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Abstract

Density-functional theory is an extremely powerful and widely used tool for quantum

simulations. It reformulates the electronic-structure problem into a functional minimization

with respect to the charge density of the energy of interacting electrons in an external

potential. While exact in principle, it is approximate in practice, and even in its exact form

it is meant to reproduce correctly only the total energy and its derivatives, such as forces,

phonons, or dielectric properties. Quasiparticle levels are outside the scope of the theory,

with the exception of the highest occupied state, since this is given by the derivative of the

energy with respect to the number of electrons. A fundamental property of the exact energy

functional is that of piecewise linearity at fractional occupations in between integer fillings,

but common approximations do not follow such piecewise behavior, leading to a discrepancy

between total and partial electron removal energies. Since the former are typically well

described, and the latter provide, via Janak’s theorem, orbital energies, this discrepancy

leads to a poor comparison between predicted and measured spectroscopic properties. We

illustrate here the powerful consequences that arise from imposing the constraint of piecewise

linearity to the total energy functional, leading to the emergence of orbital-density-dependent

functionals that (i) closely satisfy a generalized Koopmans condition, and (ii) are able to

describe with great accuracy spectroscopic properties.

Copyright notice: The final publication of this work will be available at link.springer.com as

part of the volume “First-Principles Approaches to Spectroscopic Properties of Complex Mate-

rials”, Topics in Current Chemistry, edited by Cristiana di Valentin, Silvana Botti, and Matteo

Cococcioni (Springer 2014).
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1 Introduction

Optimizing the performance of materials involves understanding their properties as a function

of molecular structure and chemical composition [1]. At the experimental level, some of the

most powerful approaches are provided by spectroscopic techniques of increasing time and space

resolution. However, as spectroscopy experiments become more detailed, the data they provide

become more difficult to interpret. Therefore, computational methods that deliver insight into

complex spectroscopic data become critical to characterize complex or novel materials. A number

of electronic-structure methods [2] have been developed to address spectroscopic properties.

These methods rely on solving the equations of quantum mechanics to capture the interactions of

electrons with electromagnetic fields, but due to the complexity of the many-electron Schrödinger

problem, these equations must be first simplified before they can be solved computationally.

To break down this complexity, one general approach aims to map the total energy, in principle

an expectation value over the very cumbersome N -electron wave function Ψ(r1, r2, · · · , rN ),

onto simpler reduced variables, which encode the properties that are relevant to the physical

phenomenon at hand. For instance, if one’s goal is to capture the energy of an electronic system,

one can choose the reduced variable to be the ground-state electron density ρ(r). Then, there

exists a functional whose minimization with respect to ρ(r) yields the exact ground-state density

and total energy of the system as a function of the atomic positions. This approach is referred to

as density-functional theory (DFT); its proof was first established by Hohenberg and Kohn [3],

and then extended to degenerate ground states and open systems using Legendre transform

analysis [4, 5]. In addition to the energy, variations of the DFT energy functional with respect

to any external variable are also reproduced correctly. As an example, the first derivatives of

the DFT energy with respect to atomic coordinates provide atomic forces from which one can

extract equilibrium geometries, and its second derivatives provide interatomic force constants,

from which one can derive dynamical properties and vibrational spectra. In quantitative terms,

existing local and semilocal approximations to density-functional theory enable one to predict

vibrational spectra with a typical accuracy of 1-2%, for systems containing hundreds of atoms.

Density-functional calculations and related perturbation methods are reviewed in Refs. [6] and

[7].

DFT can also describe changes in energy with respect to the number of particles, and thus

provide orbital levels either exactly [8] or accurately for the frontier valence shells [9]. In partic-

ular, exact Kohn-Sham (KS) DFT calculations yield the exact highest occupied orbital energies

of many-electron systems and provide reasonable approximations to single-electron energies for

the other valence states (for a discussion of the subtleties connected to the interpretation of

Kohn-Sham eigenvalues see, e.g., Refs. [9, 10]). Approximate DFT calculations usually make

matters worse, and in general are only poor predictors of electronic spectra, notwithstanding

their very good performance in describing the thermodynamic and kinetic properties of molec-

ular systems. For instance, local and semilocal KS-DFT overestimate occupied electron levels

and underestimate unoccupied levels, causing band gaps1 to be systematically underestimated,

1Note that besides functional approximations, the KS-DFT empty states need to be corrected for the deriva-

tive discontinuity of the potential upon infinitesimal electron addition. Such derivative discontinuity is usually

neglected by approximate functionals which also tend to further downshift the orbital energies of empty states.
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and providing thus a poor description of charged excitations, where an electron is removed or

added to the system, as it happens in photoemission experiments. Conversely, time-dependent

extensions to DFT (TDDFT) [11, 12] have the power to describe correctly the optical response

of materials (i.e. neutral excitations). However, TDDFT calculations based upon adiabatic

local and semilocal approximations exhibit severe limitations in describing the optical response

of extended systems [13] and in capturing charge-transfer excitations, whereby the absorption of

a photon is accompanied by a significant displacement of the excited electrons [14, 15, 16, 17].

To overcome these limitations, one approach consists of selecting reduced variables that encode

more spectral information. In this vein, methods that rely on the Green’s function G(r, r′, ω)

as the central variable (as the quasiparticle GW approximation) have been very successful in

predicting electronic spectra [18, 19, 20, 21, 22, 23], and their extensions (such as the Bethe-

Salpeter equation) have provided reliable optical spectra [24, 25, 13, 26, 27]. Likewise, electronic-

structure approaches that rely on the one-body density matrix γ(r, r′) (the reduced density

matrix functional theory) have shown great promise [28, 29, 30, 31]. Nevertheless, due to the

simplicity of DFT and the extensive experience gained over decades in building more predictive

density functionals, the DFT approach remains conceptually and computationally appealing [32].

Hence, it is of interest to develop better approximations beyond conventional local and semilocal

methods. To this end, successful hybrid DFT functionals, which include a fraction of Hartree-

Fock exchange in a simple linear-admixture or more sophisticated range-separated fashion, have

been developed [33, 34]. The state of the art of these methods is reviewed in Ref. [35] and other

extensions have been recently proposed [36, 37].

In this work, we review another route towards more accurate and efficient DFT or beyond-DFT

methods. These functionals are obtained by imposing the condition of piecewise linearity for

the energy into existing local and semilocal functionals, generalizing earlier suggestions for de-

termining the strength of Hubbard corrections to DFT [38, 39] and to correct for self-interaction

in DFT [40] beyond the case of localized d and f manifolds. The resulting functionals become

orbital-density-dependent, but retain the conceptual simplicity of conventional DFT approxi-

mations while restoring important conditions connected to the description of electronic spectra,

namely, the Koopmans compliance of orbital energies. The review is organized as follows.

We first recall the essential features of DFT. We then explain the construction of Koopmans-

compliant orbital-density-dependent (ODD) functionals and discuss their practical minimiza-

tion. Finally, we present spectral predictions for a range of molecular systems to establish the

predictive potential of Koopmans-compliant methods.
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Koopmans-compliant functionals in a nutshell

Koopmans-compliant functionals aim to restore the piecewise linearity of approximate DFT

functionals [Fig. 1(a)], generalizing ideas first introduced for the case of DFT+U functionals,

but not restricted to predefined orbital manifolds. Koopmans-compliant functionals allow one

to recover meaningful electronic levels, which can be interpreted as local charged excitation

energies [Fig. 1(b)]; in doing so, they go beyond standard Kohn-Sham DFT. The construction of

Koopmans-compliant functionals focuses on virtual ionization processes: for the highest occupied

orbital of N -electron systems, it replaces the term of the total energy that is not linear in the

fractional occupation (the Slater integral
∫ fN

0 εN ((N−1)+ω)dω) with a linear contribution whose

slope is the energy of the half-occupied orbital (the Koopmans term
∫ fN

0 εN ((N − 1) + 1
2)dω),

thereby translating into a functional form the Slater ∆SCF suggestion — we note in passing that

other definitions for the slope are possible. The influence of self-consistent orbital relaxation is

then taken into account by introducing an effective screening factor αN , which can be calculated

in a nonempirical, self-consistent fashion. The nonlinearity correction αN
∫ fN

0 (εN ((N−1)+ 1
2)−

εN ((N − 1) + ω))dω can be finally generalized to the other electronic orbitals. The resulting

functionals are orbital-density-dependent (ODD) and are not invariant under unitary rotations

of the orbitals, representing a real, local quasiparticle approximation to a self-energy. The

Hamiltonian matrix derived from the minimizing orbitals is Hermitian and can be diagonalized to

obtain the canonical orbitals and eigenenergies of the system. Computed molecular eigenenergies

and cross sections are in excellent agreement with spectroscopic experiments.
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Figure 1: (a) Nonlinear dependence of the approximate DFT energy E(N) on the electron

number N (red) compared with the linear behavior of the Koopmans-compliant ODD energy

(blue). The derivative dE
dN equals the energy of the highest occupied orbital εN . (b) Energy levels

within approximate DFT and ODD functionals. The Koopmans-compliant functionals predict

orbital levels in agreement with the ionization energy E(N) − E(N − 1). Under appropriate

constructions, Koopmans-compliant ODD functionals yield orbitals that are localized, similar

to Wannier functions.

4



2 Methods

2.1 Functionals of the total density

Before presenting ODD Koopmans-compliant functionals, we outline in this section the main

features of conventional DFT. In particular, we place the emphasis on the analytical interpre-

tation of calculated electronic spectra. To this end, we work within the independent-electron

mapping of Kohn and Sham [41] generalized to fractional orbital occupations.

It is important to note that fractional orbital occupations are beyond the scope of the orig-

inal Kohn-Sham framework. The introduction of fractional orbital occupations is generally

attributed to Janak who first interpreted orbital energies as derivatives of the total energy with

respect to these new electronic variables [42]. In the literature, the generalization of the Kohn-

Sham functional to fractional occupations is termed the extended Kohn-Sham model [43]. Beyond

its central importance to interpret orbital energies, the extended Kohn-Sham model is a powerful

framework to construct robust energy minimization schemes. Examples of such algorithms are

provided by the ensemble-DFT algorithm [44] and relaxed-constraint algorithm [45] that both

rely on exploring fractionally occupied states to reduce the nonconvexity of the Kohn-Sham

electronic-structure problem. Paradoxically, fractional orbital occupations appeared in the DFT

literature even before fractional electron numbers were discussed physically by Perdew, Parr,

Levy, and Balduz [8] in terms of grand-canonical mixtures of pure states (and then by Yang,

Zhang, and Ayers [46] in terms of pure states), and formalized mathematically by Lieb [5] using

convex-envelope analysis. The theory of fractional orbital occupations and that of fractional

electron numbers are nonetheless closely related (the Aufbau principle), and are both critical to

understand the failure of conventional Kohn-Sham DFT approximations in predicting electronic

spectra. Therefore, both of these theories are central to the subsequent discussion.

To begin our discussion, let us recall that within the Kohn-Sham theory, the ground-state energy

E(N) of the N -electron system can be obtained by minimizing the energy functional [41]

EKS[f1, f2, · · · , ϕ1, ϕ2, · · · ] =
+∞∑
i=1

fi

∫
d3rϕ∗i (r) · ĥ0ϕi(r) + EHxc[ρ], (1)

which includes the nonlinear electron-interaction term EHxc[ρ] that depends on the total electron

density

ρ(r) =

+∞∑
i=1

fi|ϕi|2(r), (2)

where the fi’s and ϕi’s denote the fractional occupations and wave functions of the fictitious

independent-electron system, respectively (for simplicity, the spin index is omitted throughout).

The linear part in Eq. (1) involves the Hamiltonian operator

ĥ0 = −1

2
∇2

r + v(r)

that is the sum of the one-electron kinetic operator and potential v(r) generated by the atomic

nuclei and external contributions.

