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Two roads diverged in a yellow wood,

And sorry I could not travel both

And be one traveler, long I stood

And looked down one as far as I could

To where it bent in the undergrowth . . .

Robert Frost, The Road Not Taken, 1920

Abstract

The 30th anniversary of the Perdew-Zunger paper on the self-interaction correction (SIC)

of density functional approximations to the exchange-correlation energy was marked by a

recent conference that focused on the theoretical and computational formalism and on di-

verse applications to insulators, strongly-correlated materials, charge transfer, transport,

optical properties, magnetism and excited states. Here we present some highlights from

Self-Interaction Correction: State of the Art and New Directions.

1 Introduction and background

The thirtieth anniversary of the Perdew-Zunger paper [1] on the self-interaction correction to

density functional approximations was the occasion for a celebratory conference, “Self-Interaction

Correction: State of the Art and New Directions”, held 19-21 September 2011 in Chester, Eng-

land. The conference was organized by Zdzislawa Szotek, Leon Petit, and Martin Lueders of

STFC Daresbury Laboratory and sponsored by the European Science Foundation, the Dares-

bury node of CECAM (directed by Walter Temmerman), and Psi-k. It ended with a round-table

discussion moderated by Malcolm Stocks. This highlight will present some impressions of the

subject and the conference. We attempt to provide a discussion on all subject matter touched

77



upon at the meeting and to place that discussion within the context of papers published during

the last three decades.

But first let’s go back thirty years to 1981: The basic theorems of density functional theory

(DFT) [2–4] were already established. These theorems permit a calculation of the ground-state

density and energy of many electrons in the presence of a static external scalar potential, and

thus a prediction of the structure of atoms, molecules, and solids, using fictitious one-electron

wavefunctions or Kohn-Sham orbitals [3] that see a self-consistent scalar potential. In practice,

the many-body exchange-correlation contribution to the energy as a functional of the density

must be approximated, and the only approximation in use then was the local spin density

approximation (LSDA) [1,3, 5, 6]

ELSDA
xc =

∫

d3rn(r)ǫunif
xc (n↑(r), n↓(r)), (1)

where ǫunif
xc (n↑, n↓) is the exchange-correlation energy per particle of an electron gas with uniform

spin densities. The exchange-correlation energy is a relatively small part of the total energy, but

it is “nature‘s glue”. Without it, bonds would be much longer and weaker than they actually

are [7]. LSDA was exact by construction for uniform or slowly-varying densities, but it made

serious errors (e.g., energies several eV too high) for the hydrogen atom and other one-electron

densities. Thus density functional theory was already widely used in solid state physics, but

hardly at all in chemistry [8]. The derivative discontinuity of the energy was not yet known.

But it [9] and the generalized gradient approximation (GGA) [10–14]

EGGA
xc =

∫

d3rn(r)ǫGGA
xc (n↑, n↓,∇n↑,∇n↓) (2)

were almost ready to appear.

After 1981, two roads diverged in density functional theory. The road subsequently more trav-

eled led from LSDA to GGA and higher-level semilocal functionals (meta-GGAs) [15, 16] and

eventually made DFT widely useful to chemists as well as solid state physicists. The road sub-

sequently less traveled led from LSDA to the self-interaction correction (SIC) to the derivative

discontinuity (and perhaps to the related LDA+U method [17]), and to a useful treatment of

strongly-correlated materials such as transition-metal oxides, lanthanides, and actinides. Cu-

riously, the strengths and weaknesses of these divergent approaches are complementary: The

semilocal functionals can be accurate for sp bonds near equilibrium, while SIC can be accu-

rate for open-shell d or f electrons or for any stretched bonds over which electrons are shared.

Stretched bonds occur for example in the approach to the dissociation limit [9,18–20], and also

at the transition states that determine the barrier heights for chemical reactions [21]. Perhaps

these two roads can converge in a way that will retain the strengths and eliminate the weaknesses

of each. But little of this was anticipated in 1981.

First separately [22, 23] and then together [1, 24], Perdew and Zunger proposed to make DFT

exact for any one-electron density through an orbital-by-orbital self-interaction correction (PZ-

SIC). Their comprehensive paper [1] has been cited over 9000 times, partly for SIC and partly

for its parametrization of ǫunif
xc (n↑, n↓). It is the 8th most-cited physics paper of the past 30
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years [25]. The conference organizers provided a birthday cake, with the first page of the paper

printed on top, giving John Perdew and Alex Zunger a chance to eat their own words, along

with the other participants.

2 SIC theory and its formal properties

The PZ-SIC [1] to any density functional approximation is

EPZ−SIC
xc = Eapprox

xc [n↑, n↓] −
∑

ασ

{U [nασ ] + Eapprox
xc [nασ, 0]}. (3)

Here σ = (↑, ↓) is the quantum number for the z-component of electron spin, and α is the set of

orbital quantum numbers other than spin.

nασ(r) = fασ|ψασ(r)|2 (4)

is the contribution to the density from normalized orbital ψασ(r) with fermion occupation num-

ber in the range 0 ≤ fασ ≤ 1 and

n(r) = n↑(r) + n↓(r) =
∑

ασ

nασ(r) (5)

is the electron density. Finally

U [n] =
1

2

∫

d3r

∫

d3r′
n(r)n(r′)

|r − r′| (6)

is the Hartree electron-electron repulsion energy of density n.

PZ-SIC has several correct formal properties [1]. Although it is in a sense an ad hoc correction,

it is hard to think of any similar approximation for the energy that satisfies so many correct

constraints. (There are however reasonable alternatives for the SIC effective one-electron po-

tential, discussed at the conference by Olle Eriksson [26], who focussed on the calculation of the

electron density.) Here we will discuss only four correct formal properties, with the fourth only

recently appreciated:

1. For any one-electron system in a state ψασ, nσ(r) = nασ(r) and n−σ(r) = 0 so

EPZ−SIC
xc = −U [nασ] (7)

to properly cancel the Hartree energy U [n]. Thus PZ-SIC is exact by construction for any

one-electron density.
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2. Any self-interaction correction to the exact functional would be spurious. PZ-SIC seems

to give no correction to the exact spin density functional Eexact
xc [n↑, n↓], since

U [nασ] + Eexact
xc [nασ, 0] = 0. (8)

A subtlety here is that, in any system of more than two electrons, some real orbitals

necessarily have nodes and are not one-electron ground states for any smooth potential

(although they may be ground states for sufficiently singular potentials). We will discuss

this further in Sec. 4.1.

