiency decreases as γ is increased further into an

over-damped regime (Figure 2). This is just a manifestation of the fact that it is easy to sample

momenta (that are distributed according to a simple, Gaussian distribution) but it is hard to

sample configurations, that in general are distributed following a complex, non-linear potential

energy function.
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Figure 2: Correlation time of potential (τV ), kinetic (τK) and total (τH) energy for the white-

noise Langevin dynamics of a harmonic oscillator, as a function of the friction γ and the frequency

ω.

Eqs. (7) imply that for a given vibrational mode there is an optimal friction that yields the best

statistical efficiency for the potential energy – that we can consider as a proxy for configurational

sampling. In an actual simulation, however, vibrational frequencies will typically span several

orders of magnitude, comprising localized, high-frequency modes as well as long wavelength

acoustic modes in solids and anharmonic, collective motion in liquids or macromolecules. In

these cases, one would need to optimize the choice of friction depending on the property that

must be computed, which is clearly inconvenient given that often one wants to evaluate many

properties at once and that optimizing sampling efficiency empirically requires time-consuming

preparatory simulations. Ideally, one would like to be able to optimize separately the sampling

efficiency of each vibrational mode present, so that sampling can proceed as efficiently as possible

for any physical property.

Before continuing, let us remark a subtle but important aspect of Langevin dynamics. Consider

the Langevin dynamics of a multi-dimensional system, written using mass-scaled variables (q ←
√
mq, p← p/

√
m), so that the dynamics can be expressed in the compact form

q̇ =p

ṗ =− ∂V/∂q− γp +
√

2γ/βξ.
(8)

Here ξ is a vector of uncorrelated Gaussian random variates, 〈ξi(t)ξj(0)〉 = δijδ(t). Now consider

an orthogonal transformation of the coordinates, q̃ = Oq and p̃ = Op. Because of the orthog-

onality of O, it is true that ∂V/∂q̃ = O∂V/∂q, and that
〈
Oξ(t)ξ(0)TOT

〉
= δ(t)1. Thanks to

the Gaussian statistics of ξ, also the transformed noise ξ̃ = Oξ has identical Gaussian statis-

tics. Hence, the equations of motion in the transformed coordinates are completely equivalent

to those in the original coordinates. The invariance of Langevin dynamics under an orthogonal

transformation means for instance that if a Langevin dynamics with friction γ is applied to a

multi-dimensional harmonic system, the very same statistical and dynamical properties would

be observed if the equations of motion were written in the Cartesian basis or in normal-modes

coordinates, i.e. that the predictions of Eqs. (7) apply for each normal mode separately, even
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though the dynamics is integrated in Cartesian coordinates without explicit knowledge of the

systems’s vibrational frequencies or Hessian eigenvectors.

1.2 Generalized Langevin dynamics

The possibility of predicting the sampling behaviour in the harmonic limit – and that the

predictions hold irrespective of the basis in which the dynamics is integrated – is a remarkable

feature of Langevin dynamics. At the same time, the analysis we performed in the previous

section demonstrates why it is difficult to choose an universal value of the friction: each of the

vibrational modes in the system would require a different value of γ to be sampled with optimal

efficiency. One is then led to consider generalizations of the Langevin equation, that preserve

the good features of Eq. (5) while giving more freedom in controlling how Hamiltonian dynamics

are modified.

When considering more carefully the effect of the coupling between a physical system and a heat

reservoir, a non-Markovian, history-dependent generalized Langevin equation (GLE) arises very

naturally [27–32]

q̇ = p/m

ṗ = −V ′(q)−
∫ t

−∞
K(t− s)p(s)ds+ ζ(t),

(9)

where K(t) is a friction memory kernel that describes dissipation and H(t) = 〈ζ(t)ζ(0)〉 is the

time correlation of the noisy force. Eq. (9) is obtained when the dynamical variables associated

with the bath are integrated out, leaving an effective, history-dependent dynamics for the system

only. Because of this, GLEs of this form have been used in the past to model an open system

coupled to a physical bath [33]. The dynamics described by Eqs. (9) is also promising for our

purpose of controlling the sampling and equilibration properties of molecular dynamics [34]. If

one considers a multi-dimensional system, with identical non-Markovian dynamics having inde-

pendent Gaussian ζ applied to the different degrees of freedom, it is easy to see that the same

argument discussed above applies, and that the dynamics is invariant to orthogonal transforma-

tions of the coordinates. However, the non-Markovian nature of the equations of motion means

that it is considerably more complex to derive analytical estimates of the sampling properties

in the harmonic limit, and that the practical implementation of the equations of motion would

be riddled with difficulties.

To circumvent this inconvenience, we introduced n fictitious degrees of freedom s, and wrote a

Markovian Langevin dynamics in an extended phase space [35]

q̇ =p(
ṗ

ṡ

)
=

(
−V ′(q)

0

)
−

(
app aTp
āp A

)(
p

s

)
+

(
bpp bTp
b̄p B

)(
ξ

)
,

(10)

Here, ξ is a vector of n+1 uncorrelated Gaussian random numbers, with 〈ξi (t) ξj (0)〉 = δijδ (t).

Clearly, Eq. (6) is recovered when n = 0. It is easy to see, by integrating out the additional

degrees of freedom in a Mori-Zwanzig fashion, that Equations (10) are statistically equivalent

to Eqs. (9) with K(t) = 2appδ(t) − aTp e
−|t|Aāp and an analogous (albeit more cumbersome)
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expression for the noise correlation function H(t) [8, 9]. Note that in order to achieve canonical

sampling a fluctuation-dissipation theorem must hold, requiring that the noise and friction

memory kernels are related by H(t) = kBTK(t) [31].

The GLE has hence been reformulated as a linear, Markovian stochastic differential equation,

that can be thought as a matrix generalization of conventional, white-noise Langevin dynamics

(an Ornstein-Uhlenbeck process [26]). To distinguish expressions where the matrices are re-

stricted to act on (p, s) and expressions where matrices act on the full state vector x = (q, p, s)T ,

we will use the same labelling introduced in Refs. [8, 9, 13]:

q p s

q mqq mqp mT
q

p m̄qp mpp mT
p

s m̄q m̄p M

}
Mp

}
Mqp

(11)

The form of Eqs. (10) is very general, and comprises as special cases many related GLE imple-

mentations [36, 37], that have on their side a more transparent relation to a physical model of the

bath. Here we are only interested in obtaining the maximum flexibility with the most compact

formulation possible, and will therefore derive all of our results in the general case of arbitrary

Ap and Bp matrices. Ap and Bp determine the static covariance matrix Cp, that determines

the fluctuations of p and s in the free-particle limit. In fact, the three matrices must satisfy the

relation ApCp+CpA
T
p = BpB

T
p . Furthermore, one can show that a sufficient condition to fulfill

fluctuation-dissipation theorem and achieve canonical sampling is that Cp = kBT , so that in

practice if one wants to sample configurations consistent with Boltzmann statistics the diffusion

matrix Bp is determined by the value of Ap via BpB
T
p = kBT

(
Ap + AT

p

)
.

It is easy to see that the dynamics of a multi-dimensional generalization in which equivalent

(same-parameters) but independent (uncorrelated) GLEs are applied to individual degrees of

freedom of the system are rotationally invariant. Thus, predictions for the statistical and dy-

namical properties of a one-dimensional harmonic oscillator will be realized on each vibrational

mode of a real system, regardless of whether the GLE is integrated in the normal-modes or in

the Cartesian basis. Contrary to the explicitly non-Markovian case, it is now possible to solve

the harmonic case analytically, since the dynamics for x = (q, p, s)T reads simply

ẋ = −Aqpx + Bqpξ,where Aqp =

 0 −1/m 0

ω2

Ap
0

 Bqp =

 0 0 0

0
Bp

0

 (12)

which is in itself just an Ornstein-Uhlenbeck process.