5



The total energy E(N) of the system in its ground state is obtained by performing the mini-

mization

E(N) = min∫
ϕ∗
i
ϕj=δij∑+∞

i=1 fi=N, 0≤fi≤1

+∞∑
i=1

fi

∫
d3rϕ∗i (r) · ĥ0ϕi(r) + EHxc[

+∞∑
i=1

fi|ϕi|2], (3)

where the occupations fi of the orthonormal Kohn-Sham orbitals ϕi must sum up to N and

must obey the constraints 0 ≤ fi ≤ 1.

To perform this minimization, we first focus on the orbital degrees of freedom (the minimization

with respect to the occupations will be examined in a second step). We thus introduce the

Lagrange functional

LKS[f1, f2, · · · , ϕ1, ϕ2, · · · ] =

+∞∑
i=1

fi

∫
d3rϕ∗i (r) · ĥ0ϕi(r) + EHxc[

+∞∑
i=1

fi|ϕi|2]

−
+∞∑
i,j=1

Λij(

∫
d3rϕ∗i (r)ϕj(r)− δij). (4)

Variations of LKS with respect to the orbitals ϕi and their complex conjugates ϕ∗i yield a set of

coupled one-electron equations:

fi(ĥ0ϕi(r) + vHxc(r)ϕi(r)) =

+∞∑
j=1

Λijϕj(r) (5)

fi(ĥ0ϕi(r) + vHxc(r)ϕi(r)) =
+∞∑
j=1

Λ∗jiϕj(r), (6)

where vHxc(r) = δEHxc[ρ]
δρ(r) stands for the effective single-electron potential, which includes a

classical electrostatic contribution (the Hartree potential) and quantum exchange-correlation

interactions. Note that these equations must be solved self-consistently as vHxc(r) is a functional

of ρ(r) that itself depends on the solution of the Kohn-Sham problem. Using orthonormality

relations, it can be shown that the matrix of Lagrange multipliers fulfills the conditions

Λij = Λji = 0 (7)

whenever the state ϕi is not occupied (fi = 0). Additionally, the Lagrange matrix is Hermitian:

Λij = Λ∗ji. (8)

It should also be noted that the Λij ’s can only couple orbitals ϕi and ϕj that have the same

occupations (fi = fj). This condition can be derived from the relation

(fi − fj)Λij = 0, (9)

which implies that Λij vanishes whenever fi differs from fj . As a result, the Λij ’s form a block-

diagonal matrix in which each block corresponds to orbitals that have the same occupations.

Now, bearing in mind that vHxc(r) is a functional of the density ρ(r) and invoking the invariance

of ρ(r) with respect to block-diagonal unitary transformations, we can recast the self-consistent

equations into

fi(ĥ0ψi(r) + vHxc(r)ψi(r)) = λiψi(r), (10)
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where the coefficient λi are the eigenvalues of the Lagrange matrix and the orbitals ψi are related

to the initial orbitals ϕi through the block-diagonal rotation U that diagonalizes the Lagrange

matrix Λ of the same block-diagonal form:

ψi(r) =

Nocc∑
j=1

Uijϕj(r) (11)

Λij =

Nocc∑
k=1

UikλkU
∗
jk (12)

with
∑Nocc

k=1 UkiU
∗
kj =

∑Nocc
k=1 U

∗
ikUjk = δij and (fi − fj)Uij = 0. For the moment, all the

summations are restricted to the Nocc occupied states (the extension to unoccupied states is

described below). We can then rewrite Eq. (10) in the canonical form

ĥ0ψi(r) + vHxc(r)ψi(r) = εiψi(r) (13)

where the eigenvalues of the self-consistent Kohn-Sham Hamiltonian ĥKS = ĥ0 + vHxc(r) and of

the Lagrange matrix Λ are related through εi = λi/fi.

We are now in a position to define the occupation-dependent energy

E(f1, f2, · · · ) = EKS[f1, f2, · · · , ψ1, ψ2, · · · ], (14)

where the ψi’s stand for the canonical Kohn-Sham orbitals at self-consistency [Eq. (13)] ordered

in ascending order of their eigenenergies, that is, ε1 ≤ ε2 ≤ · · · . The definition of E(f1, f2, · · · )
allows us to rewrite the ground-state energy in terms of a constrained minimization over the

occupation numbers:

E(N) = min∑+∞
i=1

fi=N

0≤fi≤1

E(f1, f2, · · · ). (15)

From this definition, one can interpret the Kohn-Sham eigenvalues as the derivatives of the

occupation-dependent energy including self-consistent orbital relaxation:

∂E(f1, f2, · · · )
∂fi

= εi (16)

where use has been made of the relation∫
d3r (δψ∗i (r) · ĥKSψi(r) + ψ∗i (r) · ĥKSδψi(r)) = 0 (17)

that results from Kohn-Sham stationarity and orthonormality conditions. In the literature,

Eq. (16) is referred to as Janak’s theorem [42]. The theorem stands true for unoccupied states

upon extending the diagonalization of ĥKS to empty orbitals instead of only considering the

Nocc occupied states. This straightforward extension does not affect the occupation-dependent

energy while enabling us to define energy derivatives at fi = 0+ and offering an analytical

interpretation for the eigenenergies of the empty states.

A central consequence of Janak’s theorem is the Aufbau principle, which has been alluded to

at the beginning of this section. In fact, from Janak’s theorem, one can infer that the system

remains unstable as long as a state that has an energy εi strictly lower than the energy εH of
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the highest occupied orbital is not entirely filled.2 The Aufbau principle can also be extended

to the case where the highest occupied level is degenerate, as expressed by the relation

E(N) = E(1, 1, · · · , 1, fH
1 , · · · , fH

d , 0, 0, · · · ). (18)

Equation (18) indicates that the ground state of the N -electron system can be constructed by

simply filling the Kohn-Sham levels in ascending order until reaching the highest occupied levels

of degeneracy d and of fractional occupations fH
1 , · · · , fH

d . Finally, using the Aufbau principle,

it can be shown that

dE(N)

dN
=
∂E(N)

∂fH
i

= εH , (19)

which reflects the fact that changes in the total electron number N can only occur through

changes in the occupation numbers at the highest occupied level εH . These important relations

provide an analytical interpretation for the Kohn-Sham eigenenergies. They are exploited in the

next section to construct ODD functionals beyond conventional DFT approximations.

2.2 Functionals of the orbital densities

2.2.1 Charged excitations

Spectroscopy experiments in the x-ray and ultraviolet wavelength ranges involve excitations

whose energies are sufficiently high to modify the charge of the sample through the removal

(or addition) of an electron. The description of charged excitations requires us to correctly

predict the energy of the system as a function of a reaction coordinate that parametrizes the

excitation process, e.g., the occupation of the ionized state. In particular, if one is interested

in capturing the onset of ultraviolet photoemission, one must correctly describe the dependence

of the energy on the occupations of the highest occupied orbitals fH
i or, equivalently, as a

function of the electron number N [see Eq. (19) and the related discussion]. Beyond charged

excitations, correctly predicting the analytical behavior of the energy is important to describe

lower-energy neutral excitations. Indeed, the accuracy of adiabatic TDDFT approximations in

predicting neutral excitations and related optical resonances depends in particular on the ability

of the underlying DFT approximations to describe orbital energies, that is, the derivatives of

the energy with respect to the occupation numbers [17].

However, conventional Kohn-Sham DFT approximations do not correctly describe charged exci-

tations; typically, the energy E(N) exhibits a strong nonlinear dependence within local, semilo-

cal, and hybrid approximations, whereas the exact behavior of E(N) is known to be a connection

of straight line segments between integer electron numbers. In fact, at fractional electron num-

ber, the ground state can be expressed as a statistical mixture of at most two pure states and

its total energy verifies the linearity relation

E(N) = (1− ω)E(M) + ωE(M + 1), (20)

where M and ω are the integer and fractional parts of N , respectively.

2Otherwise, an infinitesimal transfer of charge δf > 0 from the highest occupied orbital to a state of energy

εi < εH would decrease the total energy by an amount (εi − εH )δf < 0.
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The piecewise linearity of the total energy was first established by Perdew, Parr, Levy, and

Balduz [8] and is critical to describe a range of orbital properties. It was then suggested by

Cococcioni and de Gironcoli that it could be used to determine the strength U of Hubbard cor-

rections to DFT [38, 39]. The connection between self-interaction and lack of piecewise linearity

was first made by Kulik et al. [40], arguing that Hubbard corrections reduce the hybridization

and delocalization of d or f orbitals, and thus improve self-interaction errors rather than cor-

relations, and by Mori-Sanchez, Cohen, and Yang [47], that introduced the related concept of

many-electron self-interaction. In addition to the inaccurate prediction of orbital energy lev-

els, the lack of piecewise linearity of conventional DFT approximations results in an incorrect

description of orbital densities; functionals for which the dependence of E(N) on N is convex

tend to delocalize the orbital densities, whereas functionals for which E(N) is concave lead

to overlocalization [48, 49].3 Equivalently, imposing the piecewise linearity condition amounts,

by definition, to cancelling many-electron self-interaction errors [50, 51] taking into account

self-consistent electronic relaxation. In other words, the energy of the highest occupied orbital

should not change as a function of its fractional occupations, that is, the orbital should not

interact with itself:

∂εH

∂fH
i

= 0. (21)

In the language of quantum chemistry, this condition is equivalent to the (generalized) Koopmans

theorem,4 whereby the energy of the highest occupied state equals the energy of the ionization

from the (M + 1)-electron to M -electron ground state, including full orbital relaxation:

εH (N) = E(M + 1)− E(M). (22)

At this stage, it is important to mention that different definitions of self-interaction correction ex-

ist in the literature (Fig. 2). The term self-interaction may refer to one-electron self-interaction or

many-electron self-interaction, and the latter may correspond either to the frozen picture where

orbitals are kept unchanged upon varying fH
i (the frozen-orbital many-electron self-interaction)

or to the opposite situation where electrons are allowed to relax self-consistently (the relaxed-

orbital many-electron self-interaction). We note in passing that there is no distinction between

frozen-orbital self-interaction and relaxed-orbital self-interaction for one-electron systems as the

two concepts are equivalent in that case. Identical hierarchies exist for piecewise linearity and

Koopmans compliance (see the correspondences summarized in Fig. 2).

To make the different definitions clear, let us first recall that DFT functionals are said to be

one-electron self-interaction-free when the nonlinear electron-electron contributions satisfy:

EHxc[ρ] = 0 (23)

3Reference [48] also highlights the limitations of conventional DFT approximations in capturing static corre-

lation in spin-degenerate systems (the H2 dissociation problem). Self-interaction errors arising from fractional

occupations are nevertheless distinct from static correlation errors arising from fractional spins. In this work, only

the self-interaction problem is addressed.
4Koopmans’ theorem has been originally proven for the HF method considering frozen orbitals [52]. Here we

refer to this case as the restricted Koopmans theorem. The generalized version of the theorem has been introduced

later [53] in order to include orbital relaxation. We note in passing that the generalized Koopmans theorem is a

property of the exact many-body Green’s function G. In fact, when adopting the Lehmann representation, the

poles of G, playing the role of (Dyson) orbital energies, are exactly given by total energy differences corresponding

to many-body states with different number of particles (with one electron added or removed).
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Figure 3: One-electron self-interaction (the one-electron Koopmans theorem). Dependence

of the highest orbital energy as a function of its occupation for hydrogen including full self-

consistency. It is readily apparent that the local (spin) density approximation (LDA) does not

fulfill Eq. (21) and is therefore not self-interaction-free for one-electron systems [Eq. (23)]. In con-

trast, the Hartree-Fock (HF) and Perdew-Zunger (PZ) methods are exact and one-electron self-

interaction-free by construction. Likewise, the Koopmans-compliant (K) correction (Sec. 2.2.2)

to LDA fulfills Eq. (21) exactly and Eq. (23) very accurately.
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for any one-electron density ρ(r) = f1|ϕ1|2(r), whether the orbital is allowed to relax or not.