3. In a single-center system such as an atom, the PZ-SIC orbitals could be very close to

Kohn-Sham orbitals. But, in multi-center systems with the same Kohn-Sham potential

on each center, the Kohn-Sham (canonical) orbitals become more diffuse as more centers

are added. The PZ-SIC correction on Kohn-Sham orbitals would be non-zero for one

atom, but zero per atom for a collection of infinitely-many well-separated identical atoms,

and the SIC energy would not be size-consistent. To achieve size-consistency, the energy-

minimizing SIC orbitals must localize around each center. This tends to be the case, at

least when SIC is applied to LSDA, since in this case the correction tends to be more

negative for a more localized orbital. Thus SIC steps outside the Kohn-Sham theory on

which it is based. When applied to a uniform electron gas [27–29], the best situation for

PZ-SIC-LSDA would be weak localization of the orbitals: weak enough to hardly change

the LSDA bulk energy (correct for these densities), but not so weak as to produce a false

surface energy (a kind of size inconsistency) [30]. We will discuss size-consistency again in

Sec. 5.

4. EPZ
xc includes the full Hartree self-interaction correction,

−
∑

ασ

U [nασ] (9)

as in Hartree-Fock theory and self-interaction-free Hartree theory, and in fact this is its

only fully nonlocal term when Eapprox
xc is local (LSDA) or semilocal (GGA or meta-GGA).

We will also discuss this correct formal property further in Sec. 2.5.

The orbitals that locally minimize the SIC total energy, subject only to the constraint of orbital

normalization, are self-consistent solutions of the equation [1, 24]

[−∇2

2
+ vext(r) + u([n]; r) + vapprox

xc,σ ([n↑, n↓]; r) + ∆vSIC
xc,ασ(r)]ψασ(r) = ǫασψασ(r), (10)

where vext(r) is the external potential (typically the attractive interaction between an electron

and the nuclei),

u([n]; r) =

∫

d3r′
n(r′)

|r′ − r| (11)

is the Hartree electrostatic repulsion potential from the electron density n(r), vapprox
xc,σ = δEapprox

xc /δnσ(r)

is the Kohn-Sham exchange-correlation potential of the uncorrected approximation, and
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∆vSIC
xc,ασ(r) = −{u([nασ]; r) + vapprox

xc,↑ ([nασ, 0]; r)} (12)

is the SIC correction to the exchange-correlation potential. Up to this point, we use the same

notation ψασ(r) for all orbitals, but we shall later introduce φiσ(r) to distinguish SIC localized

orbitals from canonical or symmetry-adapted orbitals. Originally Perdew and Zunger [1] were

able to solve Eq. (10) only for atoms, where the SIC orbitals are necessarily localized and nearly

orthogonal. These early tests suggested that PZ-SIC-LSDA was a nearly ideal approximation,

with greatly improved total and ionization energies, more physical orbital energies approximating

minus the electron removal energies, proper stability for negative ions [31], correct long-range

behavior ( −1

r ) of the exchange-correlation potential, etc.

2.1 Dissociation limit and fractional occupation

One can evaluate the total energy of an atom (or other many-electron system) as a function

of the non-integer average electron number in it by using non-integer occupation fασ for the

highest-energy partially-occupied orbital. Perdew and Zunger [1] observed that within SIC the

total energy varies almost linearly between adjacent integer electron numbers, with slope changes

at the integers. In contrast, within LSDA the total energy varies more quadratically, with small

or zero slope changes at the integers. The smooth energy variation within LSDA was expected,

on the basis of arguments by Slater [32], to lead to spurious fractional-charge dissociation of

chemically-distinct atoms in most cases, an effect recently confirmed [18,33]. On the other hand,

the piece-wise linear variation suggested by SIC leads to dissociated atoms that are properly

charge-neutral.

Thus an approximation, PZ-SIC, led to the exact density functional theory [9] for an isolated

open system of fluctuating electron number, in which the energy is exactly piece-wise linear be-

tween integer numbers. The nearly-correct behavior within SIC is now known to be what makes

PZ-SIC useful for strongly-correlated systems, where electrons are shared between localized or-

bitals on different sites. And it is also known that property 4 in Sec. 2 is largely responsible for

making PZ-SIC nearly many-electron self-interaction free in this sense.

Aron Cohen talked about the difficulty of achieving many-electron self-interaction freedom and

accurate static correlation from the same approximate energy functional, using stretched H+

2

and stretched H2 as paradigm examples [34].

2.2 Localized and canonical orbitals

Molecules are much more challenging to SIC than atoms. Thus, thinking about applications

to molecules allowed one to confront technical and conceptual challenges which arise in orbital-

dependent functionals. The solutions of Eq. (10), which are nearly orthogonal in atoms, are

no longer so in molecules. Pederson, Heaton and Lin [35, 36] (the Wisconsin group) found a

way to implement PZ-SIC-LSDA for molecules, with the constraint of orbital orthogonality, and

introduced the terminology of localized and canonical orbitals within PZ-SIC-LSDA [36–38].

The method was also used to determine slight improvements in atoms. An application of the

variational procedure, with the constraint of orbital orthonormality, leads to the immediate
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conclusion that each of the orbitals which minimize the total energy does indeed move in an

orbital-dependent Hamiltonian. However, the orthonormality constraints lead to a more compli-

cated set of Schrödinger-like equations with a set of hermitian off-diagonal Lagrange multipliers

coupling the states on the right-hand side of the equation. Several related questions raised within

Ref. [1] or shortly thereafter in Refs. [35, 36] pertained to: (i) ensuring orbital orthonormality,

(ii) ensuring hermicity of the Lagrange-multiplier matrix, (iii) determining which unitary trans-

formation on a trial set of orbitals was best for constructing the SIC functional, and (iv) finding

an interpretation for the Lagrange-multiplier matrix.

The physical answer to these riddles was alluded to by Perdew and Zunger in their original paper

when they noted that the optimal orbitals for SIC might resemble the energy-localized orbitals of

Edmiston and Ruedenberg [39]. Also, Harrison, Heaton and Lin had already demonstrated that

Wannier functions, rather than, Bloch functions lead to self-interaction corrections in insulators

of similar magnitude as found in atoms [40]. Following up on this hint, Pederson et al [35, 36]

took a closer look at the variational procedure and determined that the orbitals which minimize

the energy in orbital-dependent theories must also satisfy additional constraints given by:

[−∇2

2
+ vext(r) + u([n]; r) + vapprox

xc,σ ([n↑, n↓]; r) + V SIC
xc,iσ(r)]φiσ(r) =

∑

j

λσ
ijφjσ(r), (13)

< φiσ|V SIC
xc,iσ − V SIC

xc,jσ|φjσ >= 0, (14)

V SIC
xc,iσ(r) = −{

∫

d3r′
|φiσ(r′)|2
|r− r′| + vapprox

xc↑ ([|φiσ |2, 0]; r)}. (15)

In the original work they suggested that a reasonable name for Eq. (14) was the localization

equation since it rhymed, since it philosophically embodied earlier Hartree-Fock-based perspec-

tives offered by Edmiston and Ruedenberg, and since orbitals that satisified this equation and

minimized the total energies for the LSDA exchange-only functional tended to be localized. By

1986, Pederson had already wondered whether he should have called this equation the orbital op-

timization equation, a name that would have more aptly provided an umbrella for the discussion

about intermediate range and complex orbitals at the meeting.