Refs. [8, 9] report the expressions for a number of static and dynamic properties of the dynamics

of a harmonic oscillator of frequency ω as a function of the parameters Ap and Bp. These include

expressions for the correlation times (7), that are cumbersome but straightforward, basically

requiring diagonalisation of small matrices of size n+ 2. It is therefore possible to evaluate the

sampling properties of the GLE exactly, without statistical error and without having to run test

calculations. Furthermore, the dynamics of a multi-dimensional harmonic system will comply

with these predictions without having to know explicitly the vibrational modes. This makes it

possible to design GLE dynamics that address the problem of efficient sampling, that is crucial
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in order to obtain converged thermal averages within the limited simulation time accessible by

ab initio MD.

2 Custom-tailored GLE thermostats

Depending on the number of additional degrees of freedom n, the GLE thermostat involves a

large number of parameters, and it would be completely impractical to choose them by trial

and error, based on test simulations for a specific system. For this approach to be useful, the

parameters have to be decided a priori, based on the analytical estimates that can be computed

in the harmonic limit.

Let us focus for instance on the task of optimising the sampling efficiency for the potential energy

of the harmonic oscillator. For a given frequency ω the minimal correlation time is obtained for

γ = ω, and equals 1/ω – i.e. slower modes imply longer correlation times even in the best case

scenario. It is therefore useful to introduce κV = 1/τV ω as a normalized measure of sampling

efficiency, which is 1 in the optimal case and smaller for sub-optimal sampling.

The strategy for designing a transferable “optimal sampling” GLE is quickly explained. The

only piece of information that is needed is a rough estimate of the range of frequencies that is

needed for the problem at hand (e.g. 1 to 4000 cm−1 for a liquid containing O–H bonds). Then,

one can start from a tentative (e.g. random) Ap matrix, and compute the value of κV for a

number of ω ∈ [1, 4000]cm−1. The elements of Ap can then be modified, so as to iteratively

optimize the values of κV across the chosen frequency range, aiming for a large, constant value

of the sampling efficiency.

The details of the fitting procedure have been discussed in Refs. [8, 9], and will not be repeated

here. One important aspect is the need of parametrising Ap (and in some cases Bp) in a way

that enforces automatically some mathematical constraints that must be fulfilled in order to get

a well-behaved stochastic dynamics (e.g. the eigenvalues of Ap must have positive-definite real

part). An objective function is then introduced that evaluates how much the GLE generated

by the tentative set of parameters deviates from the desiderata (e.g. large and constant κV ). A

minimum is then found by iteratively changing the parameters, for instance using Nelder-Mead

downhill simplex algorithm [38].

The response of the GLE as a function of frequency is typically very smooth (in fact, it takes

considerable effort to obtain fits with sharp changes as a function of ω), so it is not worth to

target specifically the vibrational density of states of a given system. Asking for equally efficient

sampling of all vibrational modes over a broad range of frequencies yields a very transferable set

of parameters, that can be used to obtain efficient sampling for many different systems without

the need of time-consuming preliminary tests.

2.1 Smart sampling GLE

If one observes carefully the κV (ω) curves optimised over different frequency ranges (Figure 3),

it becomes apparent that there is a trade-off between the breadth of the range and the constant

sampling efficiency that can be achieved. At the extremes of the fitted range the GLE is orders
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Figure 3: Sampling efficiency for the potential energy, κV , for different optimal sampling GLE

thermostat, that have been designed to yield constant mormalized efficiency over different ranges

of frequency (two, four, six orders of magnitude from bottom to top). Red lines are obtained

from matrices with n = 2, blue lines are the best fit for matrices with n = 4, and the black line

is the most balanced choice of white noise, shown as reference.
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of magnitude more effective than the best choice of white noise, however the GLE constant κV

is about 50% of the ideal value of 1, and tends to be lower for the broader fitting ranges.

While an “optimal sampling” GLE guarantees that no vibrational mode is severely over or

under-damped, one could argue that treating evenly all vibrational modes is not the best choice

possible. Slow, collective modes are the most challenging, while fast vibrations will be sampled

several times during the simulation, and so achieving optimal sampling efficiency is less crucial.

A smarter sampling strategy would be to consider an estimate of the maximum simulation time

one can afford tmax, and to ensure that vibrations with frequency ωmin = 2π/tmax (the slowest

one can hope to observe) are sampled with maximum efficiency. All the faster modes, up to the

maximum frequency present ωmax, should be sampled as efficiently as possible, without negatively

affecting the sampling of slower modes. In practice, we found that it is possible to obtain a decay

of κV (ω) ∼ 1/
√
ω above ωmin – rather than the 1/ω decay that would be expected for white

noise (see Figure 4).

As shown in Figure 5, in a practical case (a MD simulation of liquid water at room temperature)

this leads to a shorter correlation time for a hard-to-compute property such as the cell dipole mo-

ment, and a slightly longer correlation time for the potential energy, that has a short correlation

time and is easy to converge anyway. This example demonstrates on one hand that a “smart-

sampling” GLE helps ensuring that as much statistics as possible is extracted from demanding

MD simulations, and on the other hand illustrates the philosophy of GLE thermostatting: a set

of parameters is optimized based on very general considerations and analytical estimates in the

harmonic limit, and then it is applied to a real, complex simulation yielding results that are
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Figure 4: Sampling efficiency for the potential energy κV as a function of the frequency, for

a white-noise thermostat optimised for ω = 0.4cm−1 (black), for a optimal sampling GLE

optimised between 0.4 and 4000cm−1 (red) and for smart sampling GLE optimised between 0.4

and 4000cm−1 (blue). The upper panel shows the velocity-velocity correlation spectrum for a

flexible TIP4P water model [39], as reference.
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Figure 5: Autocorrelation functions of the potential energy (top) and the components of the

total dipole moment of the simulation cell (bottom, 〈d(0) · d(t)〉), for a simulation of a flexible

water model [39]. The different curves correspond to simulations performed with a white-noise

Langevin thermostat optimised for ω = 0.4cm−1 (black), for a optimal sampling GLE optimised

between 0.4 and 4000 cm−1 (red) and for smart sampling GLE optimised between 0.4 and 4000

cm−1 (blue). Note that smart-sampling has comparable performance to a very weak Langevin

thermostat for hard-to-compute properties depending on slow collective rearrangement of atoms,

while being dramatically more efficient for faster-converging properties such as the potential

energy.
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Figure 6: Drift of the kinetic energy associated with the electronic variational parameters in the

CPMD dynamics of a water molecule [10]. Panel (a) shows the results with a strongly-damped

(γ = 15fs) Langevin dynamics, panel (b) using a GLE specifically designed to maintain adiabatic

decoupling, and panel (c) using massive Nosé-Hoover chains.
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compatible with the initial set of desiderata.

2.2 Maintaining adiabatic decoupling in Car-Parrinello MD

Optimal sampling and – to a lesser extent – smart sampling both introduce a strong noisy

force term, that modifies the dynamics of the system and contains high-frequency components.

This is not a problem when performing Born-Oppenheimer MD (see below for a discussion of

the impact on the conserved quantity and the accuracy of sampling), but it requires some care

when performing a combined electron-nuclei dynamics such as Car-Parrinello MD [7], or similar

methods based on adiabatic decoupling of some “fast” degrees of freedom relative to the motion

of the nuclei[40–44].