Equation (23) is not fulfilled by conventional DFT approximations. For instance, the local

(spin) density approximation (LDA) exhibits a strong nonlinear behavior with a well-known

singularity in dε1
df1

at f1 = 0 that is due to the Slater exchange contribution to EHxc[ρ] [54].

A simple correction to one-electron self-interaction errors in approximate DFT functionals has

been first proposed by Fermi and Amaldi in the context of the Thomas-Fermi-Dirac theory [54];

for KS-DFT, the Fermi-Amaldi one-electron self-interaction correction reads

EFA[f1, f2, · · · , ϕ1, ϕ2, · · · ] = EKS[f1, f2, · · · , ϕ1, ϕ2, · · · ]−NEHxc[
ρ

N
]. (24)

This functional satisfies Eq. (23) for one-electron systems (N = 1) but it exhibits important

errors when more electrons are present. In particular, it does not preserve the size-consistency

of the underlying DFT functional and deteriorates the precision of total energy predictions in

general [55]. The one-electron self-interaction correction of Perdew and Zunger improves upon

the Fermi-Amaldi correction by subtracting individual electron-interaction contributions to the

total energy functional:

EPZ[f1, f2, · · · , ϕ1, ϕ2, · · · ] = EKS[f1, f2, · · · , ϕ1, ϕ2, · · · ]

−
+∞∑
i=1

EHxc[fi|ϕi|2]. (25)

The Perdew-Zunger self-interaction-corrected functional fulfills Eq. (23) by construction while

preserving size-consistency. However, in its simplest form, the predictive accuracy and practi-

cal usefulness of the Perdew-Zunger method is restricted to one-electron systems and isolated

atoms; its precision deteriorates rapidly with the number of atoms in the system and it exhibits

important many-electron self-interaction errors in both the frozen-orbital and relaxed-orbital

approximations [50].

A more balanced correction of one-electron and frozen-orbital many-electron self-interaction

errors is instead achieved by Hartree-Fock (HF) theory. In fact, it is well known that in the

expression for the Hartree-Fock energy functional

EHF[f1, f2, · · · , ϕ1, ϕ2, · · · ] =

+∞∑
i=1

fi

∫
d3rϕ∗i (r) · ĥ0ϕi(r) (26)

+
1

2

+∞∑
i=1

+∞∑
j=1

fifj

∫
d3rd3r′

|ϕi|2(r)|ϕj |2(r′)

|r− r′|

− 1

2

+∞∑
i=1

+∞∑
j=1

fifj

∫
d3rd3r′

ϕ∗i (r)ϕj(r)ϕ∗j (r
′)ϕi(r

′)

|r− r′| δσiσj ,

the self-Hartree and self-exchange terms (that is, the terms corresponding to i = j in the double

sums) cancel out. [In Eq. (27), σi denotes the spin of ϕi.] Consequently, the HF functional

is one-electron self-interaction-free. Furthermore, due to the cancellation between Hartree and

Fock contributions, it is quite straightforward to show that HF verifies Eq. (21) within the

frozen-orbital approximation for many-electron systems. In other words, the HF method fulfills

the restricted Koopmans theorem (Fig. 4) in addition to one-electron Koopmans compliance

(Fig. 3). The situation is completely different for relaxed orbitals. In fact, as illustrated in
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Figure 4: Frozen-orbital many-electron self-interaction (the restricted Koopmans theorem). De-

pendence of the highest orbital energy as a function of its occupation for carbon within the

frozen-electron approximation. It can be seen that the HF method is frozen-orbital many-

electron self-interaction-free, meaning that it verifies the restricted Koopmans theorem at vari-

ance with the LDA, PZ, and K methods. We underscore that the restricted Koopmans theorem

is also not fulfilled by exact DFT.

Fig. 5, all the approximations mentioned above, namely, the LDA, HF, and PZ formulations,

predict the energy of the highest occupied state εH to vary as a function of the occupation

number fH , meaning that the energy of the ground state E(N) is not linear. In specific terms,

the LDA ground-state energy is strongly convex since εH = dE
dN increases rapidly upon raising

fH or N . The HF energy exhibits the opposite trend, whereas the PZ energy is seen to be

mostly convex.

The lack of generalized Koopmans compliance of conventional quantum approximations rever-

berates negatively on the electronic-structure description of physical systems and on the accuracy

of spectroscopic predictions. The importance of the generalized Koopmans theorem lies in the

fact that if one could impose generalized Koopmans compliance, that is, self-consistent piece-

wise linearity, while preserving the precision of DFT energy predictions, one would automatically

obtain accurate highest occupied levels [see Eq. (22)]. Furthermore, in practice, imposing the

generalized Koopmans theorem to the full electronic spectra would enable one to inherit from

the established accuracy of finite-difference DFT energy predictions (the ∆SCF method) [56] in

describing low- and high-energy charged excitations without requiring repeated calculations for

the non-Aufbau ionized states.

Therefore, imposing generalized Koopmans compliance (that is, restoring self-consistent piece-

wise linearity and correcting relaxed-orbital many-electron self-interaction) is fundamental to

the accuracy of calculated charged-excitation spectra. The importance of the generalized Koop-

mans theorem has been highlighted in a number of theoretical and computational studies [36,

57, 48, 58, 59, 35, 60, 50, 8, 51, 61]. In the next section, we present the Koopmans-compliant

method [62, 63, 64] specifically devised to correct relaxed-orbital many-electron self-interaction

errors and to restore the generalized Koopmans theorem for DFT approximations (Fig. 5).
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Figure 5: Relaxed-orbital many-electron self-interaction (the generalized Koopmans theorem).

Dependence of the highest orbital energy as a function of its occupation for carbon including

full self-consistency. It can be seen that only the K method verifies the generalized Koopmans

theorem within very good approximation in accordance with exact DFT and at variance with

the LDA, HF, and PZ methods.

2.2.2 Generalized Koopmans compliance

To impose generalized Koopmans compliance in DFT calculations, the first important step

is to provide a precise definition of the lack of piecewise linearity. A quantitative definition of

deviations from Koopmans compliance is provided by the non-Koopmans energy first introduced

by Perdew and Zunger. It is simply obtained by comparing the correct linear behavior imposed

by Koopmans’ theorem and the incorrect nonlinear behavior of the approximate ground-state

energy. Explicitly, the non-Koopmans energy can be expressed as

ΠH (N ;ωref) =

∫ ω

0
dω′

(
dE

dN
(M + ωref)−

dE

dN
(M + ω′)

)
(27)

= E(M)− E(M + ω) + ω
dE

dN
(M + ωref), (28)

where the reference fractional number ωref denotes the value of ω at which

dE

dN
(M + ωref) = E(M + 1)− E(M). (29)

In other words, ΠH (N ;ωref) can be written as

ΠH (N ;ωref) = E(M)− E(M + ω) + ω(E(M + 1)− E(M)). (30)

Then, making use of the fact that E(N) can be accurately approximated by a parabola between

M and M + 1 in most practical situations, we can obtain a very close approximation to the

non-Koopmans energy by setting ωref = 1
2 (the Slater-1

2 approximation):

Π̃H (N) = ΠH (N ; 1
2) = E(M)− E(M + ω) + ω

dE

dN
(M + 1

2). (31)

Now, we can rely on Eq. (31) to construct a correction to the lack of Koopmans compliance.5

5One could rely on other definitions to measure the lack of Koopmans compliance. In particular, Eq. (30) has

been recently exploited in Ref. [64] within the frozen orbital approximation. The comparative assessment of these

closely related definitions is beyond the scope of this introductory review and will be discussed in detail elsewhere.
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To this end, we must express the non-Koopmans energy as a functional of the ϕi’s and fi’s. As

a first attempt to write Π̃H (N) explicitly, let us perform a Taylor series expansion. We assume

for simplicity that the highest occupied state ψM+1 is not degenerate, that is, ω ≡ fM+1 and

H ≡M + 1. Hence, to second order around ω = 0, the expansion6 reads

Π̃M+1(N) =
1

2
fM+1(1− fM+1) (32)

×
∫
d3rd3r′d3r′′|ψM+1|2(r)ε̃−1(r, r′)fHxc(r

′, r′′)|ψM+1|2(r′′) + · · · ,

where fHxc(r, r
′) = δvHxc(r)

δρ(r′) stands for the exchange-correlation kernel and

ε̃−1(r, r′) = δ(r − r′) + δvHxc(r)
δv(r′) denotes a screening function of the Kohn-Sham system. Equa-

tion (32) underscores the main difficulties that arise in expressing the non-Koopmans energy

explicitly; the computational challenge here is to evaluate the Kohn-Sham nonlocal dielectric

function ε̃−1(r, r′), which captures the complex self-consistent response of the electrons to an

external perturbation.

Nonetheless, Eq. (32) suggests us that the expression of the non-Koopmans energy would be

greatly simplified if self-consistent electronic relaxation were not present. This observation leads

us to first consider the simpler case in which orbitals are frozen. Explicitly, we work within the

approximation

δψi = 0, δvHxc(r) = 0, ε̃−1(r, r′) = δ(r− r′). (33)

In this frozen orbital picture, expressing the non-Koopmans energy becomes straightforward; by

evaluating each term in Eq. (31) for the fixed ψi’s, we obtain

Π̃u
M+1[f1, f2, · · · , ψ1, ψ2, · · · ] = EHxc[

M∑
i=1

fi|ψi|2]− EHxc[
M+1∑
i=1

fi|ψi|2]

+fM+1

∫
d3r vHxc(r; [

M∑
i=1

fi|ψi|2 + 1
2 |ψM+1|2]) |ψM+1|2(r), (34)

where the superscript {·}u indicates that orbitals are kept unrelaxed during the fictitious ion-

ization process. We note in passing that all the linear contributions related to ĥ0 vanish in the

frozen orbital picture.

With the explicit expression of the non-Koopmans contributions in hand, it is now possible to

impose Koopmans compliance for frozen orbitals by defining

Eu
K[f1, f2, · · · , ϕ1, ϕ2, · · · ] = EKS[f1, f2, · · · , ϕ1, ϕ2, · · · ]

+ Π̃u
M+1[f1, f2, · · · , ϕ1, ϕ2, · · · ]. (35)

6It is very instructive to note that the linear-response DFT+U method of Cococcioni and de Gironcoli [57]

is obtained from a similar expansion to evaluate the U parameters for the NI preselected orbitals χIi of the Ith

atom. In fact, in its simplest form, the nonlinearity correction reads

EU [f1, f2, · · · , ϕ1, ϕ2, · · · ] =

Natom∑
I=1

NI∑
i=1

UIi
2
nIi(1− nIi)

with

UIi =

∫
d3rd3r′d3r′′|χIi|2(r)ε̃−1(r, r′)fHxc(r

′, r′′)|χIi|2(r′′) and nIi =

+∞∑
j=1

fj |〈χIi|ϕj〉|2.

The spirit of the Koopmans-compliant correction is identical with the advantage of not requiring preselected

atomic orbitals.
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Indeed, one can verify that the new functional Eu
K is exactly linear in the absence of relaxation

due to the fact that

∂2Π̃u
M+1

∂f2
M+1

= −∂
2EKS

∂f2
M+1

(36)

while not significantly modifying the energy E(N) at integer occupations since the unrelaxed

non-Koopmans energy

Π̃u
M+1 =

1

2
fM+1(1− fM+1)

×
∫
d3rd3r′|ϕM+1|2(r)fHxc(r, r

′)|ϕM+1|2(r′) + · · · (37)

is nearly zero when ϕM+1 is completely empty or filled.