While the above equations first appeared as a departure from the normalization-only equations

derived by Perdew and Zunger, it was realized quickly that, if the above equations were solved, a

set of orthonormal eigenfunctions of the occupied-orbital Lagrange-multiplier matrix would sat-

isfy an equation identical to Eq. [10] with a generalized nonlocal SIC potential defined according

to:

∆vSIC
xc,ασ(r)|ψασ >→ ∆V SIC

xc,ασ|ψασ >=
∑

i

Mσ
αiV

SIC
xc,iσ(r)φiσ(r). (16)

In the above expression, the matrix Mσ
αi is a unitary matrix connecting the localized-orbital

set {φiσ} to the so-called canonical orbital set {ψασ}. For example (assuming that the SIC

correction to the energy is negative for the localized orbitals):

1. For molecules, the matrix M in Eq. (16) connects symmetry-adapted molecular orbitals

to orbitals that are qualitatively similar to those of Edmiston and Ruedenberg.

2. For atoms, the matrix M connects s, p and d orbitals to hybridized orbitals.
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3. For crystals, the matrix M is simply the unitary matrix which connects Wannier functions

to Bloch functions, but the Wannier functions will resemble the atomic localized orbitals

(i.e. MkRν
→ 1√

N
eik·Rν ).

Chemistry and chemical physics are games of kcal/mole and any nonsystematic uncertainties

due to the use of approximate local orbitals could significantly impact binding energies and bar-

riers. Moreover the determination of ground-state geometries and critical points associated with

transition states and reactant/product states essentially requires a capability for the treatment

of Hellmann- Feynman forces which, in their derivation, require that all first variations are zero.

If a new generation of scientists decides to navigate the “road less traveled” and seek a new

rung of orbital-dependent SIC functionals, it is likely that such functionals will be more easily

analyzed and constructed if full attention to the variational principle and localization equations

is an integrated component during the development of the functionals. However, such a strategy

was not historically possible.

2.3 Koopmans’ theorem for SIC

The justification for arguing that it made sense to diagonalize the resulting Lagrange-multipler

matrix came by proposing that of all (e.g., infinite number) the possible unitary transforma-

tions one can imagine, there is one unitary transformation that is best from the standpoint

of simultaneously minimizing the energy of the N and N-1 electron states [36–38]. In this re-

gard, one writes the occupation-dependent localized orbitals in terms of an alternative set of

occupation-dependent orbitals and introduces the constraint that the latter set must lie in the

space spanned by canonical orbitals of the N-electron system.

φiσ(f) =
∑

α

(Uσ
αi)

∗√fασψασ(f). (17)

It is then determined that the unitary transformation U in the above equation that minimizes

the energy for the N-1+fNσ is identically equal to the hermitian conjugate of the matrix M in

Eq. (15).

This Koopmans-like argument generalized the original arguments of Perdew and Zunger and led

to similar numerical results for atoms. However, it provides better approximations to ionization

energies in delocalized systems where the lowest ionized state is generally achieved through

the removal of a delocalized (canonical) rather than a localized electron. A lingering question

that hopefully will be answered some day was raised in Pederson’s talk: Will the generalization

for constructing localized orbitals for non-integer systems always lead to fully occupied localized

orbitals for integer systems? The propensity of SIC to variationally disallow fractionally occupied

solutions to integer systems leads one to expect that an additional constraint is unnecessary,

but some effort toward understanding that point would be useful.

We mention that a recent paper by Stengel and Spaldin [41] analyzed Janak’s argument [42]

within the context of an application of SIC to crystalline silicon. The authors considered the

consequences of assuming that the occupation numbers are to be placed on Wannier functions.

The authors noticed that Janak’s theorem is applicable for each Wannier function but that

this does not lead to a band structure. This statement is correct regardless of whether one
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is finding the Wannier functions that minimize the SIC-LSDA-based or LSDA-based energy

functional. Here we reiterate that Koopmans’ theorem [36–38] points directly to eigenvalues of

the Lagrange multiplier matrix because it picks out the representation of wavefunctions that are

most likely to minimize the ionized state and because, within SIC-LSDA, the non-Koopmans’

corrections are small. Originally, Janak’s theorem was tacitly aimed at the highest-occupied or

lowest-unoccupied orbital in the LSDA method. Because of that assumption, the question as to

whether or not the resulting derivative had an extremal property was not specifically addressed

but seems to have been assumed. For example this theorem was used to argue that, in LSDA,

the only fractionally occupied states could be at the Fermi level.

In retrospect, Koopmans’ theorem for SIC is stating that the total derivative of the energy with

respect to occupation number is equal to the partial derivative of the energy with respect to

occupation number (Janak’s theorem) if, for that occupation number, the energy is minimized

with respect to every other possible variational parameter in the problem (i.e., all other partial

derivatives are zero). In other words the Koopman’s theorem is very similar to a Hellmann-

Feynman theorem for occupation numbers. The original Koopmans theorem [43], for Hartree-

Fock theory, is mathematically stronger as it does not rely upon derivatives of the N-electron

state to estimate the energy of the (N-1)-electron state. However Koopmans’ theorem for SIC

includes correlation so it may be physically and chemically stronger.

The Wisconsin SIC group suggested several possible means for representing the nonlocal SIC

potentials in terms of local potentials. Such approximations are fine if one is primarily interested

in understanding spectra and band alignments, since these approximations allow for SIC calcu-

lations with complexity similar to LSDA. However in an era where gradient algorithms [44] and

Car-Parrinello methods [45] have become a common means for solving the Schödinger equation,

it seems that methods based upon iterative refinement of the localized orbitals are probably

the best approaches. It was also evident at the meeting that the use of SIC had migrated

into most types of electronic structure codes. Axel Svane discussed the implementation of SIC

into the LMTO methods and described applications to f-electron systems. Eric Suraud [46, 47]

presented interesting results on an SIC-based approach that is available in the Amsterdam

density-functional codes. In this method one uses a common SIC potential for an N-electron

system based upon the average orbital density (n(r)/N). For example when the method is

applied to sodium clusters, the authors of Refs. [46, 47] find that the one-electron ionization

energy computed using a total-energy difference agrees well with the highest-occupied orbital

eigenvalue. The averaged SIC potential was approximated as:

∆vAV G−SIC
xc,ασ (r) = −{u([n/N ]; r) + vapprox

xc,↑ ([n(r)/N, 0]; r)}. (18)

Such an approach eliminates the need to solve localization equations, at the expense of a more

approximate SIC potential. This approach provided good valence ionization energies and is

also exact in the one-electron limit. In scheduled talks and informal discussions, the Icelandic

group (Peter Klüpfel, Simon Klüpfel, Hildur Guðmundsdóttir, and Hannes Jónsson) shared their

experiences with several different strategies for finding solutions to the SIC equations, including

an early method due to Goedecker and Umrigar [48].