The idea behind CPMD-like methods is very general, and can be applied to any simulation

that requires variational optimization of a set of parameters for each configuration of the nuclei.

A fictitious mass is associated to the parameters that should be optimised, and an artificial

dynamics is defined in which the nuclear degrees of freedom and the variational parameters

are evolved simultaneously. If the variational parameters are optimised at the beginning of the

trajectory, they will evolve staying close to the ground state, provided that their dynamics is

kept adiabatically decoupled from that of the nuclei by choosing a suitably small fictitious mass.

White-noise Langevin dynamics has a disruptive effect on CPMD, because the power spectrum

of the noisy forces acting on the nuclei contains very high frequencies, and hence interferes

with the dynamics of the variational parameters. Their fictitious kinetic energy grows rapidly

(see Figure 6) and the nuclear dynamics deviates dramatically from the desired ground-state

conditions. Because of this, Nosé-Hoover-style deterministic thermostats [19–21] have generally

been used in these kind of simulations, as they do not introduce very high frequency motion

in the nuclear dynamics. However, they do not offer the same flexibility as GLE thermostats,

require a complex multiple-time step integration, and in the massive (one chain per degree

of freedom) case have the inelegant property of not being invariant to rigid rotations of the

system [9].
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Figure 7: (a) Autocorrelation function of the squared symmetric stretching coordinate for the

CPMD of a single water molecule in vacuum. The blue curve corresponds to NHC thermostat-

ting, and the red curve to a GLE thermostat designed to sample efficiently ionic degrees of

freedom without affecting high-frequency modes. (b) Autocorrelation function of the squared

bending coordinate. The inset shows the sampling efficiency κH for the GLE dynamics used for

sampling. Curves use the same color code as in panel (a).
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Luckily, generalized Langevin dynamics is flexible enough to be modified so that it does not

disturb adiabatic decoupling. In fact, the first application of GLE thermostats was precisely

aimed at introducing a low-pass filter on the noise, to make stochastic dynamics compatible with

CPMD [10]. Figure 6b shows that filtered Langevin dynamics does indeed maintain adiabatic

decoupling, while Fig. 7 demonstrates that, by an a-priori tuning of the sampling efficiency

over the ionic frequency range, it is possible to significantly improve equilibration and sampling

relative to NHC thermostatting [10].

2.3 Stabilizing multiple time-step dynamics

As a final demonstration of the flexibility of GLE thermostats, let us consider the problem of

stabilising multiple time step dynamics. Whenever it is possible to decompose the inter-atomic

forces in a fast (and inexpensive) component and one slowly-varying (and expensive) one, it is

possible and advantageous to introduce a multiple time step procedure [45, 46], whereby the

fast component of the force is evaluated often, and the slow component is evaluated once every

several steps, reducing dramatically the cost of the simulation while maintaining an accurate

description of the physics. These methods are common when using empirical force fields, where

the slowly-varying component of the force typically corresponds to long-range electrostatics.

More recently, attempts have been made to develop similar schemes for ab initio MD [47, 48],

although the partitioning of the forces in slow and fast components is less obvious.

In either case, it is known that even with an effective splitting there is a limit to the ratio

between the slower and the faster time steps, because the fast degrees of freedom in the system
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enter in resonance with the small errors in the seldom-updated slow component [49]. It is also

well-known that such “resonance barrier” can be overcome by coupling the system to a strong

thermostatting bath [50]. However, as we have seen above, over-damped thermostatting reduces

the sampling efficiency of diffusive modes, so that despite the larger outer time step, little or no

advantage is obtained in terms of statistical efficiency.

Ideally, one would like to use a thermostat that is active on the fast degrees of freedom, while

leaving the slow components of the dynamics unaffected. In fact, methods have been devised that

implement this concept, based on approximate knowledge of the vibrational patterns associated

with fast molecular motion [51]. Coloured-noise dynamics can also be used to this aim, with the

considerable advantage that no prior knowledge of the dynamics is needed, and that one can

simply specify a cutoff frequency below which the GLE dynamics aims at disturbing minimally

the system’s dynamics. In Ref. [12] it was shown that using this strategy it is possible to perform

simulations of alanine dipeptide with a fully-flexible force field with an outer time step as large

as 12 fs while slowing down the diffusive behaviour of ala2 by less than 10%.

3 Non-equilibrium GLEs

Sampling configurations consistent with constant-temperature equilibrium conditions is perhaps

the most straightforward application of our GLE framework. Eq. (10) is however considerably

more general, and in principle one could very easily realise a stochastic dynamics for which

kBT (Ap+AT
p ) 6= BpB

T
p , which does not satisfy the fluctuation-dissipation theorem and therefore

does not guarantee sampling of the canonical ensemble.

A simulation based on this dynamics could be regarded as a model of the coupling of the phys-

ical system with several baths at different temperature, each coupled preferentially to different

frequency ranges. In fact, one can exploit the possibility of solving the dynamics in the har-

monic limit (and once more the invariance of a multi dimensional GLE to a unitary rotation

of the coordinates) to predict the stationary distribution of a N -dimensional harmonic system

in terms of a frequency-dependent effective temperature T ?(ω). Furthermore, by fitting the

parameters in Ap and Bp one can tune the fluctuations ω2
〈
q2
〉

(ω) and
〈
p2
〉

(ω) to obtain the

desired frequency dependence, leading to a number of useful effects.

3.1 δ-thermostat and f-thermostat

Perhaps, the simplest example of a “non-equilibrium” GLE is one that enforces a δ-like de-

pendency of the effective temperature as a function of frequency [52]. In a harmonic system,

this GLE will set a narrow range of frequencies to a finite effective temperature, and all other

normal modes to a near-zero T ?. Figure 8 shows the effect of applying δ-thermostats targeting

different frequencies ω0 to a quasi-harmonic system, namely an empirical force field model of ice.

Despite the anharmonicity of the system, the dynamics does automatically excite the normal

modes corresponding to the desired target. Once more, note that no information on the intrinsic

vibrations of the system is used, and that the GLEs are integrated in the Cartesian basis.

An interesting – albeit not directly relevant to ab initio molecular dynamics – application of δ
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Figure 8: Velocity-velocity correlation spectra for a flexible ice model [39], computed out of a

series of simulations using δ-thermostats targeted at different frequencies ω0.

thermostats is the (approximate) evaluation of the density of states of a positive-definite matrix

M. The idea is to use M to define the quadratic potential of an artificial harmonic dynamics.

When δ-thermostats centred on different frequencies ω are used on top of such potential, the

mean kinetic energy obtained from the trajectory can be related to the density of states in the

vicinity of ε = ω2. This concept can be generalized to construct an f -thermostat [53], which

can be used to evaluate selected elements of positive functions of positive-definite matrices. In

practice one designs a GLE that enforces ω-dependent fluctuations of momentum that are related

to the target matrix function f by
〈
p2
〉

(ω) = f(ω2). Then, thanks to the rotational invariance

of GLE dynamics one sees that, even though the artificial dynamics is not performed in the

basis of the eigenvalues of M, and in fact there is no explicit knowledge of the spectrum of the

matrix, it will be true that
〈
ppT

〉
= f(M). If M is sparse, the dynamics can be propagated with

linear scaling effort, and so selected elements of f(M) can be computed with linear complexity,

avoiding the diagonalisation of M.

3.2 The quantum thermostat

The methods discussed this far demonstrate nicely the effects that can be obtained by using

GLEs that do not fulfil the fluctuation-dissipation relation between friction and noise memory

kernels. Furthermore, they suggest a possible application to the evaluation of physical effects

by ab initio molecular dynamics, beyond conventional Boltzmann sampling.