Having imposed Koopmans compliance for frozen orbitals, it remains to include the effect of

self-consistent orbital relaxation. To address this problem, let us use the expression of Eu
K as

a first approximation and monitor the analytical behavior of the ground-state energy. From

these calculations, one can observe that the energy E(N), which is exactly linear in the frozen

orbital approximation, becomes downward convex when orbitals relax self-consistently. This

observation is in line with the intuition that neglecting screening contributions leads to an

overestimation of the correction. In fact, it can be rigorously shown that any functional that

fulfills the restricted Koopmans theorem leads to a downward convex dependence of the energy

E(N) when relaxation is taken into account. A perfect illustration of this result is provided

by the HF theory whose ground-state energy is piecewise linear for frozen orbitals (that is, the

HF theory fulfills the restricted Koopmans theorem) and becomes piecewise concave for relaxed

orbitals.

Including self-consistent relaxation through the nonlocal electronic dielectric function ε̃−1(r, r′)

would exactly cancel the concavity of E(N). However, computing ε̃−1(r, r′) is prohibitively

expensive. Therefore, we resort here to a much simpler correction, which consists of making the

zeroth-order approximation

ε̃−1(r, r′) = αM+1 + · · · (38)

to capture the self-consistent relaxation effects that take place upon ionizing ϕM+1. Substituting

Eq. (38) into Eq. (32) and comparing with the expansion of Π̃u, we infer

Π̃M+1[f1, f2, · · · , ϕ1, ϕ2, · · · ] = αM+1Π̃u
M+1[f1, f2, · · · , ϕ1, ϕ2, · · · ] + · · · . (39)

Hence, we arrive at the Koopmans-compliant functional

EK[f1, f2, · · · , ϕ1, ϕ2, · · · ] = EKS[f1, f2, · · · , ϕ1, ϕ2, · · · ]
+ αM+1Π̃u

M+1[f1, f2, · · · , ϕ1, ϕ2, · · · ], (40)

which generalizes Eq. (35) by taking into account orbital screening through the uniform dielectric

constant αM+1.7

7We note that in Figs. 4 and 5 we have used the Koopmans-compliant functional defined in Eq. (40), where

the α screening coefficient has been included. We have adopted the same value for α in both figures. If no α were

used [Eq. (35)], the K panel in Fig. 4 would show a flat curve, while that of Fig. 5 would display a negative slope

as the HF method.
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In principle, the dielectric coefficient αM+1 should be calculated by averaging the nonlocal

permittivity in some suitable system-dependent and orbital-dependent fashion.8 However, it

can also be obtained in a more pragmatic and efficient manner by directly imposing Koopmans

compliance [Eq. (22)], thereby avoiding complex averaging procedures. In our calculations, we

obtain αM+1 through the necessary condition:

εM+1(M+) = εM+1(M + 1−), (41)

which reflects the fact that the electron affinity of the M -electron system AM = −εM+1(M+)

should be equal to the ionization potential of the (M + 1)-electron system

IM+1 = −εM+1(M + 1−). Admittedly, Eq. (41) is not a sufficient condition for complete

Koopmans compliance. However, it provides a very accurate correction of the lack of piece-

wise linearity of local and semilocal DFT approximations. In practice, the calculation of the

dielectric screening coefficient can be performed using the secant-method recursion:

α
(n+2)
M+1 = α

(n)
M+1 +

(α
(n+1)
M+1 − α

(n)
M+1)(ε

(n)
M+1(M+)− ε(n)

M+1(M + 1−))

(ε
(n)
M+1(M+)− ε(n)

M+1(M + 1−))− (ε
(n+1)
M+1 (M+)− ε(n+1)

M+1 (M + 1−))
.(42)

Note that, due to the almost linear behavior of the orbital-energy difference

εM+1(M+) − εM+1(M + 1−) as a function of αM+1, two recursions of Eq. (42) are most of

the time sufficient in our experience to converge αM+1 and impose Koopmans’ condition [62].

Finally, we underscore that the correction described above restores the generalized Koopmans

theorem for the highest occupied orbital but leaves the energies of the other states unchanged.

However, imposing Koopmans’ theorem to the other states would clearly improve the description

of the electronic spectrum by equating orbital energies with the accurate total energy differ-

ences [15, 56]. Although applying the correction to both the occupied and unoccupied manifolds

is guided by practical considerations,9 it will be shown that this extension provides accurate

ionization potentials and electron affinities, oftentimes comparable to many-body predictions.

We thus define the non-Koopmans energy Π̃u
i associated with the removal or addition of ϕi using

a straightforward generalization of Eq. (34):

Π̃u
i [f1, f2, · · · , ϕ1, ϕ2, · · · ] = EHxc[

+∞∑
j=1

j 6=i

fj |ϕj |2]− EHxc[
+∞∑
j=1

fj |ϕj |2]

+ fi

∫
d3r vHxc(r; [

+∞∑
j=1

j 6=i

fj |ϕj |2 + 1
2 |ϕi|2]) |ϕi|2(r). (43)

This definition allows us to define a Koopmans-compliant functional extended to the full spec-

8For instance, one could compute the average dielectric screening coefficient related to the orbital ψi through

αi =

∫
d3rd3r′d3r′′|ψi|2(r)ε̃−1(r, r′)fHxc(r

′, r′′)|ψi|2(r′′)∫
d3rd3r′|ψi|2(r)fHxc(r, r′)|ψi|2(r′)

+ · · · ,

where it is understood that each quantity that appears in the integrals must be calculated self-consistently.
9The same approach is adopted when computing virtual orbital levels and band gaps within, e.g., hybrid DFT

and DFT+U approximations.
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trum:

EK[f1, f2, · · · , ϕ1, ϕ2, · · · ] = EKS[f1, f2, · · · , ϕ1, ϕ2, · · · ]

+

+∞∑
i=1

αiΠ̃
u
i [f1, f2, · · · , ϕ1, ϕ2, · · · ], (44)

where a different dielectric screening constant αi is introduced for each of the orbitals. How-

ever, in practical simulations, evaluating the αi’s would require a different calculation to impose

Koopmans’ condition to each of the electronic states, thereby considerably increasing the com-

putational burden. Fortunately, it is observed in practice that the αi’s vary in a narrow range

of values so that approximating the αi’s to be all equal to a unique α that depends only on the

system does not significantly alter the accuracy of electronic level predictions in most practical

cases.10 In explicit terms, the functional that we employ in our simulations reads

EK[f1, f2, · · · , ϕ1, ϕ2, · · · ] = EKS[f1, f2, · · · , ϕ1, ϕ2, · · · ]

+ α

+∞∑
i=1

Π̃u
i [f1, f2, · · · , ϕ1, ϕ2, · · · ]. (45)

This completes the presentation of the Koopmans-compliant functional. In summary, imposing

Koopmans compliance leads us to considering the ionization of individual Kohn-Sham orbitals,

thereby defining a functional of the general ODD form

EODD[f1, f2, · · · , ϕ1, ϕ2, · · · ] =
+∞∑
i=1

fi

∫
d3rϕ∗i (r) · ĥ0ϕi(r)

+ EHxc[f1|ϕ1|2, f2|ϕ2|2, · · · ]. (46)

Although other definitions of the non-Koopmans error could be envisioned, the procedure out-

lined above would always provide functionals of this form, i.e., with an exchange-correlation term

EHxc[f1|ϕ1|2, f2|ϕ2|2, · · · ] that depends on the individual orbital densities instead of EHxc[
∑+∞

i=1 fi|ϕi|2]

that depends on the total density. It is important to note that ODD functionals can still be

regarded as implicit DFT functionals [65], yet defined in a non-Kohn-Sham framework, un-

less ad hoc optimized effective potential (OEP) techniques [66, 67] are adopted. Alternatively,

a beyond-DFT perspective on ODD methods, based upon the local and frequency-dependent

spectral-density potential introduced by Gatti et al. [68], is discussed elsewhere [69].

To close the presentation of orbital-dependent corrections, it should be said that orbital-independent

methods have been proposed to reduce many-electron self-interaction errors in DFT approxi-

mations [64, 70]. These DFT approaches improve energy predictions for systems with fractional

electron numbers. Nevertheless, they are not meant to improve the description of spectroscopic

properties and charged excitations, except for the highest occupied orbital of the system. The

advantage of the ODD approach in that regard will be discussed extensively in Sec. 4.

2.2.3 Energy minimization

The minimization of ODD energy functionals deserves particular attention, and important as-

pects of it are presented in this section.

10A detailed sensitivity analysis of this approximation is presented in Ref. [63].
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To minimize the ODD energy, we first write the Lagrange functional related to the orthonor-

mality constraints on the orbitals:

LODD = EODD[f1, f2, · · · , ϕ1, ϕ2, · · · ]−
+∞∑
i,j=1

Λij(

∫
d3rϕ∗i (r)ϕj(r)− δij). (47)

The corresponding stationary conditions can be written as

δLODD

δϕi(r)
= 0,

δLODD

δϕ∗i (r)
= 0. (48)

This leads to a set of coupled self-consistent equations

fi(ĥ0ϕi(r) + vHxc,i(r)ϕi(r)) =
+∞∑
j=1

Λijϕj(r) =
+∞∑
j=1

Λ∗jiϕj(r) (49)

in which the unique Kohn-Sham potential vHxc(r) of conventional DFT is replaced by a collection

of potentials corresponding to the different orbitals of the system:

vHxc,i(r) =
δEHxc[ρ1, ρ2, · · · ]

δρi(r)
, ρi(r) = fi|ϕi|2(r). (50)

Similarly to the original Kohn-Sham, the Λij ’s form a Hermitian matrix:

Λij = fi

∫
d3rϕ∗j (r)(ĥ0ϕi(r) + vHxc,i(r)ϕi(r))

= fj

(∫
d3rϕ∗i (r)(ĥ0ϕj(r) + vHxc,j(r)ϕj(r))

)∗
= Λ∗ji, (51)

which can be rewritten as ∫
d3rϕ∗i (r) ·

(
fiĥi − fj ĥj

)
ϕj(r) = 0 (52)

with

ĥi = ĥ0 + vHxc,i. (53)

Equation (52) is the ODD counterpart of Eq. (9) and is also known as the Pederson condition [71].

It highlights an important feature of ODD functionals; since those are not in general invariant

under a unitary transformation U of the orbitals, the gradient of the ODD energy with respect

to U is usually not zero. As shown in Ref. [72], the expression of such gradient is proportional

to the left-hand side of Eq. (52) for fi = fj = 1. At the minimum, the Pederson condition

determines then the specific unitary rotation of the orbitals that makes the energy stationary.

For certain ODD functionals, such as PZ, the minimizing orbitals are usually localized (and

often similar to Wannier functions [73, 74]), so the Pederson condition can also be regarded as

a localization condition; for Koopmans-compliant functionals the driving force to localization

changes depending on the functional chosen, but it is always present in the functionals described

here.

In general, when dealing with ODD functionals it is customary to consider two set of orbitals,

namely the minimizing orbitals discussed above and the so-called canonical orbitals, correspond-

ing to the eigenvectors of the Λ matrix [75, 69]. This second set is introduced to define orbital

18



ionization energies by identifying the Λij ’s as being proportional to the coefficients of an effec-

tive Hamiltonian (see the following discussion for details). It is important to stress here that

while the diagonalization of Λ is fully supported by Janak’s theorem in the KS-DFT framework

(providing an interpretation to the eigenvalues of Λ), this is not the case for ODD, as stressed

by Vydrov et al. [76]. In fact, when dealing with ODD methods, we have

∂EODD

∂fi
=

∫
d3rϕ∗i (r) · ĥi ϕi(r) =

Λii
fi
. (54)

Bearing in mind that the minimizing orbitals are typically localized, it is clear that the ODD

Janak’s theorem [Eq. (54)] does not provide a physical definition of orbital energies. On the

other hand, canonical orbitals are physical but not protected by a Janak-like theorem. This issue,

still a very important open problem in the field, has been thoroughly discussed by Stengel and

Spaldin [72]. In Ref. [72], the authors stressed the fact that the breakdown of a Janak-definition

for orbital energies in ODD methods has to be found in the extension of ODD functionals to

fractional occupations, suggesting that an alternative extension providing also a proper Janak’s

theorem would be very desirable and a major advancement.