Another form of self-interaction correction [49–52] that was based on the use of pseudopotentials
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received a significant amount of discussion in the talks. In this approach, atomic corrections

are performed to determine nonlocal, norm-conserving pseudopotentials which incorporate self-

interaction corrections in a nonlocal l-dependent pseudopotential. Once this method is adopted,

the nonlocality of the pseudopotential allows for the calculations of self-interaction corrections

in condensed systems. Bjoern Baumeier described this method for calculations of electronic

structures in solids. This method was used for calculations on a large number of compounds

with partially ionic characteristics. Materials included silicon carbide and alkali-metal oxides.

Calculated properties included electronic and atomistic structures and optical spectra. The

method was also shown to be useful for the study of magnetic properties of dilute magnetic

semiconductors. Alessio Filippetti discussed use of this approach for the study of strongly-

correlated oxides. Hisazumi Akai discussed an approximate SIC method for the Kohn-Korringa-

Rostocker methodology and provided a variety of applications. Stephano Sanvito also used this

pseudopotential approach in his discussion on transport properties.

Nikitas Gidopoulos suggested a possibly unique way to turn an approximate Kohn-Sham poten-

tial into a self-interaction-free Kohn-Sham potential (multiplicative and orbital-independent) [53].

2.4 Spectra and excitations within SIC

The qualitative differences between SIC and SIC-LSDA are depicted in Fig. 1. The SIC pulls

down the occupied states relative to the unoccupied states which generally leads to a gap (Γ)

that is improved in comparison to experiment. Localized excitations in a vacuum or excitons in

a wide-gap insulator (depicted as E) can be difficult to identify within LSDA calculations. In

LSDA-SIC, with an approximation to the particle-hole interaction (δ), the description of such

excitations can be improved. For defects in solids, where localized levels occupy the gap, LSDA

and GGA calculations tend to place the defect levels (labeled by ∆) too close to, or overlapping,

with the unoccupied conduction band. However, SIC-LSDA pulls the defect levels down and of-

ten places the LSDA-false-positive shallow levels (discussed in Alex Zunger’s talk) in the proper

location. With inclusion of SIC and a particle-hole interaction, an unoccupied continuum of de-

fect levels, predicted by the Mott-Gurney theorem, begins to emerge [54]. Less consensus exists

regarding the differences between SIC-LSDA and LSDA for charge-transfer excitations, but there

are some examples that show LSDA can dramatically underestimate these energies and that an

approximate self-interaction-corrected energy with a particle-hole interaction restores the cor-

rect asymptotic form for donor-acceptor and other charge-transfer excitations. For example, in

a vacuum, these energies are found to be close to (I-A-1/R) [55,56]. For spin excitations, deter-

mined from LSDA/GGA derivations of Heisenberg Hamiltonians, a large number of calculations

show that the spin-excitation energies are overestimated due to LSDA’s tendency to slightly

delocalize the d-electrons and since the kinetic exchange interactions depend exponentially on

the localization of the d-electrons. Therefore inclusion or partial inclusion of self-interaction cor-

rections lowers the spin-excitation energies (See Ref. [57] and references therein) and improves

agreement with experiment. While not depicted in the picture, vibrational spectra [58,59] seem

to be relatively well accounted for within LSDA and GGA. However, since polarizabilities are

dependent on SIC [20], the Raman intensities are also expected to show some dependence on the
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Figure 1: Schematic and qualitative picture depicting differences between LSDA (superscript

“LSDA”) and SIC-LSDA (superscript “SIC”) energy levels. The behavior of the energy gap,

excitonic states, and defect levels are depicted by Γ, E, and ∆ respectively. The particle-hole

interaction is depicted by δp−h. The behavior of the very low-energy spin excitations are depicted

in red (not to scale). There is some evidence that charge-transfer excitations are also improved

within SIC-LSDA. SIC may be expected to decrease the occupied bandwidth in wide-gap systems

and increase the occupied bandwith in gapless systems. The picture is expected to inform one’s

intuition and apply to many cases.
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inclusion of self-interaction corrections. From this standpoint we note that Delugas, Fiorentini

and Filippetti have found that dynamical charges are improved by approximately 15 percent in

LaAlO3 [60].

Exact accounting for the changes to the variational principle due to explicit orbital dependence is

not likely to be of significant import from the standpoint of the calculation of electronic spectra.

This seems to have been highlighted in the earlier works of Harrison et al [61] and in much of

the f-electron calculations that have been led by Temmerman et al [62–64].

At the meeting Eric Suraud discussed the use of an average-SIC approach for the calculation of

radiative transitions using the Amsterdam codes. Good agreement for valence ionization ener-

gies was obtained. Similarily Takao Tsuneda showed that a regional self-interaction correction

seemed to give good agreement for core-level spectroscopy. Stephan Kuemmel discussed a means

for determining the shape of the frontier orbital through the time evolution of the SIC-LSDA

solutions, and compared SIC predictions to “measured orbital densities” [65]. Also in this talk, a

summary of earlier SIC-LSDA work which addressed its relevance to energy and charge transfer

was provided [66].

Julie Staunton discussed the calculations of magnetic properties within an ab initio method [67–

69]. She provided a brief overview of the disordered local moment (DLM) method of Lueders et

al for incorporating effects of strong electron correlations using a local-SIC formulation. Appli-

cations to the phase diagram of Gd were presented. Additional calculations on transition-metal

oxides (MnO, FeO, CoO and NiO) were presented. These materials have anti-ferromagnetic

order at low temperature, and the DLM-SIC approach explained the persistence of the large

insulating gap into the paramagnetic state.

Molecular magnets [57, 70] represent another area where self-interaction corrections can be im-

portant, particularly in the Ni and Fe-based systems. For the [Fe8O2(OH)12(C6H15N3)6Br6]
2+

molecule [70], density functional theory with the PBE-GGA functional describes the electronic

structure of the molecular solid well, as evidenced by detailed comparison of the calculated

optical spectrum with experiment. However, the HOMO-LUMO gaps are consistently under-

estimated and the calculations of the magnetic anisotropy Hamiltonian in this “Fe8 molecule”

are significantly less reliable than for molecular magnets composed of other 3d-elemental cen-

ters [57]. The underestimation of the gap and/or the slight delocalization of the metal 3d elec-

trons could be fixed through the inclusion of SIC and may provide more accurate calculations

of spin-Hamiltonians and magnetic-anisotropy Hamiltonians.