Consider a harmonic oscillator of frequency ω, sampled canonically at inverse temperature

β = 1/kBT . Its phase-space distributions for position and momentum are Gaussians ρ(p) ∝
exp−p2/2σ2

p and ρ(q) ∝ exp−q2/2σ2
q , regardless of whether the oscillator is described classi-

cally or according to quantum mechanics. The classical and quantum cases only differ for the

mean fluctuations: for a classical oscillator σ2
p = m/β and σ2

q = 1/βmω2, while for a quantum
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Figure 9: Panel b) shows the expectation values of potential, kinetic and total energy for a proton

in a 1D quartic double-well potential with minima separated by 1Å, as a function of the height

of the barrier. Dotted lines correspond to reference quantum mechanical results, the continuous

blue line corresponds to the classical mean total energy, and the red dots are the average values

obtained from a quantum-thermostat simulation. As shown in panel a), the different barrier

heights span different regimes, going from a quasi-classical limit for small barriers, to strongly

quantised but quasi-harmonic conditions at very high barriers, with an intermediate regime in

which tunnelling is non-negligible.
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oscillator σ2
p = m~ω

2 coth β~ω
2 and σ2

q = ~
2mω coth β~ω

2 . One sees that quantum fluctuations at

temperature T correspond to the fluctuations of a classical oscillator at the effective temperature

T ?(ω) =

〈
p2
〉

mkB
=
m
〈
q2
〉

kB
=

~ω
2kB

coth
~ω

2kBT
. (13)

If one could perform a simulation of a compound in which different normal modes are thermalised

at the effective, frequency-dependent temperature T ?(ω), then the phase-space distribution and

thermodynamic properties of the system would correspond to the distinguishable-particles quan-

tum description of the nuclear degrees of freedom – at least in the harmonic limit. To achieve this

while using conventional thermostatting, one would need to know the normal modes frequen-

cies and phonon displacement patterns, and apply tailored white-noise thermostats at different

temperatures working in the normal modes representation. GLE thermostatting, on the other

hand, makes it possible to obtain the desired distribution without the need of knowing the nor-

mal modes of the system being studied: one only needs to fit a set of parameters that enforces

the quantum fluctuations for any frequency within a range that encompasses the vibrational

modes relevant for the system at hand, and then apply the same GLE to each Cartesian degree

of freedom. The quantum T ?(ω) is then enforced automatically, giving quantum fluctuations at

the cost of conventional molecular dynamics.

This “quantum thermostat” (QT) idea [9, 13] works surprisingly well also for strongly anhar-

monic potentials (Figure 9). In fact, the main limitation when applying it to real systems does

not depend much on failure to describe strongly anharmonic behaviour, but rather on the con-

sequences of weak anharmonic coupling in a multi-dimensional system, giving rise to zero-point
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energy leakage [9]. In practice the quantum thermostat tries to keep normal modes of different

frequencies at different temperatures, and so in the presence of anharmonic coupling energy

will tend to flow from high-frequency/high-temperature to low-frequency/classical temperature

modes. This energy flow was not accounted for when designing T ?(ω), and so there will be a

(significant) deviation between the desired quasi-harmonic quantum fluctuations and the actual

fluctuations.

This is a common problem in semi-classical methods to treat quantum nuclear effects [54], and

has been also recognized in other stochastic approaches to obtain approximate quantum ef-

fects [55, 56]. Rather than trying to remedy this problem by exploiting information on the

anharmonic couplings – which would be an ad-hoc, non-transferable solution, requiring in-depth

knowledge of the system – we tried to control zero-point energy leakage by exploiting the tun-

ability of the GLE thermostats, enforcing a strong coupling across the whole frequency range so

as to counterbalance effectively the zero-point energy leakage. This approach improves signifi-

cantly the performance of the quantum thermostat when applied to anharmonic problems [8, 9],

and made it possible to describe qualitatively the role of NQEs in several real applications, as

will be discussed further below.

However, the approximations behind the quantum thermostat and related semi-classical methods

are basically uncontrolled, and very hard to gauge unless it is possible to perform a harmonic

analysis – which in many ways defeats the purpose of applying these techniques in the first place.

So, the quantum thermostat can be regarded as an inexpensive technique to assess qualitatively

the importance of NQEs, but we would not recommend it to infer quantitative conclusions.

However, coloured-noise is not only useful for approximate calculations: it can be used together

with path integral molecular dynamics to obtain a systematically (and quickly!) converging

method to quantitatively evaluate nuclear quantum effects, as will be discussed in the next

section.

4 Combining path integral molecular dynamics and GLEs

The state-of-the art technique to describe the quantum nature of light nuclei exploits the path

integral formalism [57], which maps the quantum mechanical partition function for a system

of N distinguishable particles onto the classical partition function of a so-called ring polymer,

composed of P replicas (beads) of the physical system and described by the Hamiltonian

HP (p,q) =
P−1∑
i=0

1

2
p2
i + V (qi) +

1

2
ω2
P (qi − qi+1)2 , (14)

where qi and pi are 3N -dimensional vectors describing the mass-scaled positions and momenta

of the particles in the i-th replica, and V (qi) is the physical potential acting on replica i. The

harmonic interaction between neighbouring beads is characterized by the frequency ωP = P/β~,

for a simulation at inverse temperature β. The ring polymer Hamiltonian (14) must be sampled

at P times the physical temperature.

Averages of appropriate estimators computed over the ring-polymer canonical distribution will

converge to the corresponding quantum mechanical expectation value as the number of replicas is
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Figure 10: The frequency-dependent temperature (expressed as gP (x) = T ∗(2x/β~)/PT , with

x = β~ω/2) for the PI+GLE technique using different numbers of beads.

increased. For instance, the path integral estimator for the potential is just the mean (physical)

potential of individual beads:

〈V 〉 =
1

P

P−1∑
i=0

〈V (qi)〉 , (15)

whereas momentum-dependent properties typically require more complex estimators, e.g. the

centroid-virial estimator for the kinetic energy

〈K〉 =
3N

2β
+

1

2P

P−1∑
i=0

〈(qi − q̄) · ∇V (qi)〉 , (16)

where q̄ =
∑

i qi/P is the centroid. The number of replicas needed to converge the value of these

estimators is typically a small multiple of β~ωmax, where ωmax is the highest physical frequency

present. This means for instance that including NQEs in liquid water at room temperature

requires at least 32 replicas – a huge computational overhead that is not compensated by more

efficient sampling as the different beads are strongly correlated with one another.

From the point of view of integrating the equation of motion, thermostatting [11], and what

follows, it is useful to write the dynamics in terms of the normal modes of the free ring polymer.

The harmonic part of the potential in (14) can be easily diagonalized, yielding the transformation

between Cartesian coordinates qi and normal-modes coordinates q̃k (see e.g. Ref. [11]). The k-th

normal mode will have, in the absence of an external potential, frequency ωk = 2ωP sin kπ/P .

4.1 Accelerating the convergence of configurational properties: PI+GLE

The quantum thermostat yields exact (apart from the very small errors in the fit of T ?(ω))

quantum fluctuations in the harmonic limit, but exhibits uncontrolled errors in real, anhar-

monic problems. Path integral molecular dynamics (PIMD) on the contrary can be converged

systematically, but involve a very large computational overhead that is largely due to the high-

frequency, strongly quantised vibrations, that are typically very close to harmonic. One is then

led to wonder whether a hybrid technique, combining PIMD and correlated noise, could help

achieve faster convergence while still allowing for quantitative accuracy and controlled error.