Because of these issues in defining ODD functionals for fractional number of electrons, in the

following we will consider only the case where we have two subspaces, the valence and the

conduction manifold, separated by a gap and with occupations 1 and η respectively, where the

limit η → 0 has to be taken. This construction allows one to define an effective Hamiltonian for

both occupied and empty states. Within these definitions, at the minimum we obtain

Λij = Λ∗ji ∼ η → 0 (1 ≤ i ≤ Nocc and Nocc < j). (55)

This leads us to the following set of equations:

ĥi ϕi(r) =

Nocc∑
j=1

Λijϕj(r) (1 ≤ i ≤ Nocc) (56)

ĥiϕi(r) =

+∞∑
j=Nocc+1

Λ̃ijϕj(r) +

Nocc∑
j=1

Λ̃ijϕj(r) (Nocc < i). (57)

with

Λ̃ij =
1

η
Λij . (58)

While the equation for occupied orbitals [Eq. (56)] does not couple them to the empty manifold,

the equation for the empty states [Eq. (57)] involves the occupied ones because of the orbital

orthogonality constraint.

It is then useful to introduce projectors onto the occupied and empty manifolds and define
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projected Hamiltonians as:

P̂iϕj(r) = ϕi(r)

∫
d3r′ϕ∗i (r

′)ϕj(r
′) (59)

P̂ =

Nocc∑
i=1

P̂i (60)

Q̂ = Î − P̂ (61)

ĤV =

Nocc∑
i=1

ĥiP̂i (62)

ĤC =
+∞∑

i=Nocc+1

ĥiP̂i. (63)

By acting P̂ and Q̂ on both sides of Eqs. (56) and (57) and using the above definitions, we

obtain:

P̂ ĤV P̂ ϕi(r) =

Nocc∑
j=1

Λijϕj(r) (1 ≤ i ≤ Nocc) (64)

Q̂ĤCQ̂ ϕi(r) =
+∞∑

j=Nocc+1

Λ̃ijϕj(r) (Nocc < i). (65)

These expressions have the important merit of explicitly decoupling the valence and the con-

duction manifolds, thus suggesting us to use

Ĥ = P̂ ĤV P̂ + Q̂ĤCQ̂ (66)

as an effective (Hermitian) Hamiltonian for the system (which is equivalent to consider the

canonical orbitals and the Λ eigenvalues to define the electronic structure of the system). The

construction above is routinely used in interpreting eigenvalues of the Λ matrix provided by

self-interaction corrections, and it is argued for in Ref. [69]. The practical performance of this

approach is highlighted in the next Section.

Before closing this section, it is worth discussing the extension of the above ODD approaches

to the solid limit. While this still represents an open problem, the localization properties of the

minimizing orbitals may be exploited. As an example, let us focus first on the PZ case. The

behavior of EHxc[ρi] as a function of the spread of ρi (modeled as a Gaussian distribution) has

been studied recently [77]; it has been confirmed that the PZ-ODD corrections would vanish

for fully delocalized orbitals. Focusing now on the K functional, a similar problem appears,

since the Π̃u
i terms of Eq. (45) would become identically zero for extended orbitals (for the

same reason the ∆SCF method fails for solids [78]). The role of localized minimizing orbitals

appears then to be pivotal for the use of ODD methods on extended systems, since it would

yield a non-zero orbital-dependent correction. A detailed analysis of the localization properties

of the orbitals for PZ-ODD is given in Ref. [77]. Further numerical investigation along these

lines is required, especially concerning the K functional, and will be the subject of a future

publication. For the moment, we argue that in all periodic systems possessing a finite gap,

the gap between conduction and valence bands provides a natural energy scale for localization,

ensuring in particular an exponential decay of the one-body density-matrix of a system, and the
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Figure 6: Minimizing orbitals of an ODD-PZ calculation for a graphene nanoribbon with 1-d

periodicity. From left to right, in yellow: carbon-carbon σ, carbon-hydrogen σ, carbon-carbon

three-lobed π molecular orbitals. The spread of the orbitals is comparable to the one found in

benzene rings and other carbon-hydrogen compounds.

existence of a unitary transformation relating each filled extended Kohn-Sham eigenorbitals to

localized wave functions (as for instance Wannier functions), with a spread limited by the size

of the gap itself. Given that a set of orbitals (and therefore orbital densities) with a specific

localization property dictated by chemistry exists, one has to prove that such set is energetically

favored by the specific ODD functional in use. In Fig. 6, we show three types of minimizing PZ

orbitals for an infinite armchair graphene ribbon; the insulating nature of the ribbon favors the

localization of orbital densities, in a way not at all different than in finite systems.

3 Numerical approaches

In this section, we present the analytical expressions of the Hamiltonians resulting from Koopmans-

compliant functionals together with the implementation of the method. Full computational

details are also provided.

3.1 Koopmans-compliant contributions

According to Eqs. (49), (56), and (57), we need to evaluate the quantities

ĥi =
δEODD

δρi(r)
= ĥ0 +

δEHxc

δρi(r)
(67)

focusing on the case of the Koopmans-compliant functional EODD = EK, as defined in Eq. (45).

To this end, we have to compute the derivatives
δΠ̃u

j

ρi(r) . As a first step, we evaluate the term
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corresponding to i = j:

δΠ̃u
i

δρi(r)
= vHxc(r; [ρref

i ])− vHxc(r; [ρ]) + wref
i (r) (68)

wref
i (r) =

1

2

∫
d3r′ fHxc(r, r

′; [ρref
i ])ni(r

′)

− 1

2

∫
d3r′d3r′′ fHxc(r

′, r′′; [ρref
i ])ni(r

′)ni(r
′′), (69)

where we have introduced the compact notations

ni(r) = |ϕi|2(r) (70)

ρi(r) = fini(r) (71)

ρref
i = ρ(r)− ρi(r) + 1

2ni(r). (72)

Next, for i 6= j, we have

δΠ̃u
j

δρi(r)
= vxc(r; [ρ− ρj ])− vxc(r; [ρ]) +

∫
d3r1 fxc(r, r

′; [ρref
j ])nj(r

′). (73)

Putting together all the above contributions, the Koopmans-compliant Hamiltonian reads

ĥi = ĥ[ρref
i ] + wref

i (r) + wxd
i (r), (74)

where we have defined the cross-derivative (xd) term as

wxd
i (r) =

∑
j 6=i

δΠ̃u
j

δρi(r)
. (75)

In a nutshell, the leading term of the Koopmans-compliant Hamiltonian in Eq. (74) is the original

KS Hamiltonian evaluated at the reference density ρref
i , that is, the density where the occupation

of the ith orbital has been replaced by 1
2 , in the Slater transition-state spirit. Additionally,

we have two variational terms, wref
i and wxd

i . The latter comes from the interdependence of

the corrective terms corresponding to different orbitals; those can be shown analytically and

numerically to have little influence on ODD spectral predictions. In fact, by expanding fxc in

Taylor series, one can see that wxd
i does not contribute up to the second order (e.g., no Hartree

term shows up) and its leading contribution comes from the third derivative of Exc with respect

to the density. Instead, the reference potential wref
i comes from the dependence of ρref

i on the ith

orbital density. We note that this term preserves the expectation value of the orbital-dependent

Hamiltonian ĥi since ∫
d3rwref

i (r)ni(r) = 0. (76)

Nevertheless, wref
i cancels long-range contributions (arising from the Hartree term) to the Hamil-

tonian and tends to reduce the localization of the orbitals. Thus, this term has to be considered

as an unwanted by-product of variationality. Neglecting wref
i means that the reference density

is not updated during the minimization but only at the end of the calculation; the minimiza-

tion is then repeated at fixed wref
i until full self-consistency is reached. This approach (where

the potential wxd
i is also omitted for simplicity) is termed the K0 method. Most of the results
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shown in the following have been produced by this version of the functional. We have checked

numerically that K and K0 electronic-structure predictions do not differ significantly, except for

quantities that are very sensitive to charge localization (such as polarizabilities).

In fact, while corrections to orbital energies of the K and K0 functionals are usually rather

similar, the K functional has a weak tendency to localization (i.e., it does not fully exploit the

corrections to orbital energies to improve on the localization of the charge density). Ultimately

this results in the K charge density to be very similar to that of the LDA functional (at variance

with K0 where strong Perdew-Zunger like localization occurs), such that also the potential energy

surfaces (PES) obtained by K are only slightly changed wrt the LDA ones. This happens because

the Koopmans correction is first and foremost an approach that addresses particle exchanges

with an external bath, hence charged excitations and photoemission. As such, it does not

automatically improve on the total energies and the interplay between corrected orbital energies

and charge density localization is key to current efforts to further develop the functionals. To

this aim, different flavors of the Koopmans-compliant functionals have been introduced (e.g.,

building K on top of PZ). These will be the subject of a separate publication.

3.2 Advanced minimization strategies and alternative formulations

The numerical minimization of any Koopmans-compliant functional can proceed as described in

Eqs. (49), (56), and (57), by minimizing EODD separately with respect to every orbital density

ρi(r), along the gradient of Eq. (67) while enforcing at the same time orthonormality between the

orbitals ϕi(r). Whenever this algorithm is used to calculate the ground state energy of a system

with integer occupations, we can set fi = 1 for every filled orbital and discard all empty-state

wave functions, which do not contribute to EODD. The energy minimization is now equivalent to

solving a constrained optimization problem for a functional with N ×Ngrid degrees of freedom,

where N = Nocc is the number of occupied states in the system, and Ngrid is the the size of

the real-space or reciprocal-space grid used to represent the orbitals. When the minimization is

performed in this way, the Pederson condition [Eq. (52)] and the stationarity condition for the

ODD functional are achieved simultaneously at convergence.

An alternative and equivalent way to perform the same minimization takes inspiration from

the ensemble-DFT (eDFT) method [79]. In this method, every step in optimizing the occupied

orbital manifold is followed by an optimization of the occupation matrix, performed at fixed

orbital manifold to minimize the free energy. Exploiting the eDFT idea and adapting it to our

purpose of minimizing an ODD functional, we supplement every functional minimization step

with a minimization, at fixed orbital manifold (and fixed density). This is achieved by finding

the unitary transformation among the orbitals of the manifold that exactly enforces the Pederson

condition. As a result of this minimization the inner degrees of freedom (related to the unitary

rotation) are separated from the outer degrees of freedom (related to the orbital manifold), and

we obtain, for any given manifold, a Hermitian matrix according to Eq. (51).

The separation of degrees of freedom enables us to rewrite formally the ODD total energy

EODD[f1, f2, · · · , ϕ1, ϕ2, · · · ] as EODD[{Uij}, {ϕi}], where {Uij} and {ϕi} denote the unitary

matrix and the orbital manifold, respectively. Note that the manifold variable {ϕi} is common

to any functional of the density matrix, such as the Hartree-Fock functional, while the unitary

23



matrix {Uij} is the peculiarity of an orbital-density-dependent functional. The full functional

minimization within the above scheme can be summarized in the following coupled equations:

EODD[{ϕi}] = min
{Uij}

EODD[{Uij}, {ϕi}], (77)

E(N) = min
{ϕi}

EODD[{ϕi}]−
N∑

i,j=1

Λij(

∫
d3rϕ∗i (r)ϕj(r)− δij)

 . (78)

Note that similarly to Hartree-Fock, to which an exact-exchange (EXX) density-functional can

be associated in the OEP spirit [80, 10], to any ODD functional can be associated a density

functional, which is defined as a slight modification to the manifold-dependent functional of

Eq. (77), namely,

EODD-DFT[ρ] = min
{Uij}

EODD[{Uij}, {ϕ[ρ]
i }], (79)

where the manifold is now bound to be the manifold of the N lowest-energy single-electron

orbitals, which is obtained by solving the Kohn-Sham equations in the unique KS potential

obtained from the given density ρ(r), as indicated by the superscript {·}[ρ]. The minimization of

Eq. (79) can be operatively performed by numerically finding the KS potential yielding each given

density ρ(r). The algorithm to perform this task has been developed within a suitable extension

of the OEP framework [81], which enables one to compute the left-hand side of Eq. (79). There

are two main differences between the density functional in Eq. (79) and the manifold functional

in Eq. (77). The first difference is that, even when computed for the same electronic density, the

electronic eigenvalues of the optimized-effective KS potential are not the same as the eigenvalues

of the Λ matrix in Eq. (51), since the Λij ’s are computed as the matrix elements of a non-local

operator. The second difference is that, since the KS manifold is only one among all manifolds

yielding a certain density, the ground-state energy of the density functional [Eq. (79)] will be in

general higher than the energy E(N) [Eq. (78)]. To further comment this statement, since we are

currently unaware of any previous discussion about the extent to which the two energies should

agree, we refer to what has been shown to happen for the EXX mapping of the HF functional;

the EXX-OEP and HF energies were proved to agree only in two-electron systems, while they

were shown to disagree in general for systems of more than two electrons. Nevertheless, the

disagreement was shown to a relatively small fraction of the total energy [82, 83, 84]. It is

reasonable to believe that a similar statement holds also for the relation between Eq. (78) and

the minimum of the functional (79). In spite of the slight disagreement which might arise between

the two energies, the density-functional restriction of ODD functionals (79) has an important

role in the definition of self-interaction-corrected time-dependent DFT formalisms [85].