Harrison et al [71] have presented empirical evidence that, for atomic excitations, one can deter-

mine excitation energies by allowing the unoccupied levels to move in the same SIC potential as

the hole electron. A justification for this procedure based upon variationally optimized orthogo-

nalized excited states has been offered for localized systems [54] and shown to provide very good

quantitative results for F-centers in LiF. More recently Baruah and Pederson have extended

these arguments to address a calculation of the charge-transfer excitation in a large molecular

triad [55] composed of a C60 molecule and a carotenoid organic chain that are tied together by

a porphyrin chromophore. Without the explicit constrained variational procedure with orthog-

onalized ground and charge-transfer states, the LSDA-based charge-transfer excitation would

collapse into a delocalized state with an energy that significantly underestimates experiment.
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2.5 Bond energies and relation to GGA’s

The GGAs, which started to appear in the 1980s, gave a much bigger improvement to atom-

iziation energies [10–12, 14] than PZ-SIC-LSDA did. GGAs, meta-GGAs [15, 16], and hybrids

of these semilocal functionals with exact exchange made density functional theory popular in

chemistry from the 1990s to the present. SIC was largely forgotten, except by a community of

solid state physicists interested in studying strongly-correlated oxides (well-represented at the

conference) and by a few chemists, e.g. [72–75].

In 2004-2005, Vydrov and Scuseria [76, 77] implemented a version of self-consistent PZ-SIC-

LSDA with orbital orthogonality into a developmental version of the Gaussian code. They then

applied it to a large test set of molecules. They found that the energy barriers to chemical

reactions (stretched-bond situations) were improved significantly over LSDA, as Patchkovskii

and Ziegler [21] had found before. But the results for equilibrium properties were disappointing:

Atomization energies were only slightly improved over LSDA, and bond lengths were actually

worsened.

One might expect better results from applying PZ-SIC to more sophisticated semilocal func-

tionals like GGA or meta-GGA, but the opposite is found. Vydrov et al. [78] argued that GGAs

and meta- GGAs improve Exc over LSDA for smooth, nodeless densities, but not for oscillating

and noded orbital densities, where the relative density-insensitivity of LSDA may actually be

an advantage. They also proposed a scaled-down SIC that is still exact for all one-electron

densities but scales down the self-interaction correction in many-electron regions. They found

that this improved equilibrium properties over the original PZ-SIC, but worsened stretched-bond

properties. By losing the correct formal property 4 of Sec. 2, they also lost the correct many-

electron self-interaction freedom [19, 79], retaining only one- and two-electron self-interaction

freedom [19].

3 SIC for localization-delocalization transitions in solids and

molecules

The explicit appearance of the orbital densities in the SIC formalism provides for greater com-

putational challenges but also provides a richer space of physical and chemical solutions. The

richness or multifaceted solutions offered by the inclusion of SIC were highlighted in several talks

at the meeting. Alex Zunger’s title, abstract, and talk succinctly, precisely and humorously

framed the problem. Alex referred to the systematic exaggeration of delocalization as one of the

primary “tragedies” faced by DFT practitioners. He spoke of this problem in terms of defects

in insulators, particularly in regard to ZnO and GaAs, and the challenge of polarons [80, 81].

He expressed hope that a functional that could reproduce the near-linear dependence on oc-

cupation number that is found in SIC-LSDA could enhance further joint collaborative efforts

between experimentalists and theorists. Other early works that talked about the important role

of self-interactions in defect calculations include [82] and [54]. Here we provide an account on

other manifestations of this issue.
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3.1 Actinides and materials containing f-electrons

Axel Svane discussed his collaborative work with the Daresbury group on the calculation of phase

diagrams of SmS systems [62]. Svane showed for a variety of systems that SIC provided a mixed

picture, with some electron states being localized and some being itinerant. Such spectacular

phase transitions are observed in cases like elemental Ce, CeP, SmS, and YbS. In actinides this

delocalization phenomena proceeds by delocalizing the f-electrons one at a time, and the volume

range over which the transition from the localized to the itinerant scenario can be identified

As a function of pressure, the partially filled f-shell must be handled carefully in these systems,

as nature can be indecisive about the number of f-electrons that should be fully occupied within

the atomic region of the Sm. Axel Svane showed that, depending upon volume, the Sm could

accommodate either five or six f-states and that SIC succeeded in determining the parts of

volume-space that preferred five rather than six electrons. The conclusion is that the SmX com-

pounds require the self-interaction corrections to describe the filling of the f-shell as a function

of unit-cell volume. The calculated SIC phase diagrams of SmS and SmAs compounds are found

to be in quantitative agreement with experiment. For the high-pressure phase the results show

that the sixth electron is itinerant and chooses to distribute itself amongst the remaining band

of partially occupied f-states near the Fermi level. The itinerant states have no SIC. In contrast,

the lower-density phase has a total of six f states occupied below the Fermi level.

Klaus Capelle discussed a means for testing the limitations of DFT through the use of model

hamiltonians, and tested several versions of SIC within the Hubbard model [83].

3.2 Free-electron gas: dense metallic states and dilute “insulating” states?

As discussed in Refs. [27–29], there have been several different attempts to find localized orbitals

for the free-electron gas. Most of the work discussed in these references was in regard to the

standard free-electron gas which leads to a set of occupied plane-wave states inside a Fermi

sphere. However in Ref. [29], Pederson, Heaton and Harrison also considered a phase of the

free-electron gas that was much earlier considered by Wannier when he introduced the functions

which bear his name [84]. It is interesting to note that, while Wannier was discussing plane-

wave states, the title of that paper was Structure of Electronic Excitation Levels in Insulating

Crystals. In this paper, Wannier wrote down Wannier functions of the form:

ω(r −Rµ) =
1√
π3

Πi

sin[qF (xi −Xi
µ)]

√
qF (xi −Xi

µ)
, (19)

with Rµ = (mx,my,mz)(π/qF ) and qF is half the width of the cubic Brilloun zone. By inscribing

the largest possible “Wannier cube” (qF = kF√
3
) within the Fermi sphere, a set of Wannier

functions may be derived. This set of functions leads to a negative self-interaction correction

for about 37 per cent of the plane-wave states. This leads to a slightly wider occupied density

of states which is in better agreement with Hartree-Fock theory. By inspection, and related to

the uncertainty principle, it is clear that the original Wannier functions get more localized as

the magnitude of the qF -vector gets larger.