The crux is designing a GLE thermostat that enforces exact quantum fluctuations in the har-

monic limit for any number of replicas, even in cases where PIMD alone would be far from

converged. Then, such a PI+GLE method would be always exact for harmonic problems, and
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Figure 11: Probability density for a hydrogen atom in a quartic double-well potential with the

minima separated by 0.6Å and a barrier height of 1000K. All simulations were performed with

a target temperature of 300 K. The exact quantum mechanical result (dashed black line) was

obtained by numerical solution of the Schrödinger equation, the contributions of the various

eigenstates being averaged with the appropriate Boltzmann weight. The four panels compare

this exact result with the PIMD (blue line) and PI+GLE (red line) results with increasing bead

numbers.
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naturally converge to (Boltzmann-sampled) PIMD when the number of beads is large enough

to have a converged result in the absence of correlated noise.

In order to work out the properties of the GLE that would achieve this goal, one can pro-

ceed in the same way as with the quantum thermostat, only considering that now, in the

presence of a harmonic potential of frequency ω, the dynamics will be characterised by fre-

quencies ωk =
√
ω2 + 4P 2 sin2 kπ/P . These are the frequencies that will be picked up by

the colored-noise dynamics, so, introducing a frequency-dependent configurational temperature

T ∗(ω) =
〈
q2
〉

(ω)mω2/kB (momentum fluctuations are not important per se in a PIMD frame-

work), one gets the requirement for having quantum fluctuations of the beads to be

mω2

kBT

〈
q2
〉

=
mω2

PkBT

∑
i

〈
q2
i

〉
=

mω2

PkBT

∑
k

〈
q̃2
k

〉
=

1

P

∑
k

T ∗(ωk)/T

ω2
k/ω

2
=

~ω
2kBT

coth
~ω

2kBT
. (17)

Since ωk depends on the physical frequency ω, Eq. (17) must be seen as a functional equation

that defines the T ∗(ω) curve – if any – that satisfies it for any oscillator frequency ω. In Ref.[14]

it is discussed how to numerically solve this functional equation, and the resulting target T ∗(ω)

for different number of beads are provided in the supporting information of the same reference.

Note incidentally that it is essential that one can tell precisely what will be the ring-polymer

dynamics in a harmonic potential: the discussion should be modified if one used anything other

than the physical masses for the normal modes propagation.

Figure 10 shows the frequency-dependent effective temperature relative to the temperature PT

that would be used in a conventional PIMD simulation, as a function of the number of replicas.

As the number of replicas increases, the curve is just equal to one up to larger and larger

“quantumness” parameter x = β~ω/2. For a given frequency and temperature, as the number of

beads is increased, PI+GLE will behave more and more as a conventional PIMD with Boltzmann
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Figure 12: The average value of the potential energy, the virial kinetic energy and the constant-

volume heat capacity for a simulation of a flexible water model [39] at T = 298 K, plotted as a

function of the number of beads. The results obtained with conventional PIMD and PI+GLE

are compared, and the value of V obtained with the original quantum thermostat10 (QT) is also

reported.
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sampling of the ring-polymer Hamiltonian. This implies that PI+GLE is bound to converge to

the exact quantum averages, just because in the large P limit it converges to PIMD. As shown

in Fig. 11, even for a strongly anharmonic quantum problem, the convergence is considerably

accelerated.

Furthermore, PI+GLE makes it possible to systematically converge results also in the case of

real, anharmonic multidimensional problems. As the number of replicas is increased, the T ∗(ω)

curve becomes flatter and flatter, and so there is a less pronounced effective temperature gradient

between the high and low frequency modes, so zero-point energy leakage (using here the term

in a loose sense) is a lesser concern than in the case of the quantum thermostat. Even though

it is still important to enforce effective coupling to the thermostat, one can avoid the strong

overdamping that must be used with the quantum thermostat, with considerable advantages in

terms of sampling efficiency for for the slow, diffusion-like modes.

Figure 12 shows the convergence with number of beads of potential and kinetic energy for a

quantum simulation of an empirical water model [39] at room temperature, comparing plain

PIMD and PI+GLE. Colored noise accelerates dramatically the convergence of observables to

the quantum expectation values, and the possibility of converging results systematically makes

it possible to assess the error. A careful examination of Figure 12 shows that the mean kinetic

energy 〈T 〉 converges somewhat more slowly than 〈V 〉. This is due to a specific shortcoming of

PI+GLE, that will be addressed in the next section.
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4.2 Including imaginary-time correlations: PIGLET

As noted above, when using PI+GLE the quantum kinetic energy seems to converge more slowly

than the average potential, or other structural quantities such as radial distribution functions.

If one considers carefully the expression for the kinetic energy estimator (16) in the harmonic

limit, it becomes apparent why:

〈T 〉 =
1

2β
+

1

2P
ω2

P−1∑
i=0

〈
q2
i

〉
− 1

2
ω2
〈
q̄2
〉

=

= 〈V 〉+
1

2β
− 1

2
ω2
〈
q̄2
〉
.

(18)

In a quantum mechanical description, the average potential and kinetic energy of a harmonic

oscillator of frequency ω read

〈V 〉 = 〈T 〉 =
~ω
4

coth
β~ω

2
. (19)

In order to obtain the correct quantum value for 〈T 〉, it is not sufficient to design the GLE so

that the fluctuations of q are consistent with 〈V 〉 = ~ω
4 coth β~ω

2 , but it is also necessary to make

sure that 1
2ω

2
〈
q̄2
〉

= 1
2β .

This points at a general limitation of the basic PI+GLE idea: only the “marginal” distribution

of the beads is bound to be exact in the harmonic limit, which warrants accelerated convergence

of any observable that depends only on q but does not necessarily help converging more complex

estimators that also depend on the correlations between different beads. Fortunately, it is

relatively easy to extend the PI+GLE idea to include further correlations. In fact, PIMD can be

very effectively propagated in the free-particle normal modes representation, i.e. by transforming

the coordinates to (q̃k, p̃k) and writing the equations of motion in that base [11]. The physical

potential acts in the same way on all the beads, so in the harmonic limit it only amounts to

a diagonal perturbation of the free ring polymer, that changes the vibrational frequencies as

discussed above, but does not change the eigenvectors. Hence, in a multi-dimensional context

it is possible to transform individual degrees of freedom in the free particle normal modes

representation, without the need to diagonalise the physical potential, and it is possible to

apply GLEs with different temperature curves T ∗k (ω) onto different free particle coordinates. In

practice, this makes it possible to enforce multiple constraints on the distribution of the ring

polymer, including bead-bead correlations as well as the marginal distribution that guarantees

fast convergence of structural properties.

Let us elaborate on this idea, focussing on the objective of accelerating the convergence of the

centroid-virial kinetic energy estimator. Eqs. (18) and (19) clearly require that the centroid

must be distributed classically, so T ∗0 (ω) = PT , as in conventional PIMD. There is then just

one more condition to be enforced, namely the marginal distribution of the qis, which now has

to be determined knowing that the centroid is distributed classically:

mω2

PkBT

∑
k

〈
q̃2
k

〉
= 1 +

1

P

∑
k>0

T ∗(ωk)/T

ω2
k/ω

2
=

~ω
2kBT

coth
~ω

2kBT
. (20)

This functional equation can be solved similarly to Eq. (17), now singling out the k = 1 term

to devise a fixed-point iteration that converges to the desired, universal T ∗(ω) curve.
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Figure 13: The quantum contribution to the potential energy, and to the kinetic energy of

hydrogen and oxygen atoms as computed by the centroid virial estimator for a simulation of

a flexible water model [39] at T = 298 K, plotted as a function of the number of beads. Note

the much accelerated convergence rate of the kinetic energy when using PIGLET compared to

PI+GLE.
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Figure 13 shows clearly that PIGLET is considerably more efficient than PI+GLE in converging

the quantum kinetic energy of atoms, even for an anharmonic problem such as liquid water.