Going back to the two-step minimization of the manifold functional [Eqs. (77) and (78)], we

believe this minimization scheme to be more reliable and computationally efficient than the

direct minimization scheme outline in the beginning of this section [86]. The latter appears to

be more fragile and prone to spurious symmetry breaking both with respect to spin and orbital

ordering. These effects tend to occur especially in large systems and in periodic systems, and

in the latter they may cause a slight breaking of translational symmetry, slower convergence

to the global minimum, convergence to a local minimum of the functional, poor representation

of the orbital density of the minimizing orbitals, and numerical instabilities in single-particle
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eigenvalues. The higher efficiency of the two-step minimization method was shown in a recent

paper for a small molecule such as N2 [87], and its performance should be even more relevant

in larger systems. We plan to support these claims in a forthcoming paper by providing results

for the computational cost, total energy, electronic eigenvalues, and minimizing orbitals for a

representative range of systems [88].

3.3 Computational details

Atomic calculations have been performed using a modified version of the ld1 code from the

quantum-espresso distribution [89]. For each angular momentum channel, the orbital oc-

cupations are averaged among the m quantum numbers leading to a spherically symmetric

contribution to the charge density. The ODD energy functionals (either PZ or K) are minimized

by optimizing the radial distribution of each orbital at fixed angular momentum. Orbitals with

the same l quantum numbers but corresponding to different n are then not automatically or-

thogonal. The validity of this approximation is carefully discussed Ref. [65]. The molpro code

has been employed for the atomic HF calculations using the def2-QZVPP basis set.

With the exception of atoms, all calculations have been performed via a modified version of

the cp code of quantum-espresso. This implementation exploits plane-wave basis sets and

pseudopotentials. Periodic boundary conditions are implicitly assumed because of the basis set,

and a Coulomb cutoff technique (based upon auxiliary regularization functions of the Coulomb

kernel [90]) is adopted to compute the electrostatic contributions. The energy minimization

is done by using either a fictitious damped dynamics on the electronic degrees of freedom or

conjugate gradient steps. The convergence threshold in minimizing the energy is of 10−7 Ha. In

the following we have used real wave functions expanded into plane waves up to a kinetic energy

cutoff of 60 Ry (reduced to 40 Ry for acenes and fullerenes which contain just C and H atoms).

DFT calculations have been performed within the local density approximation (LDA) [65]. Un-

less otherwise specified, all Koopmans-compliant calculations are carried out with the K0[LDA]

scheme where the same dielectric screening coefficient α is used for all the orbitals [Eq. (45)]

and computed by requiring the ionization potential at N electrons to be equal to the electron

affinity at N − 1 electrons (within a tolerance of 0.01 eV) [Eq. (41)].

4 Results

In this section, we review spectroscopic data for atoms and molecules, computed through stan-

dard KS-DFT, Hartree-Fock (HF) and orbital-density dependent (ODD) functionals, such as the

Perdew-Zunger (PZ) and Koopmans-compliant methods. Theoretical estimates are compared

with experimental data, when available. We mostly focus on ionization potentials (IPs), electron

affinities (EAs), and energy levels (as obtained from photoemission experiments, for instance).

In the case of molecules, all the energy transitions studied (including ionizations) have to be

considered vertical, meaning that atomic relaxation is not allowed after the excitation.
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Table 1: Ionization potential of atoms. LDA, HF, PZ, K[LDA], and K0[LDA] IPs for atoms

ranging from H to Kr compared with experimental data. Computational results do not include

spin-orbit coupling. Energies are in eV.

LDA HF PZ K[LDA] K0[LDA] Exp.a

H 7.32 13.61 13.61 13.46 13.35 13.60

He 15.52 24.98 25.79 22.55 23.48 24.59

Li 3.17 5.34 5.34 5.38 5.52 5.39

Be 5.61 8.42 8.92 8.33 8.80 9.32

B 4.08 8.68 8.33 8.21 8.06 8.30

C 6.15 11.94 11.58 11.83 10.93 11.26

N 8.35 15.53 14.91 15.12 13.77 14.53

O 7.49 14.19 14.46 13.44 12.59 13.62

F 10.48 18.49 18.68 18.36 16.35 17.42

Ne 13.55 23.14 22.91 22.52 20.10 21.56

Na 3.08 4.96 5.15 5.46 5.28 5.14

Mg 4.78 6.89 7.49 7.49 7.49 7.65

Al 3.01 5.95 5.55 5.83 5.67 5.99

Si 4.60 8.20 7.79 8.28 7.75 8.15

P 6.26 10.67 10.04 10.55 9.89 10.49

S 6.28 10.32 10.47 10.35 9.90 10.36

Cl 8.32 13.08 13.11 13.37 12.39 12.97

Ar 10.40 16.08 15.76 16.05 14.93 15.76

K 2.61 4.02 4.29 4.60 4.45 4.34

Ca 3.85 5.32 5.93 6.08 6.03 6.11

Ga 2.98 5.87 5.55 6.03 5.63 6.00

Ge 4.48 7.92 7.53 8.07 7.53 7.90

As 5.97 10.07 9.44 9.99 9.33 9.79

Se 5.99 9.50 9.76 9.93 9.31 9.75

Br 7.71 11.81 11.88 12.24 11.43 11.81

Kr 9.42 14.26 13.97 14.35 13.42 14.00

MAD 4.40 0.40 0.35 0.37 0.50 —

a Reference [91]
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4.1 Atoms

In Table 1, we report the ionization potentials for isolated atoms ranging from H to Kr com-

puted at different levels of theory (LDA, HF, PZ, K[LDA], K0[LDA]) as (the opposite of) the

topmost valence eigenvalue. In agreement with previous literature [65], the LDA HOMO (high-

est occupied molecular orbital) levels are not particularly accurate with an average error of 4.40

eV, and up to 9 eV for He. This reflects the intrinsic inaccuracy of LDA; in fact, exact DFT

would provide exact ionization potentials for finite systems [92, 93]. It is interesting to note that

the LDA functional systematically underestimates the IPs (HOMO levels are not sufficiently

bound). Since the exponential decay of total charge density [93] in the vacuum region is related

to the IP IN through

ρ(r) ∼ e−2κ|r| κ =
√

2IN , (80)

underestimating the IP also leads to an overestimated delocalization of the charge density.

On the contrary, despite its simplicity, the HF method gives rather accurate estimates for atomic

IPs with an average error of 0.4 eV. A similar behavior is also shown by the ODD methods

(PZ, K[LDA], K0[LDA]) with mean absolute deviations (MADs) ranging from 0.35 to 0.50 eV.

However, this accuracy is not retained by all the functionals in predicting electron affinities,

as discussed below. This fact is particularly apparent for PZ, which leaves the LDA empty

states unaffected up to changes arising from the orthogonalization with respect to the occupied

manifold (in the specific case of atoms where orthogonality is not imposed, PZ and LDA energy

levels for empty states are identical by construction).

Before turning to molecules, we also analyze the performance of the above functionals in describ-

ing the deeper valence energy levels of atoms and compare the theoretical estimates with x-ray

photoemission (XPS) results (Table 2). In agreement with previous data, LDA energy levels are

the least accurate with a mean relative error of about 27%. Nevertheless, it has to be stressed

that, at variance with the IP case, this error is not totally due to the LDA approximation but,

as is well known, it is also inherent in the Kohn-Sham scheme itself [9, 93, 13]. For a detailed

discussion of the accuracy of KS-DFT scheme to describe charged excitations, we refer the reader

to Refs. [10, 9]. The HF method (that can be formally viewed as the simplest approximation to

a self-energy) works instead sensibly better (MAD of 6.6%) than LDA. In this context, the ODD

methods provide the best accuracy with an average error of about 3.5%. The lowest MAD (ca.

3.3%) is found for the K0[LDA]. Along with HF, these ODD methods do not fit into the standard

KS scheme (where exchange and correlation effects are not described by a simple local potential)

but go beyond it having a more general structure with local but orbital-specific potentials. The

properties of these theoretical schemes are discussed in more details in Ref. [69] with particular

emphasis on the description of energy levels and spectroscopic information.

4.2 Molecules

We now turn to assessing the predictive performance of ODD functionals for molecules.
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Table 2: LDA, HF, PZ, K[LDA], and K0[LDA] orbital energies of He, Be, Ne, Mg, Ar, and Ca

compared with experimental photoemission energies. Relative mean absolute deviations (MAD)

with respect to experimental data are also reported. The experimental photoemission energies

of the spin-orbit doublets of p and d orbitals are indicated. Computational photoionization

predictions do not include spin-orbit coupling. Energies are in eV.

LDA HF PZ K[LDA] K0[LDA] Exp.

He 1s 15.52 24.98 25.79 22.55 23.48 24.6a

Be 2s 5.61 8.42 8.92 8.33 8.80 9.32b

1s 104.92 128.78 129.21 122.17 124.44 123.4–123.6b

Ne 2p 13.54 23.14 22.91 22.52 20.10 21.6–21.7a

2s 35.99 52.53 45.13 45.11 42.76 48.5a

1s 824.68 891.79 889.41 872.14 866.11 870.2a

Mg 3s 13.54 6.89 7.49 7.49 7.49 7.65b

2p 13.54 62.10 60.74 60.75 58.92 57.6–57.8b,e

2s 35.99 102.53 91.51 92.13 90.59 96.5e,94.0d

1s 824.68 1334.23 1330.27 1315.38 1314.32 1311.5c,1110.9d

Ar 3p 10.40 16.08 15.76 16.04 14.93 15.7–15.9a

3s 24.03 34.76 30.22 30.54 29.23 29.3a

2p 229.77 260.45 256.12 254.65 250.05 248.4–250.6a

2s 293.73 335.30 315.49 315.40 311.59 326.3a

1s 3096.69 3227.58 3218.88 3193.55 3185.23 3205.9a

Ca 4s 3.85 5.32 5.93 6.08 6.03 6.11b

3p 28.03 36.48 35.12 35.74 34.76 34.3–34.7b,e

3s 46.42 61.10 54.05 54.72 53.71 48.3d

2p 334.30 370.89 364.88 364.33 361.29 356.9–360.5e

2s 409.44 457.79 434.42 435.33 432.96 447.5c

1s 3916.69 4064.45 4053.40 4030.45 4029.52 4042.8d

MAD 26.9% 6.6% 3.5% 3.7% 3.3% —

a Reference [91]; b Reference [94]; c Reference [95, 96]; d Reference [97]; e Reference [98];
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Figure 7: Ionization potentials (IPs) of selected molecules. (a) Molecules from the G2 set [99];

(b) Molecules from the set in Ref. [100]; (c) acenes (benzene to hexacene) and fullerenes from

Ref. [101]. LDA, PZ, GW, K0[LDA] computed IPs are compared with experimental data where

available. HF data are shown in panel (a) instead of GW. Reference (exp) data from: (a)

Ref. [102]; (b) Ref. [100]; (c) Refs. [103, 104, 105, 100] for acenes and Ref. [101] for fullerenes.
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4.2.1 Ionization potentials

We have used four different sets of molecules in our benchmark. The first set includes 17 small

molecules (H2 to C2H4) from the G2 set. Computed and experimental ionization potentials

are reported in Fig. 7(a). The second set is taken from Ref. [100] and contains larger aromatic

molecules (such as PTCDA, porphyrins, and phthalocyanines). Results are in Fig. 7(b). The

third and fourth sets are molecules from the acene (benzene to hexacene) and fullerene (C20

to C80) families [panel (c)]. In all graphs, LDA (black), HF or GW (blue), PZ (orange), and

K0[LDA] (red) results are compared with experimental ionization potentials (green). Vertical

IPs are considered when available.