To frame the part of the paper on the insulating free-electron gas within the context of localization-
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delocalization transition, we again mention that the Daresbury-Aarhus group has successfully

accounted for a high-density to low-density phase transition using SIC. The explanation ap-

pears to be that one can fill the Brilloun zone in two different ways. In one case it is possible to

transform to six localized orbitals per site and in the other case only five. Now if one creates a

“Wannier cube” that is large enough to accommodate all the electrons, qF gets larger and the

Wannier functions become more localized. In addition to the fact that the Wannier functions

are more localized, there are now 2.72 times as many localized orbitals. In a nutshell, Ref. [29]

put forth the hypothesis that in the low-density limit, despite the large increase in kinetic energy

associated with a non-spherical Fermi surface, the derivative of the energy with respect to n1/3

is more negative in the limit of n = 0 (if the SIC-energy is indeed negative as is the case for

the LSDA exchange-only functional). It was shown analytically that, in the low-uniform-density

limit, a state that is based on a full band of plane waves/Wannier functions confined within

a simple-cubic “Wannier cube” is lower in energy than the standard state composed of plane

waves confined to the Fermi sphere. Pederson also speculated that this feature could be related

to the Wigner crystallization and estimated that for values of rs > 35 the uniform density “in-

sulating state” (plane waves within a “Wannier cube”) are lower than the metallic state. That

paper noted that “the subject of SIC-induced Wigner crystallization of the free-electron gas and

antiferromagnetic- paramagnetic transitions in monovalent metals will be explored in a forth-

coming paper”, but it has not yet appeared. However in retrospect, it may be very important to

ascertain whether there are indeed two quantum-mechanical phases of the uniform electron gas

corresponding to two different Brilloun zones and two different density regimes. Knowing this

may very well determine if the sign of the SIC-energy of a localized orbital in the low-density

limit must be negative. The fact that numerous Brilloun zones (beyond those of Refs. [27–29])

exist means the estimate above is just that.

Based on experience with finding the SIC-LSDA antiferromagnetic solutions in the separated-

atom limit for Li2 [36] molecules, Ref. [29] also mentioned the possibility of finding transitions

between antiferromagnetically-ordered and paramagnetic states in monovalent metals, which is

related to the discussion of BCC hydrogen presented by Thomas Schulthess. Consensus on what

SIC predicts in the exchange-only limit and with correlated functionals for the free electron gas

and monovalent n-dimensional systems could provide insight on which path toward improving

SIC is likely to be most useful.

3.3 BCC hydrogen

Thomas Schulthess discussed attempts at understanding the localization-delocalization transi-

tion in BCC hydrogen and NiO within full-potential methods. For example in very early work

by Svane and Gunnarsson [44], it was demonstrated that SIC-LSDA found a metal to antifer-

romagnetic transition at rs = 2.45. Particular emphasis was on a description for addressing

BCC hydrogen and metal-oxides using an implementation of SIC in a LAPW-based method.

The previous LMTO-ASA-based investigations [44, 85, 86] were found to be in accord with the

results of this more accurate methodology.
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3.4 Geometries of radicals

The self-interaction error can also be the cause of qualitatively incorrect structures in organic

radicals. For example, very recently Oyeyemi et al. [87] have demonstrated this in calculations on

the alkynyl radical structure. In this work they demonstrate for a large range of functionals, in-

cluding hybrids, that the self-interaction error causes an erroneous electron delocalization which

induces a rehybridization of the valence electrons and ultimately causes a qualitatively incorrect

structure of the radical (bent when it should be linear). Ramifications of such qualitatively

incorrect structures then lead to quantitative thermochemical errors.

3.5 Polarizabilities, charge separation and transport

LSDA, GGA, and other semilocal functionals can fail to describe processes in which electrons

are transfered over long distances, even in the ground state. Failures in the dissociation limit

have aleady been discussed in Sec. 2.1. The semilocal functionals also overestimate the static

polarizabilities, and even more the static hyperpolarizabilities, of molecules, especially for long

molecular chains with stretched bonds between the atoms. These errors are largely corrected

by PZ-SIC-LSDA [20]. In this reference, the longitudinal polarizabilities were calculated within

high-level quantum-chemical methods, with both local and gradient-corrected functionals, and

with self-interaction-corrected local and gradient-corrected functionals. The results show small

(at most 20 percent) variation between all methods for small H2 chains but large (50 percent)

errors for a chain of six dimers when one compares DFT approximations to any method that

accounts for the self-coulomb interaction in some way (e.g., SIC, CCSD, HF, MP4). Such a

spurious propensity toward DFT-based dielectric breakdown is a very fundamental issue that is

relevant to charge transfer, donor-acceptor systems (especially when in solvents), and molecular

electronics.

Nicola Marzari provided a frank and provocative assessment on problems related to localization-

delocalization transitions. He commented on the need to include self-interaction corrections and

a generalized Koopmans relation [88] to improve the description of a variety of fundamental pro-

cesses relevant to energy applications. Specific examples mentioned in his talk included charge-

transfer excitations, photoemission spectra, and the structure and reactivity of transition-metal

complexes. Also related to the proper dissociation of ionic molecules are questions related to

simulation of charge transfer that are important for understanding photo-driven solar collection

processes and simulation of molecular electronics. Sanvito discussed the prospects for improving

the simulation of molecular electronics at the meeting.

Sanvito’s contribution discussed the most common pitfalls in the non-equilibrium Greens func-

tion (NEGF) DFT approach to electron transport, and demonstrated that an approximate self-

interaction correction could be used to obtain quantitative predictions for technologically rele-

vant nano-scale devices. Examples concentrated on transport in molecules, in multi-functional

tunnel junctions, and in organic systems in solution.
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3.6 Technical details

There is an important technical feature, that received significant hallway discussion, on the use of

the unified Hamiltonian and the analysis of the results. We attempt to reproduce that discussion

here, as this, and actually all other iterative approaches which successfully minimize the SIC

energy, may tempt one to conclude that there are in fact multiple orbital sets and multiple band

structures which lead to the exact same total energy and the exact same density. To discuss this

in the most efficient manner, it is easiest to first consider the case where the SIC happens to be

zero, which would lead to a use of the unified Hamiltonian for a DFT Kohn-Sham calculation.