The convergence of structural properties for the two methods is very similar, highlighting the

fact that it is possible to manipulate bead-bead correlations without disrupting the efficient

convergence of the marginal distribution of individual beads.

The centroid-virial estimator does not exhaust the list of physical observables that depend on

bead-bead correlations: imaginary-time correlation functions provide moment constraints that

can be used to improve the reliability of real-time approximate quantum dynamics [58, 59],

scaled-coordinate estimators make it possible to obtain directly the heat capacity [60], displaced

path estimators can be used to compute the particle momentum distribution [61], and free-energy

perturbation estimators give access to isotope fractionation ratios [62]. In all of these cases one

could try to figure out which constraints ought to be enforced on the ring polymer distribution

to obtain exact expectation values in the harmonic case, and use them to determine a number

of T ∗k (ω) curves to be used to design GLEs for the different ring-polymer normal modes.

In some cases it is possible that a given combination of PIMD and GLEs accelerates convergence

of estimators it has not been designed specifically for. For instance, PI+GLE does yield faster

convergence of the centroid-virial kinetic energy (albeit not as fast as PIGLET), and PIGLET

appears to speed up the convergence of the “thermodynamic” free-energy perturbation estimator

of isotope fractionation [62]. The possibility of obtaining systematic convergence by increasing

the number of beads means one can empirically assess the accuracy for a given estimator and

physical problem by performing test simulations with increasing number of beads, much like one

would converge a plane waves cutoff, a k-points mesh, or conventional PIMD.
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In principle, one could also try to combine GLE thermostatting with high-order path integra-

tion [63–65], in an attempt to further reduce the number of replicas needed to achieve conver-

gence. The unfavourable system-size scaling of the re-weighting procedure that is needed for

most high-order PIMD schemes [66] suggests that such method would be beneficial only for

simulations including a small number of atoms, which is often the case in ab initio applications.

5 Implementation and usage

One of the advantages of the GLE framework that is discussed here is that it allows one to

achieve a variety of useful effects within the very same formalism, so that from the point of view

of implementation a relatively simple change to the code is sufficient to make available all the

different shades of colored-noise thermostats.

5.1 Symmetric-split propagator

Implementing an integrator for a GLE thermostat is relatively simple thanks to the linear nature

of the stochastic differential equations (10). At variance with thermostats based on second-order

equations of motion such as Nosé-Hoover, where a multiple time-step approach is required to

obtain accurate trajectories [67, 68], GLE thermostats can be readily introduced on top of a

velocity-Verlet integrator. In the symmetric Trotter split form [46], propagation of p and q

across a finite time step ∆t can be written as

p←p+ V ′(q)∆t/2

q ←q + p∆t/m

p←p+ V ′(q)∆t/2.

(21)

Eqs. (21) can be obtained using Trotter splitting in a Liouville operator description of the

dynamics. A thermostat can be introduced on top of this scheme by performing two free-particle

steps by ∆t/2 on the (p, s) variables[69]:

(p, s)← P [(p, s) ,∆t/2]

p← p+ V ′(q)∆t/2

q ← q + p∆t/m

p← p+ V ′(q)∆t/2

(p, s)← P [(p, s) ,∆t/2] .

(22)

The finite-time step for (p, s), in the absence of an external potential, can be readily obtained

as:

P [(p, s) ,∆t]T = T(∆t) (p, s)T +
√
mS(∆t)ξT (23)

where ξ is a vector of n+ 1 uncorrelated Gaussian numbers, and the matrices T and S can be

computed once,2 at the beginning of the simulation and for all degrees of freedom[26, 70]. The

2Note that in many cases SST is ill-conditioned, and so a Cholesky decomposition may fail to yield S. In

a GLE implementation it is better to compute S by means of a LDLT decomposition, or even better to just

diagonalise SST and compute the symmetric square root: tiny, negative eigenvalues that can occasionally appear

can then be safely set to zero.
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relations between T, S, Ap, Cp and ∆t read

T = e−∆tAp ,SST = Cp − e−∆tApCpe
−∆tAT

p .

When the GLE samples the canonical ensemble, Cp = kBT and the fluctuation-dissipation

theorem holds, the Boltzmann distribution is invariant under the action of (23), whatever the

size of the time-step. A useful consequence of this property is that, in the rare cases where

applying (23) introduces a significant overhead over the force calculation, the thermostat can

be applied every M steps of dynamics, using a stride of M ∆t. This will change the trajectory,

but does not affect the accuracy of sampling. When using a non-canonical thermostat, instead,

accurate integration of the GLE is crucial to obtain the desired frequency-dependent stationary

distribution, and so one must pay more attention to the time step.

The velocity-Verlet algorithm (21) introduces finite-∆t errors, whose effect needs to be moni-

tored. In microcanonical simulations, this is routinely done by checking conservation of the total

energy H. Following the work of Bussi et al. [24] we introduce a conserved quantity H̃, which

can be used to the same purpose:

H̃ = H −
∑
i

∆Ki (24)

where ∆Ki is the change in kinetic energy due to the action of the thermostat at the i-th time-

step, and the sum is extended over the past trajectory. This strategy can be applied to both the

canonical and non-canonical GLEs, but only in the former case the conservation of H̃ can be rig-

orously considered as a measure of how well detailed balance is satisfied. For “non-equilibrium”

GLEs, the conservation of H̃ should only regarded as a sign that the Hamiltonian part of the

dynamics uses a sufficiently small time step. Furthermore, it is worth noting that strict fulfil-

ment of detailed balance is a sufficient but non necessary condition to attain canonical sampling.

In many cases, for instance when using a GLE to stabilize multiple-time step dynamics [12], it

is normal for H̃ to drift considerably as the thermostat is actively counteracting the integration

errors that would lead to unstable dynamics. Nevertheless, one can verify that in this and other

cases the efficient sampling that is enforced by a well-tuned GLE guarantees that integration

errors do not add up, and that the sampled ensemble stays very close to the desired one. This

can be exceedingly useful in ab initio simulations, where an effective thermostatting strategy can

enable the usage of larger time steps, or make it possible to obtain reliable statistical averages

from molecular dynamics performed with noisy, poorly converged forces [71].

5.2 Obtaining GLE parameters

Since the implementation of a GLE dynamics is relatively straightforward, as discussed in the

previous paragraph, the main issue is how to design a set of parameters that yields the best

performance for a given application. The formalism is very general, and so even with a small size

of the extended phase-space vector s, the drift matrix Ap contains tens of parameters that in

principle could be varied independently. It would therefore be completely impractical to optimise

the thermostat by performing actual simulations on the system of interest: the usefulness of this

GLE framework rests entirely on the possibility of designing the thermostat a priori, based

on superficial knowledge of the problem at hand and a profound understanding of the general

sampling issues that may be critical to address.

23



For instance, the “smart sampling” procedure described in Section 2.1 only relies on knowledge

of the highest frequency present in the system (which is also determining the time step), and of a

rough estimate of the affordable simulation time (which determines which is the slowest process

that can be studied by unbiassed dynamics). Then, the optimization of the GLE parameters

can be accomplished by just optimising a proxy of the sampling efficiency (e.g. the correlation

time of the potential energy) using analytical estimates that are exact in the harmonic limit. In

some cases [10, 12] it might also be possible to write a simplified Ap that depends on a small

number of physically meaningful parameters.