Confirming the trends observed for atoms, LDA IPs exhibit the largest error (from 25% to 35%

depending on the molecular set) and systematically underestimate molecular IPs. On the other

hand, unscaled PZ results show the opposite behavior, all the time resulting in IPs sensibly

larger than the reference data with a relative error in the range 13-18%. As for atoms, the K

approach performs extremely well (with a error of 1.7 to 2.5%) and its accuracy is comparable

to high-level GW calculations. This level of accuracy is remarkable considering the reduced

computational load of K relative to GW. Moreover, the predictive precision of K0[LDA] remains

more or less constant through a large variety of systems, ranging from atoms to small and more

extended molecules.

Concerning the GW method, we note that several practical schemes have been proposed in the

literature to include partial or full self-consistency or to go beyond the random phase approx-

imation (RPA) to screening. For each molecular set, we have chosen the most accurate GW

results. This may explain the fluctuating accuracy of the GW calculations reported in Fig. 7.

For instance, GW reference data [100] in panel (b) have been obtained by starting from LDA

eigenvalues and eigenvectors and performing a GW calculation with self-consistency on eigen-

values. On the other hand, GW data for fullerenes [101] come from a fully self-consistent GW

calculation where the adiabatic TDDFT kernel based upon LDA is used in the calculation of W

to improve upon the RPA polarizability. GW calculations for acenes are instead performed at

the G0W0(LDA) level. Benzene, naphthalene, anthracene data are from Ref. [105] while results

for tetracene and pentacene from Ref. [100] (taken at the G0W0(LDA) level for consistency).

4.2.2 Electron affinities

Table 3 reports electron affinities (EAs) for the same molecule sets. Data computed at the LDA,

PZ, K0[LDA] levels of theory are compared to GW results from the literature and experiments.

As expected, the LDA EAs are systematically too large (LUMO levels excessively bound). This

is due to both the intrinsic inaccuracy of the LDA approximation and to the missing derivative

discontinuity required by the KS scheme. As for atoms, the PZ scheme is not correcting the

empty states because both the energy contributions and the potential corrections are zero for

those levels. K0[LDA] instead shows a clear trend of systematic correction of the LDA results,

with a residual error of about 0.5 eV in the most problematic cases (as compared to experimental

data when available or GW otherwise). The accuracy of the K[LDA] results tends to improve

when strong acceptors are considered, as is the case for fullerenes. While it is clear from the
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Table 3: Electron affinities (EAs) for selected molecules. GW results for molecules benzothiadia-

zole to thiophene and anthracene to pentacene are from Ref. [100], while GW data for fullerenes

is from Ref. [101]. Energies are in eV.

LDA PZ K0[LDA] GW Exp.

Benzothiadiazole 3.52 3.42 1.07 0.42

Benzothiazole 2.35 2.20 < 0 < 0

Fluorene 2.05 2.00 < 0 < 0

PTCDA 4.80 4.81 3.19 2.68

H2-Phthalocyanine 3.79 3.82 2.34 2.07

Porphine 3.28 3.19 1.53 1.39

Tetraphenyl-porphyrin 3.07 3.04 1.68 1.49 1.69a

Thiadiazole 2.95 2.78 < 0 < 0

Thiophene 1.59 1.38 0.04 < 0

Benzene 1.38 1.22 0.03

Naphthalene 2.27 2.04 0.49

Anthracene 2.85 2.63 1.16 0.29 0.53b

Tetracene 3.22 3.06 1.60 0.93 1.07c

Pentacene 3.48 3.39 1.98 1.36 1.39c

C20 4.24 2.19 2.36 2.25d

C24 5.06 2.88 2.88

C50 5.20 3.49 3.73 3.10e

C60 4.27 2.64 2.98 2.69f

C70 4.10 2.61 2.83 2.76g

C80(D5d) 5.00 3.91 3.88 3.70e

C80(Ih) 4.56 2.99 4.38

a Reference [106]; b Reference [107]; c Reference [108]; d Reference [109]; e Reference [110];
f Reference [111]; g Reference [112];
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Figure 8: Experimental UPS data (from Ref. [113]) is compared with the DOS computed at

different levels of theory: LDA, HF, PZ and K0[LDA]. Data for furan and pyrrole molecules are

reported in the left and right panels, respectively.

theoretical description of the K functionals that the accuracy of the method is connected to that

of the ∆SCF approach [56], the ability to compute empty states using the K method highlights

its important advantages over ∆SCF. In fact, it is known that the LDA functional (as well

as other approximate DFT functionals) would not be able to bind the extra electron for most

anions. Instead, the K formulation overcomes this difficulty and leads to a quantitatively reliable

description of EAs.

4.2.3 Energy levels

After we have carefully analyzed the accuracy of the K[LDA] method in predicting IPs and

EAs, we now study full electronic spectra using ultraviolet photoemission spectroscopy (UPS)

data as references. The peaks in these spectra correspond to the charged excitations of the

system and are usually described in terms of main peaks (more or less sharp features with a

finite width bearing most of the spectral weight) and satellites (shallow structures). For a full

discussion see, e.g., Refs. [13, 115, 116]. In the present treatment, we will consider only the main

peak structures, which we will refer to as orbital energies. Moreover, we will mostly compare the

computed density of states (DOS) with the UPS spectra without including any transition matrix

elements. Therefore, our analysis will not address UPS intensities, but only peak positions.

We report a detailed analysis for the case of four molecules, namely furan, pyrrole, anthracene

and tetracene. Data for the first two molecules are shown in Fig. 8 while data for acenes are given

in Fig. 9. In each panel we report the computed LDA, HF, PZ, and K0[LDA] DOS together with

the UPS intensities at the top. A Gaussian broadening of 0.2 eV has been included in the DOS

as a guide for the eye while the theoretical orbital energies (eigenvalues) are reported as vertical

bars. We have also highlighted the most evident experimental features by dashed vertical lines.

32



-14 -12 -10 -8 -6
Energy [eV]

LSD

HF

PZ

K0

exp

-14 -12 -10 -8 -6
Energy [eV]

LSD

HF

PZ

K0

exp

Figure 9: Experimental UPS data (from Ref. [114]) is compared with the DOS computed

at different levels of theory: LDA, HF, PZ and K0[LDA]. Data for anthracene and tetracene

molecules are reported in the left and right panels, respectively.

The energy scale corresponds to negative binding energies, the zero being the vacuum level. The

spectral features at the highest energy (the smallest binding energy) correspond to the HOMO

levels (negative ionization potentials) already described in the previous paragraphs. LUMO

(lowest unoccupied molecular orbital) levels are not shown (when bound, out of the graphs at

higher frequencies).

In the case of furan and pyrrole, the electronic structure spectra are rather simple and orbital

energy patterns can be easily followed, moving across different theoretical methods. In both

cases, the LDA DOS shows systematic errors in predicting the HOMO position (about 3-4 eV

above the experimental peak). The spectrum appears thus overall shifted to higher energies.

The same holds for anthracene and tetracene, though the energy error on the HOMO position

is smaller. As we have already discussed, this error can be totally attributed to the quality

of the functional approximation. Moreover, by examining deeper energy levels, one can also

note a slight shrinking of the energy scale with respect to experiment. This feature can also be

perceived in the case of acenes. Besides the quality of the functional, here the use of a KS-DFT

Hamiltonian (denoted by a local potential instead of a nonlocal and dynamical self-energy) is

also expected to contribute to the error. For further details, see Ref. [69].

The onsets of photoemission in the HF spectra (the LUMO levels) are definitely more accurate

than their LDA counterparts, showing remarkable agreement for furan and pyrrole (with an

error of 0.3 eV), as well as acenes (with error of 0.4 eV). Despite the accuracy of the HOMO lev-

els, deeper valence states are strongly over-bound, the spectrum being overall stretched towards

negative energies. This behavior can be ascribed to missing correlation contributions in the HF

method. Comparing with the GW theory [20, 117], one can show that correlation contributions

would show up at first as static and dynamical screening effects. The systematic over-binding of

HF can then be considered to be related to the absence of screening contributions. The spectra
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Table 4: Highest occupied orbital energy εH and valence band width ∆ε of furan, pyrrole,

anthracene, and tetracene computed at the LDA, HF, PZ, and K0 levels of theory. The band

width ∆ε is defined as the energy distance between εH and the lowest level in the valence.

Energies are in eV.

LDA HF PZ K0

εH ∆ε εH ∆ε εH ∆ε εH ∆ε

Furan –5.86 22.16 –8.73 31.22 –10.96 25.62 –8.97 23.78

Pyrrole –5.34 19.13 –8.12 27.15 –10.23 22.10 –8.37 20.65

Anthracene –5.18 16.87 –7.04 25.28 –8.75 21.32 –7.39 18.40

Tetracene –4.84 17.32 –6.45 26.01 –8.09 22.17 –6.79 19.26

obtained through the PZ method display an even more bound position of the HOMO levels,

showing appreciable errors with respect to experiment (1.5 to 2 eV). At variance with the HF

method, where the valence band width is strongly enhanced, PZ band widths are slightly more

extended than the LDA ones, as shown in Table 4. This can be understood in terms of the

correction to the potential provided by PZ. Assuming that the ODD minimizing orbitals are lo-

calized (as is typically the case with closed shell covalently bound systems) the representation of

the Hamiltonian on this basis can be read in a tight-binding picture. Neglecting self-consistency

effects, the PZ correction on LDA acts only on on-site matrix elements of the Hamiltonian,

providing no correction for the off-diagonal (hopping) elements, which govern the band widths.

When including self-consistency, PZ tends to provide a decoupling force that reduces the hy-

bridization of the orbital. Such conclusion is also supported by noting that the patterns of the

PZ energy levels for acenes are rather different from that corresponding to the other methods

and experiment. This observation does not extend to HF, which tends to increase the band

width of covalent systems relative to LDA because the nonlocality of the exchange potential

leads to larger hopping [118].

Finally, K0[LDA] spectra are found in remarkable agreement with experimental data in terms

of orbital energies over a wide energy range. We stress that no semi-empirical shift or ad hoc

alignment has been performed here. For furan and pyrrole, where deep valence states are very

evident in the experimental data, the agreement with the theory holds for states as deep as 25

eV. Even if the experimental data do not cover the full valence energy range, this comparison

confirms that K0[LDA] band widths are very accurate and can be taken as a reference in assessing

the accuracy of other theoretical methods (Table 4).