Within density-functional theory, it is easy to verify that unitary transformations on the Kohn-

Sham orbitals will allow one to determine an infinite number of orbitals sets that have different

nondiagonal Lagrange-multiplier matrices but lead to the same total energy and the same total

density. For simplicity we first consider any one of the equivalent sets of DFT orbitals that lead to

a set of diagonal elements of the Lagrange-multiplier matrix that are nondegenerate. Using any

one of these sets of DFT orbitals for construction and subsequent diagonalization of the unified

Hamiltonian will allow us to re-extract the equivalent set of orbitals and the diagonal elements of

the Lagrange-multiplier matrix for this set. Of course this set does not agree with the eigenvalues

of the DFT Hamiltonian. However diagonalizing the Lagrange-multiplier matrix for this set of

orbitals or any other set of unitarily equivalent orbitals will give the exact KS orbitals and the

exact KS eigenvalues. Thus even for DFT, if a unified Hamiltonian is used, it is always necessary

to diagonalize the Lagrange-multiplier matrix to compare results from different computer codes

or users. Different starting points in the iterative procedure will lead to different, but unitarily

equivalent, Lagrange-multiplier matrices even for density-functional theory. To the extent that

this should happen for DFT, it should not be surprising that orbital-dependent functionals can

also converge to different, but unitarily equivalent, Lagrange-multiplier matrices. This is simply

a correct aspect of the minimization procedure.

3.7 Bandgaps and localized excitation energies

In insulating and semiconducting solids, LSDA, GGA and meta-GGA orbital energies yield

fundamental band gaps that are smaller than experimental values associated with excitation

of an electron to the lowest-lying conduction state. It has been argued [89, 90] that, because

of the derivative discontinuity, a similar underestimation could occur in the exact Kohn-Sham

bandstructure for the neutral solid, in which all electrons see the same multiplicative orbital-

independent effective potential. When the electrons are tightly-bound, as in solid Ne, the gap in

the exact Kohn-Sham band structure may more accurately approximate the first exciton energy.

From the standpoint of comparing results for the occupied orbital space, it is clear that one needs

to compare eigenvalues of the Lagrange-multiplier matrix and that the associated eigenfunctions

will generally exhibit the point-group and/or translational symmetry of the system in question.

However a standard means for comparing unoccupied states may need to be established. The

purpose of this section is to provide a discussion on past treatments of unoccupied states in

SIC, without claiming that any of these treatments are necessarily rigorous when compared to

more modern approaches to excited states. Such a discussion is useful from the standpoint of
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developing a standard means for comparison, especially since different methodologies treat the

unoccupied states differently. Historically, there were efforts aimed at improving band gaps by

allowing the delocalized occupied states to move in their standard SIC potential according to

Eqs. (13-17), and to take the point of view that the unoccupied states should simply move in

the LSDA hamiltonian. Since a delocalized electron outside a closed shell will have an LSDA

eigenvalue that is an excellent approximation to the electron affinity, one may argue that the

lowest unoccupied bloch function in a crystal should be a good approximation to the inverse

photoemission experiments. Moreover, the Koopmans’ theorem tells us that the energy to

remove a delocalized electron from the crystal is approximately equal to the highest-occupied

eigenvalue. Therefore, at least for ionic insulators, we expect that the eigenvalue differences

will agree with SIC-LSDA total energy differences and form a reasonable approximation to one

idealization of the experimental band gap. Further it is known that the resulting “scissored”

bandstructure when compared to experiment is improved over LSDA [40, 41, 49, 91]. Note that

the SIC of a delocalized electron is zero so it will not affect the estimate of an affinity. For lack

of a better terminology we refer to this as the SIC insulating bandgap approach (SIBA).

In atoms [61], F-centers [54], other defects [82], core-level-excitations, and (presumably) localized

excitons, there is good numerical evidence that one can obtain relatively accurate excitations

by allowing the lowest unoccupied “particle” state to move in the same SIC-potential as the

“hole” state. Arguments have been made as to why that should be expected [54]. So, for local-

ized excitations and delocalized excitations in wide-gap systems, these two different treatments

of the unoccupied states could be used as a basis for comparing SIC results that have been

generated using different implementations. Simply examining these approximations will also

allow practioners to develop some intuition on what types of interactions are required for better

qualitative treatments of excited states.

The more difficult question is to determine a means for comparing gaps in strongly covalent

systems. In Ref. [38], Pederson, using the methods described in [92], found, using SIBA, that

the resulting silicon bandgap would be overestimated significantly since the SIC shift of a silicon

3s or 3p function (in an atom or in a crystal) is approximately 3.52 eV. If a SIBA picture is

adopted, this would lead to a bandgap of approximately 4.22 eV which is in good agreement

with the recent calculations of Stengel and Spaldin who find a value of 4.5 eV. [41]. However, in

Ref. [38], Pederson argued that one should not expect the SIBA treatment to work for systems,

such as silicon, where the excitonic levels lie above the onset of the conduction band.

4 Possible directions for further improvement of SIC

The Perdew-Zunger SIC has had both striking successes and striking failures, as summarized

in the preceding sections. “How can anything so right be so wrong?” It is hard to see how to

change the form of PZ-SIC without losing at least some of its formally correct properties. But

there are two other possibilities that might work together:
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4.1 Complex localized orbitals for SIC

PZ-SIC might work much better, and might improve along with the functional Eapprox
xc being

corrected, if we could replace the oscillating and noded orbital densities by smooth, un-noded

densities. (See point 2 of Sec. 2.) While real orbitals that are orthogonal must have noded

orbital densities, complex orbitals need not. For example, plane waves are complex, orthogonal,

and have constant orbital densities. Their real and imaginary parts have nodes, but not in

the same places. Can we start from real canonical (delocalized) orbitals, then make a unitary

transformation [35,36] to localized complex orbitals that lower the SIC total energy more than

localized real orbitals do? At the SIC workshop, John Perdew argued that such a transforma-

tion might represent a formal improvement to PZ-SIC, while Peter Klüpfel and collaborators

demonstrated such a transformation for use in GGA [93].

From a technical point of view it should be noted that the localization equations are ambivalent

toward changing the real and imaginary parts of a set of orbitals that already satisfy the local-

ization equations. In other words, if one finds a set of real localized orbitals, an infinitesimal

2x2 complex unitary transformation would not change the energy to first order. So once a set

of real localized orbitals are found, one is trapped in that orbital set. To escape that set and

consider other possible solutions of the richer space of chemical and physical solutions requires

the user to guess a different set of localized orbitals and determine if other local minima provide

better estimates to the global SIC state. Alternatively one could consider second derivatives

of the localization equations, which are not necessarily zero, to provide insights about whether

a set of orbitals corresponds to a global minima. In the absence of an SIC functional for the

exchange-correlation term, the second derivatives would provide easily calculated coulomb in-

tegrals and essentially determine which set of Edmiston-Ruedenberg orbitals provided globally

stable solutions. However the intrinsically non-quadratic behavior of the exchange-correlation

part of the functional makes it difficult to gain further insight through such analysis. Kuem-

mel, during his talk, commented that the time-dependent evolution of the SIC equations, which

provides a means for minimizing the energy, necessarily considers the possibility of complex

orbitals. Perhaps this approach to orbital localization allows one to circumvent the possibility

of being trapped in real solutions or to confirm their global stability.