Either way, the fact that optimised sets of parameters are obtained based on general consider-

ations means that they can be easily transferred from one system to another, exploiting simple

scaling rules that make it possible to change the target frequency range or temperature [8, 9].

In a way, the generation and the use of GLE parameters shares many similarities with the case

of pseudopotentials – that are obtained by a non-trivial procedure but can then be transferably

applied seamlessly to many different problems. To simplify the task of choosing the correct GLE

parameters, an on-line repository has been prepared [72], from which Ap and Cp matrices opti-

mized for the different flavours of GLE thermostatting can be retrieved, scaled to the relevant

frequency range and converted to the desired units or even to the input format of the desired

simulation software, if it possesses a native GLE implementation.

5.3 Running path integral simulations

The fact that classical momenta are immaterial within the imaginary-time path integral formal-

ism implies that different choices of masses have been taken to integrate effectively the equations

of motion, which are nicely summarized for instance in Ref. [73]. Not many electronic structure

codes implement PIMD, and they often make different choices in terms of the integration strat-

egy and the mass scaling. PI+GLE and its generalizations rely on a precise relation between

the dynamical frequencies of the ring polymer and its configurational fluctuations, which implies

that different T ∗(ω) curves – and consequently GLE parameters – would need to be devised for

each choice of masses. To avoid this complication, and to reduce the implementation burden of

bringing imaginary time PIMD to the codes that do not provide this functionality yet, we have

developed i-PI, a Python interface for (ab initio) (path integrals) molecular dynamics [72, 74].

Even though it can be used in principle also with empirical force fields, i-PI has been developed

with ab initio simulations in mind. Whenever the electronic structure problem is solved explic-

itly, the cost of the simulation will be dominated by the evaluation of the forces, and so i-PI had

been designed to be reasonably efficient, but not at the cost of clarity. The effort required to

modify the ab initio electronic structure code is kept to a minimum using a client-server model,

where the i-PI server and the ab initio client are run separately and communicate through sock-

ets (see Figure 14). The server has an xml-formatted input, that defines the options of the ionic

dynamics, including if desired GLE parameters, and the initial configurations of the atoms and

the simulation cell. When started, it listens on the specified port and network interface (or

UNIX domain socket), waiting for clients to connect. The client reads its own input file, that

specifies all the parameters of the electronic structure calculations as well as the number and

type of atoms present in the simulation. The only requirement is that the internal order of atoms

24



Figure 14: Schematic overview of the client-server model underlying i-PI. The communication

is kept to a minimum, and so are the modifications that need to be made to adapt an existing

electronic structure code to act as the client. The client is not restarted between successive force

evaluations, so as to avoid the overhead associated with initialisation.

matches the order in the input of i-PI. Then, it connects to the server, which maintains a list

of active clients. When i-PI needs energy and forces to propagate the dynamics, it dispatches

atomic configurations to the active clients, that use them to perform an electronic structure

optimisation and return energy, forces, and the potential energy part of the pressure tensor.

This architecture avoids the initialization overhead – as the client stays active in between suc-

cessive force evaluations – and makes it easy to use optimizations such as the extrapolation of

the wavefunction within the ab initio client. In the case of path integral simulations, different

replicas can be computed simultaneously by separate clients, so the trivial level of parallelism

inherent in PIMD can be fully exploited. i-PI has a modular structure, it implements advanced

features such as PIMD and PIGLET in the constant-pressure ensemble, scaled-coordinates es-

timators, etc. and can be easily extended. Interfaces to several electronic structure codes

(including CPMD[75], CP2K[76], quantum-Espresso[77], FHI-AIMS[78]) are either included in

the development version of the code, or available as patches.

6 Applications

Having discussed the theoretical foundations, the methodological details, and the practical im-

plementation of the GLE thermostat framework, let us now briefly describe a few representative

applications that demonstrate how it can be used in the context of ab initio molecular dynamics.

6.1 Structural disorder in lithium imide

As discussed in Section 1, the “efficient sampling” aspects of GLE thermostatting are best tested

using inexpensive empirical potentials, as has been done for instance in Section 2.1 of the present

review. Assessing the statistical efficiency of a simulation in a quantitative, objective way implies

computing accurate autocorrelation times, which for non-trivial observables requires much too

long to converge properly with ab initio MD, and so one ends up running time consuming tests

that only produce anecdotal indications of the best sampling strategy.

With this caveat in mind, the study of Li2NH in Ref. [80] can be regarded as an example in

which optimal sampling GLE made it possible to investigate structural transition in a complex
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Figure 15: (a) Tetrahedral arrangement of NH groups around a Li+ vacancy in the low-

temperature phase of lithium imide. (b) Li ions are distributed on the three symmetry unique

sites, as labelled in the panel. The interstitial Li3 sites have fractional occupation. Sites which

are left empty in the Ima2 model of Ref. [79] are shown as transparent spheres. (c) Occupied Li4

octahedral sites obtained upon relaxation of the Ima2 model. (d) A tetrahedral cluster of four

interstitial ions at Li3 sites around a vacancy at the Li2 site, as obtained from a optimal-sampling

MD starting from interstitials in the Li4 sites.
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system within the time scale accessible to ab initio MD, without the need to resort to time

consuming preliminary tests of the statistical efficiency of the dynamics. Lithium imide has a

complex structure that can be understood in terms of a cubic lithium lattice with vacancies and

interstitials, and with correlations between these defects and the orientation of NH groups in

the structure (see Figure 15).

The distribution of vacancies and interstitials is partially disordered, and so diffraction ex-

periments cannot determine the local ordering of defects that is important to understand the

reactivity of the system, which is a candidate hydrogen-storage material. A simulation started

from a proposed model of the structure lead to spontaneous diffusion of the interstitials and to

the formation of vacancy-interstitial clusters that lower considerably the energy of the structure

and led to better agreement with the diffraction data. It is worth mentioning that the same

structure was simultaneously identified by high-throughput screening of the possible spinel-like

structures of this compound [81]. When sampling phase space efficiently, molecular dynamics

can be as effective as sophisticated search algorithms that are less generally applicable.

6.2 Particle momentum distribution in lithium imide

Lithium imide has also been the first system in which the quantum thermostat has been used

together with first-principles MD to investigate the importance of nuclear quantum effects in

hydrogen-containing materials [82]. Since the quantum thermostat and similar semi-classical

methods can only provide a qualitative description of the quantum nature of nuclei, this study

focused on the evaluation of the particle momentum distribution (PMD), a quantity that can be

measured experimentally by deep inelastic neutron scattering [83], provides insight into the local

environment of light atoms in complex environments [84] and differs dramatically from the clas-

sical, Maxwell-Boltzmann distribution. The disordered character, and the strongly anharmonic

lattice dynamics of Li2NH makes it questionable the use of a purely harmonic approximation to

treat the quantum effects as it is often done in simpler crystalline materials [85, 86].