These results establish the precision of Koopmans-compliant methods in describing full elec-

tronic structures for representative families of systems, ranging from isolated atoms to large

π-conjugated molecules.
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4.2.4 Ultraviolet photoemission spectra

In order to complete our comparative assessment of Koopmans-compliant methods, we intro-

duce in this section a simple formalism based on Fermi’s golden rule to simulate the ultraviolet

photoemission spectrum of molecules as a post-processing of DFT or orbital-density dependent

Koopmans-compliant calculations. In actual experiments, such a spectrum is measured by pro-

jecting ultraviolet photons on a system, and measuring the kinetic energy of the electrons that

are emitted as a result of electron-photon interactions. The difference between the kinetic en-

ergy of the emitted electron and the energy of the incoming photon provides an estimate of

the electronic binding energy, including electron-electron many-body interaction effects. It is

well known that computing photoelectron spectra from DFT methods using local or semilo-

cal exchange-correlation functionals faces two severe issues: (i) a serious underestimation of

electronic binding energies, resulting in a downward shift of the whole spectrum and (ii) the

incorrect ordering of the binding energies in the spectrum. The Koopmans-compliant method

presented in this paper, even in its simplest formultation, namely, the K0[LDA] approximation,

is able to effectively overcome the limitations of conventional DFT in predicting ultraviolet pho-

toemission spectra, therefore paving the way for a systematic and reliable prediction of electronic

excitations.

The theoretical evaluation of UPS involves (i) calculating the generalized density of states (DOS)

of the electronic system in its ground state, and (ii) correcting the intensity of the DOS peaks

via the photo-ionization cross section (PCS) of each electron in the system. To simplify the

procedure, we first assume that the molecules are in the gas phase, so that the outcome of the

photoemission experiment that we wish to reproduce is independent of the angle with which

photons impinge on the sample — the intensity of electronic emission is thus integrated over all

the emission angles. Excitation of electrons from their molecular bound states to the unbound

(emitted) states can thus be approximated using the so-called one-step model for photoemis-

sion [119]. In this approximation, the photo-excitation is treated as a single coherent process,

and the photoemission intensity can be given by Fermi’s golden rule [120]:

I(Eb) = |〈ψf |A · p |ψv〉|2 × δ(~ω − Eb − Ekin). (81)

where the quantity in brackets is the PCS of each electron, evaluated between the occupied initial

state v — described as a Kohn-Sham eigenfunction ψv — and a final state ψf , which is assumed

to be a plane wave. The operator in brackets in Eq. (81) is the electron-photon interaction in the

dipole approximation, p and A respectively denoting the electronic momentum and the vector

potential of the electromagnetic field of the photon. The delta (δ) function is the same found in

the definition of the generalized density of states (DOS); it enforces energy conservation between

the incoming photon (~ω) and the bound electron (Eb) in its initial state, and the kinetic energy

of photoelectron (Ekin) in the final state.

We applied the above scheme to reproduce the UPS of DNA and RNA nucleobases, Adenine (A),

Cytosine (C), Guanine(G), Thymine (T), and Uracil (U) in the gas phase. Due to the central

importance of DNA and RNA chains, the valence shell electronic properties of these nucle-

obases have been widely studied, so that a large range of accurate experimental data is available

for them, as well as the results of high accuracy first-principles calculations (see in Ref. [124]
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Figure 10: Theoretical ultraviolet photoemission spectra (UPS) of the five nucleobases, includ-

ing (a) the most stable structures of A, T, U and (b) four tautomeric forms of C, five tautomeric

forms of G. The relative Boltzmann-weight factors for the different tautomers are C1:C2:C3:C4=

0.58:0.1:0.2:0.1 and G7K :G9K :G7Es:G9s:G9Es = 0.45:0.25:0.04:0.12:0.14. The theoretical spec-

tra are computed on top of the K0[LDA] ground-state, and compared with experiments. The

experimental spectra of A, C, T, G and U are extracted from Refs. [121, 122, 123], respectively.

and references therein). The ground state of each nucleobase is obtained by optimizing its

molecular geometry using Born-Oppenheimer damped molecular dynamics. The calculations

are performed in a cubic supercell with a vacuum space of 18 Å around the molecule. As a

density-functional flavor for exchange and correlation, we employed the generalized gradient

approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) [125]. The electron-ion interaction

is computed using conventional norm-conserving pseudopotentials [126], with a kinetic energy

cutoff for the plane wave expansion of 60 Ry (240 Ry for the charge density cutoff). The DFT

ground-state is taken as a starting point for a subsequent ground-state calculation using the

K0[LDA] orbital-density dependent functional. The theoretical UPS data are then computed on

top of the latter ground-state for photon energies of ~ω = 80 eV (in the case of A, C, T, and U),

and 100 eV (for G), chosen to be the same as the values used in the experiments we took as a

reference [121, 123, 122]. Experimental studies demonstrated that under experimental tempera-

ture and pressure conditions a mixture of various tautomeric and conformeric forms of the bases

may be produced, whose excitation spectra would all contribute to the final observed spectrum.

Our calculations showed that the contributions of tautomers of A, T, and U bases, evaluated

via the Boltzmann-weighted factors for T = 300 K, are sufficiently small to be neglected in the

total spectrum. The spectra computed for the the lowest-energy tautomers of A, T and U are

presented in Fig. 10(a), where one can see how the matching area between the experimental and

theoretical spectra (the latter normalized in amplitude in order to match the heigth of the first

experimental peak) agrees to an extent of more than 80%, both positions and intensities of peaks

being in excellent agreement, thereby supporting the effectiveness of the K0[LDA] functional in

capturing electronic excitations. For the case of C and G bases we found that the contributions

of the tautomers to the total photoemission spectrum are more important. The structures and
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the partial spectra of the 4 and 5 tautomers of C and G, respectively, are shown in Fig. 10(b).

One can see that while the spectra of the lowest-energy C and G tautomers have slightly mis-

placed peaks around ca. ±0.5 eV (the first three peaks), the total spectra, obtained by summing

over the partial spectra after multiplying by a Boltzmann-weight factor are in remarkable agree-

ment with experiment. The comparison of our results with those obtained via many-body

perturbation theory methods such as GW shows a good agreement for outer-valence excitation

energies [124]. In addition, thanks to our accurate prediction of molecular orbital energies, the

orbitals of K0[LDA] can be used to interpret the results of experimental orbital-reconstruction

techniques for organic molecules adsorbed on semiconductor/metal surfaces, these techniques

being based on angle-resolved photoemission spectroscopy [127, 128].

4.3 Crystal band structures

Given the much improved description of atomic and molecular single-electron excitations, it

seems only natural to ask the question of the accuracy of Koopmans-compliant functionals in

describing band structures; in a sense, a crystalline solid is nothing but a very large molecule

made up of unit blocks repeated several times. However, a certain number of theoretical and

computational questions may arise.

The first question relates to understanding the behavior of the Λ matrix and how to use this

understanding in order to extract band structures. In our experience, although Koopmans-

compliant functionals break translational symmetry, the Λ matrix always exhibit the following

properties at convergence of the self-consistent-field procedure for the supercell of a crystal within

Born-von Karman boundary conditions. (i) The matrix is Hermitian and its elements are sparse.

This fact reflects the localization of the minimizing orbitals at self-consistency. In other words,

the Λ matrix is akin to a Wannier representation of the electronic structure of the system.

(ii) The matrix mirrors the underlying translational symmetry of the supercell. This practical

observation holds in all cases, despite the fact that ODD functionals usually break translational

symmetry. (iii) The matrix elements converge very rapidly to their thermodynamical-limit

values. This means that as the supercell size increases, the translationally equivalent matrix

elements converge to a well-defined value. This fact illustrates again the localized nature of the

minimizing orbitals.

As a consequence of the above observations, one could imagine using the following algorithm to

extract crystal band structures from supercell calculations with a given Koopmans-compliant

functional:

1. Perform a total energy calculation on a supercell containing enough crystal unit cells within

periodic boundary conditions at the Γ-point of the Brillouin zone.

2. At convergence, extract the Λ matrix and identify the basic repeated sub-blocks corre-

sponding to on-site matrix elements, nearest-neighbor matrix elements, and so on.

3. From these building blocks, and for any k-point in the Brillouin zone of the crystal, form

the Bloch Hamiltonian by using a Wannier interpolation procedure, and diagonalize that

Hamiltonian to find the band energies.
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Figure 11: Band structure of graphane as computed from supercell calculations using the

K0[LDA] functional and compared with predictions from LDA and GW from Ref. [129].

To illustrate both the feasibility of such band structure calculations and the improved accuracy

of the electronic structure description brought about by the use of Koopmans-compliant func-

tionals, we discuss here the computed band structure of graphane. Our tests showed that the

computed band structure converges rather rapidly with the supercell size used in the calculation

(a 6×6 supercell has been found to be enough to describe the valence band structure up to 0.01

eV in the value of the matrix elements). Figure 11 compares the accuracy of the computed band

structure when compared with LDA and many-body perturbation theory in the GW approx-

imation (from Ref. [129]). In particular, a clear improvement of bandwidth can be observed.

Calculations on other crystalline systems like diamond or silicon seem to indicate that K0[LDA]

systematically improves bandwidths.

Although these early calculations are encouraging, much work remains to be done, especially

on the theoretical side. In particular, the following important questions remain unanswered:

How should we evaluate the screening coefficient in the solid-state case? This question is far

from trivial considering that in the atomic and molecular cases, a calculation of the cationic

system is required, which, in the solid limit, would amount to introduce a charge that may

delocalize in periodic boundary conditions. As mentioned at the end of Sec. 2.2, the localization

of minimizing orbitals appears to be pivotal for the use of ODD methods on extended systems

and in particular to compute the screening coefficient α from first principles. Active research

on these fronts is being currently carried out.

5 Conclusions

In summary, we argued that the generalized Koopmans condition, i.e., the piecewise linearity of

the self-consistent ground-state energy E(N) as a function of the electron number N (an identical

concept to that expressed in the literature of being many-electron self-interaction free), is critical

to describe charged excitations in molecular systems and related spectroscopic properties. We

have also underscored the distinction between the generalized Koopmans theorem, which is

fulfilled by exact KS-DFT, and the restricted Koopmans theorem, which is satisfied by the HF

method (owing to the known cancellation of the self-Hartree and self-exchange terms) but not by

exact DFT. To impose Koopmans compliance, we have constructed an ODD functional working

38



first in the frozen-orbital approximation where self-consistent orbital relaxation and dielectric

screening are neglected. Within this approximation, deviations from Koopmans compliance

can be precisely quantified in terms of a non-Koopmans energy. This definition has then been

extended to relaxed orbitals by approximating the nonlocal dielectric function ε̃−1(r, r′) as an

orbital-independent uniform coefficient α that can be determined in a fully nonempirical fashion.

The accuracy of the method has been demonstrated by computing the ionization potentials,

electron affinities, and the full electronic structures of a wide range of atomic and molecular

systems. Quantitative results from the Koopmans-compliant method have been shown to be

comparable to those of high-level many-body perturbation theory methods such as GW at a

fraction of the computational cost.

In introducing the ODD Koopmans-compliant functional, we have discussed one definition, based

on the Slater one-half construction and labeled as “K”; most of the results have used a very

simple approximation to K labeled “K0” [62]. We have also developed alternative definitions of

the non-Koopmans energy, leading to different flavors of Koopmans-compliant functionals and

subtle but often superior differences in performance, that will be the subject of forthcoming

publications. In addition, the uniform screening approximation that we have employed in con-

structing the functional could be refined by restoring the orbital dependence or non-locality of

the dielectric function. Refinements in the description of electronic spectra through the pre-

diction of photoemission amplitudes are underway. The study of extended systems and the

prediction of optical spectra represent other exciting lines of development. A systematic and

critical assessment of the accuracy of thermodynamic and kinetic properties within the different

Koopmans-compliant functionals is also important; essentially, Koopmans-compliant functionals

restore the correct energy levels, and can provide the foundations for other strategies aimed at

reducing the delocalization tendency of common functionals, currently a very promising strat-

egy. In addition, the localization of minimizing orbitals ensuing suggests that these composite

approaches could be very suited to basis-set reduction and linear-scaling techniques for the study

of large-scale systems.

We believe that all these directions represent promising opportunities to extend the scope of

current quantum simulations.
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