Additional guidance may be found by reviewing earlier work on atoms that grappled with similar

issues on simpler systems. In applications to atoms, Harrison [71] discussed the use of spherical-

harmonic p-orbitals and cartesian p-orbitals for construction of the SIC potential, and referred to

this as Central-Field Self-Interaction Correction (CFSIC). For Ne, Harrison’s work showed that

the spherical-harmonic (complex) p-orbitals produced an SIC correction to the total energy that

was approximately 2.7 eV lower than the cartesian representation. Further support that a set of

complex nodeless wavefunctions would provide more negative SIC energies comes from a wealth

of data showing that sphericalized densities lead to even larger (more negative) SIC corrections

to the energy. However in Ref. [37], it is shown that by allowing s-p hybridization, referred to

as hybridization-localization (HL), the real spn hybrids always delivered lower energies for the

first 18 atoms in the periodic table. For neon the real HL solution is about 6.0 eV lower than

the complex CFSIC solution. Still there is yet one more unpublished “however”: For the SIC

functional and numerical schemes used in Ref. [37], Pederson’s recollection is that a brute-force
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determination of the SIC energy using a large series of 2x2 complex unitary transformations on

the entire orbital space (1s, 2s, 2px, 2py, 2pz) did indeed produce complex orbitals with energies

slightly lower than the spn hybrids.

4.2 Higher l hybrid orbitals

In addition to considering the possibilities of complex localized orbitals, Pederson suggested

that, especially for applications which include f-electrons, localizing transformations achieved

by “bonding” and “antibonding” combinations of f and d functions (real or complex) need to

be considered. Since hybridization of states of different angular momentum and particularly

parity occurs naturally in molecular bonds, it immediately follows that ignoring the possibility

of localized atomic orbitals that are mixtures of different angular momenta is susceptible to

overestimates of the actual SIC bond energies. Interestingly, in applications to the Zn2+ cation,

Stengel and Spaldin suggest that nine nearly similar sp3d5 hybrids could be the best localized

orbitals [41].

5 Perspectives

It is also possible that further improvement of GGAs or meta-GGAs could make them work

better with PZ-SIC. Orbital densities typically have larger reduced density gradients than total

densities do, so they sample more of the large-reduced-gradient behavior of a GGA or meta-

GGA. Standard GGAs and meta-GGAs may not be optimally constructed for this sampling.

Indeed, the Icelandic group found failures of size-consistency for PZ-SIC applied to the Perdew-

Burke-Ernzerhof GGA [14], arising from the strong large-reduced-gradient exchange enhance-

ment over LSDA exchange that makes the PZ-SIC energy correction positive for some localized

orbitals. (See point 3 of Sec. 2.) This strong enhancement also leads to an incorrect behavior

under non-uniform density scaling to the two-dimensional limit [94–97], so fixing the latter prob-

lem might also fix the former. Diminishing the exchange enhancement factor (but in a different

way) has already improved GGA [98–100] and meta-GGA [16] performance for solids. Note

that many meta-GGA’s including [16, 17] are already self-correlation free, so for them one can

replace Eapprox
xc by Eapprox

x in the SIC correction term of Eq. (3).

Perhaps a convergence of “the road more traveled” with “the road less traveled” would provide

an optimal unified nonempirical solution for the problems of “weak correlation” and “strong

correlation”. The hybrid functionals [101–104] that mix fractions of semilocal and exact ex-

change achieve this to some extent, but not fully and with the help of one or several more-or-less

empirical parameters. Or perhaps the solution will come from a combination of the full exact

exchange energy with some compatible nonlocal correlation energy functional, constructed using

the exact exchange energy density and the sum rule on the correlation hole around an electron,

as discussed at the conference by Adrienn Ruzsinszky. Such methods would appear to keep the

important corrections for self-interaction error but leave the computational complexities of the

localization-equation-induced undergrowth behind.
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Robert Frost was known to warn his audience that The Road Not Taken is a “tricky poem”

inspired by a hiker’s concern that there was always a potentially better path to try. Unlike

quantum particles, quantum physicists can not try all paths. It is expected that the optimal

combination of the “road less traveled” with the “road more traveled” will in itself present

many more different and exciting paths to explore and that the analysis leading to that optimal

combination may be as tricky as the analysis of the poem. However, if scientific citation statis-

tics [1, 25] are a guide, the end of this chapter should read:

I shall be telling this without a Ψ

Somewhere ages and ages hence:

Two roads converged in a green wood, and why?

This made the one best traveled by,

And that has made all the difference. [sic]
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[50] B. Baumeier, P. Krüger, and J. Pollmann, Phys. Rev. B 73, 195205 (2006).

[51] A. Filippetti and N. Spaldin, Phys. Rev. B 67, 125109 (2003).

[52] C. Toher, A. Filippetti, S. Sanvito, and K. Burke, Phys. Rev. Lett. 95, 146402 (2005).

[53] N. Gidopoulos, Phys. Rev. A 83, 040502 (2011).

[54] M.R. Pederson and B.M. Klein, Phys. Rev B 38, 10319 (1988).

[55] T. Baruah and M.R. Pederson, J. Chem. Theory and Comp. 5, 834 (2009).

[56] M. Head-Gordon and A. Dreuw, J. American Chem. Society. 126, 4007 (2004).

[57] A. Postnikov, J. Kortus, and M.R. Pederson, Phys. Stat. Solidi (b) 243, 2533 (2006). See

also: Psi-k Newsletter 61, February 2004, 127 (2004).

[58] A.A. Quong, M.R. Pederson, and J.L. Feldman, Sol. Stat. Comm. 87, 535 (1993).

98



[59] D. Porezag and M.R. Pederson, Phys. Rev B 54, 7830 (1996).

[60] P. Delugas, V. Fiorentini, and A. Filippetti, Phys. Rev B 71, 134302 (2005).

[61] J.G. Harrison, R.A. Heaton and C.C. Lin, J. Phys. B - Atomic, Molec. and Optical Phys.

16, 2079 (1983).

[62] A. Svane, V. Kanchana, G. Vaitheeswaran, G. Santi, W.M. Temmerman, Z. Szotek, P.

Strange, and L. Petit, Phys. Rev. B 69, 054427 (2004).

[63] L. Petit, R. Tyer, Z. Szotek, W.M. Temmerman, and A. Svane, New J. Phys. 12, 113041

(2011).

[64] L. Petit, Z. Szotek, and W.M. Temmerman, Phys. Rev. B 76, 115116 (2007); ibid. 80,

045124 (2009); ibid 81, 045108 (2010).

[65] M. Dauth, T. Körzdörfer, S. Kuemmel, J. Ziroff, N. Wiessner, A. Scholl, F. Reinert, M.

Anita, and K. Shimada, Phys. Rev. Lett. 107, 193002 (2011).
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