In a quantum thermostat framework it is very simple to compute particle momentum distri-

butions, since the fluctuations of p are designed to reproduce the quantum mechanical ones in

the harmonic limit. So – within the limits of the approximation – one can simply accumulate

a histogram of the values of p observed in the course of the simulation. Figure 16 demon-

strates the dramatic discrepancy between the experimental proton momentum distribution and

that obtained from a classical simulation. The quantum thermostat improves dramatically the

agreement with the experiment, even though the quantitative error is comparable to the one

that could be expected from the use of harmonic lattice dynamics. The fact that the quantum

thermostat cannot be converged systematically means that it is best used as an inexpensive

assessment of whether NQEs play an important role in determining the value of an experimen-

tal observable, or can be safely ignored. It has for instance been used to this aim to study

solid-state models of the solvated proton [87], the recombination of hydronium and hydroxide

in water [88], and the graphite-diamond coexistence line [89]. In order to achieve quantitative

accuracy, however, combination of the GLE with PIMD is essential.
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Figure 16: The left panel compares the spherically-averaged PMD for hydrogen atoms in Li2NH

at 300K as obtained by deep inelastic neutron scattering experiments, with the theoretical results

from a simulation with classical nuclei (which is just the Maxwell-Boltzmann distribution),

from harmonic lattice dynamics and from molecular dynamics supplemented with a quantum

thermostat. The right panel shows the three-dimensional PMD from the quantum thermostatted

simulation, referenced to the crystalline axes. Note the anisotropy of the distribution, which is

a clear, qualitative signature of quantum behaviour.
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6.3 Competing quantum effects on the melting of heavy water

An example of a case in which it is necessary to obtain precise, quantitative results is the

study of quantum effects on phase transitions. The quantum kinetic energy change upon phase

transition can be related to the isotope effect on the transition temperature [90, 91]. By very

simple arguments, one can infer that the deuteron kinetic energy change upon melting should

be of the order of 0.5meV, which is tiny compared to the total kinetic energy – of the order of

100meV.

Path integral simulations have been suggesting for some time that quantum effects in water can

be separated into different “components”, that have opposite effects on many physical properties

of H2O, so that the net impact of NQEs is small even though each individual component is

large [39, 92, 93]. Using PIGLET simulations of liquid and solid D2O, and approximating the

deuteron momentum distribution as an anisotropic Gaussian with principal values related to

the NQEs along different molecular axes, it was possible to observe the partial cancellation

that leads to a small overall change and ultimately explains why the melting temperatures of

light and heavy water differ by just 4K. These findings qualitatively matched the experimental

decomposition of the quantum kinetic energy change obtained by a neutron Compton scattering

study of heavy water across the solid-liquid phase transition [94].

6.4 Nuclear quantum effects and hydrogen bond fluctuations in water

NQEs are typically much more pronounced when one looks at properties that depend on fluc-

tuations – heat capacity or pH for example. The impact of NQEs is striking when one looks at

the delocalisation of a proton along a hydrogen bond (HB) in water [95]. The proton transfer

coordinate ν (the difference between the covalent O-H bond length and the distance between

the hydrogen atom and the hydrogen bond acceptor O′) is a very effective order parameter to
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Figure 17: (a) Distribution of the proton-transfer coordinate ν in ab initio simulations of water

at 300 K. The three curves correspond to a classical simulation, to the distribution of the ring

polymer beads in a simulation that includes quantum effects, and to the distribution of the

centroid of the ring polymer in the quantum simulation. (b) Conditional average of the gyration

radius of the ring polymer in the directions parallel (r‖) and perpendicular (r⊥) to the O-H

covalent bond for different values of ν for the centroid.
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quantify the magnitude of the fluctuations. Figure 17a compares the probability distribution of

ν in an ab initio simulation of water performed using classical MD, and treating the nuclei as

quantum particles. Whereas in classical simulations there is only a negligible probability that a

proton fluctuates up to ν = 0, being half-way between the donor O and acceptor O′, in quantum

simulations this probability increases by a factor of 10000. As shown in Figure 17b, this effect is

due to the swelling of the ring polymer in the direction parallel to the hydrogen bond, that leads

to transient autoprotolysis events accompanied by considerable rearrangements of the electron

density.

In fact, this effect is observed to a much lesser extent in an empirical water model [39], even

though a recent non-dissociable force field obtained by force-matching to first-principles sim-

ulations have been shown to be able to reproduce it quantitatively [96]. Density functional

theory is known to exaggerate charge transfer, and so this result had to be validated by com-

paring different functionals, including dispersion corrections and hybrid functionals. The use of

PIGLET made it possible to perform extensive tests, that showed that the magnitude of the

effect is conserved to within a factor of two depending on the details of the electronic structure

calculation. Also, it made it possible to gather extensive statistics (more than 50ps of quantum

MD), which in turns allowed us to evaluate the correlations between proton excursions along

consecutive hydrogen bonds (see Figure 18). The cooperative nature of these quantum fluctu-

ations suggests that these effects may be magnified in situations in which the hydrogen bond

network is distorted, as it may be the case at high pressures or in confinement.

In fact, simulations of water at high temperature and pressure (750K and 10GPa) [74] show a

much larger fraction of water molecules with a (formal) net charge. Despite the high tempera-

ture, quantum nuclear effects still play a dramatic role in determining the fluctuation properties

of the HB. A purely structural definition of charged species is somewhat ambiguous, considering

the strong delocalization of protons. One can however estimate the presence of about 0.2% of
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Figure 18: a) The joint probability distribution of the PT coordinate for the two hydrogen

bonds donated by a tagged water molecule, P (νa, νb). The lower-right corner shows the relative

conditional probability P (νa, νb)/P (νa)P (νb). b) The joint probability distribution P (νa, νb)

of the PT coordinate for one accepted and one donated HB for a given water molecule. The

lower-right corner shows the relative conditional probability.

genuine autoionization events in the quantum simulations, that result in considerable exchange

of protons between water molecules on the time scale (40ps) of the simulation. By comparison,

no long-lived proton exchanges were observed in the corresponding classical run, and the fraction

of “long-lived” inonized species was lower than 0.01%.

7 Outlook

Using a generalized Langevin equation as a sampling device, to manipulate the properties of

molecular dynamics trajectories, has proven to be an exceedingly flexible tool. It allows one

to enhance the efficiency of constant-temperature sampling as well as to reduce dramatically

the cost of accounting for the quantum nature of light nuclei within atomistic models. These

successes are due to the combination of 1) a very general formulation of the coloured-noise

dynamics, 2) the possibility of predicting static and dynamical properties analytically in the

harmonic limit, 3) the fact that the predictions for a 1D harmonic oscillator carry on to multi-

dimensional problem even if the dynamics is integrated using the Cartesian coordinates, so that

it is not necessary to know the vibrational modes of the system being studied.

GLE thermostats can be used transparently with any form of inter-atomic potential, but they

are particularly useful in the case of ab initio simulations, where the high computational cost

makes it a necessity to extract as much statistics as possible from short runs, and where it is

almost impossible to benchmark the efficiency of different thermostats in a quantitative and

objective way. Similar arguments can be made in favour of the use of GLEs to model nuclear

quantum effects. NQEs can have a large impact on the accuracy of ab initio simulations in the

presence of light atoms. At variance with empirical forcefields, that are fitted to experiments

and therefore may account for the quantum nature of nuclei in an effective way, first-principles
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MD uses the bare Born-Oppenheimer potential, and so completely neglects zero-point energy or

tunnelling. The quantum thermostat provides a completely inexpensive strategy to qualitatively

assess the importance of NQEs, and combinations of coloured noise and imaginary-time path

integrals yield quantitative accuracy at a fraction of the cost of conventional PIMD.

As native implementations of GLE thermostats become available in more codes, and as the i-PI

interface brings PI+GLE and PIGLET to any electronic-structure package with minimal effort,

it will become easier to sample the configurations of complex materials and to fully account for

the quantum nature of nuclei, extending even further the usefulness of ab initio MD for materials

discovery and the understanding of chemical reactivity.
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