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1 Introduction

”Dispersion forces” [1], [2] are generally understood in the solid-state physics community

to be that part of part of the non-covalent van der Waals (vdW) interaction that cannot be

attributed to any permanent electric mono-or multipoles. (In the chemistry community,

the whole of the non-chemically-bonded interaction is often termed the ”van der Waals”

(vdW) interaction, but in the the physics community this term is usually reserved for

the outer dispersion component as defined above. A useful categorization of the many

components of the total force is given in [3] from a perturbation theory standpoint).

The ubiquitous dispersion forces occur wherever polarizable electron clouds are present,

and are typically weaker than ionic and covalent bonding forces, but are of longer range

than the latter, decaying algebraically rather than exponentially with separation. They

are important in protein interactions, in rare-gas chemistry and in soft condensed matter

generally. They are especially important, for example, in the cohesion and self-assembly of

graphenic nanostructures including nanotubes and planar graphene-based systems, which

have attracted strong recent interest in the condensed matter community. Much work has

been done on the vdW interaction in the two extremes of (i) small molecules (via high-level

quantum chemical methods such as coupled cluster (CCSD(T)) [4] or Symmetry adapted

Perturbation theory (SAPT) [3]) and (ii) well-separated macroscopic objects (via Lifshitz

theory and its extensions, for example [5], [6], [2]). However the study of vdW interactions

between solids and nanostructures down to intimate contact, where dispersion competes

with other forces, is still an area of active research. The selective adhesion of graphene

to various metal substrates is an example of a delicate phenomenon where vdW forces

are important but where a successful fully quantitative theory seems still to be lacking.

This paper will outline the development of simple and more complex theories to account
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for these phenomena within the electromagnetically non-retarded regime, as defined in

the following paragraph. The website [ http://www.cecam.org/workshop-2-411.html ] of

a recent CECAM workshop will give the flavour of some relatively recent work in this

area.

vdW forces are a special case of the more general electromagnetically retarded interaction

between matter, an interaction that is properly treated by regarding both the matter and

the electromagnetic field as dynamical quantum systems. When the distance D between

the interacting bodies is sufficiently small, the light transit time τlight = D/c is small

compared to the response time τmatter of the charges in the matter, and then we can

neglect the retardation of the electromagnetic field. This is sometimes designated the

”vdW regime”, and here one can treat the electromagnetic field as a non-retarded scalar

classical Coulomb field, that serves merely to induce correlations between the charge

fluctuations within the interacting bodies. The emphasis is then focussed on the dynamics

of the interacting matter - the electronic many-body problem. This is the approach that

will mainly be pursued below.

It is worthwhile, however, to consider briefly the opposite limit where retardation is im-

portant, and here the dispersion-type forces are often termed Casimir forces [7]. In this

”Casimir regime” the response of the matter is often treated approximately via a spatially

local dielectric function ε(ω) confined within sharp spatial boundaries representing the

edges of the matter. The dispersion interaction is then often regarded as being due to

the separation-dependence of the zero-point and/or thermal energy of the normal electro-

magnetic field modes. These modes are calculated from the classical Maxwell equations

in the presence of chunks of matter characterized only by their macroscopic permittivity

ε(ω). The two viewpoints are united by the very successful Lifshitz theory [5], [6], applied

originally to the interaction between bulk samples with parallel planar faces, and quickly

extended to other geometries in various approximate ways [1], [8], [9]. In recent years

the Lifshitz type of approach has been applied, without approximation, to more general

geometries such as spheres, cylinders, thin plates etc, but always with the caveat that

the spatial scales must be long compared with the scale of the microscopic structure of

the matter, so that only the long-wavelength response of the matter to e.m. fields is

invoked [10], [11].

In fact the term ”Casimir effect” has recently come to have a wider meaning, covering the

dependence on geometry (shape, size or separation) of the total zero-point or thermal free

energy of any kind of field in confined geometry. Apart from the electromagnetic Casimir

forces described above, examples of this approach include (i) the effect of elastic wave

fluctuations on the thermodynamics behavior of finite and/or curved elastic membranes

(ii) the interaction between nuclei or nucleons in a Fermi sea of quarks, where the zero

point kinetic energy of the free quark field carries the basic effect. Some flavor of the

possibilities of this field-fluctuation approach can be obtained by visiting the website

of a recent Kavli Institute for Theoretical Physics workshop entitled ”Fluctuate 08”: [

http://www.kitp.ucsb.edu/directory/all/fluctuate08 ].
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For the remainder of the present paper we will work in the electromagnetically non-

retarded (non-Casimir) limit, which often means in practice that we can treat interacting

systems at separations from about a micron down to full overlap of electronic clouds.

2 Simple models of the vdW interaction between small systems

It is worthwhile to consider first a very simple picture of the vdW interaction between two

neutral spherical atoms at separation R >> b where b is an atomic size. (For more detail

see e.g. [12] , [13], [14] .) The Hartree field of a neutral spherical atom decays exponentially

with distance, and so the Hartree energy cannot explain the algebraic decay of the vdW

interaction.

2.1 Coupled-fluctuation picture

However the quantal zero-point motions of the electrons (or thermal motions where sig-

nificant) can cause a temporary fluctuating dipole moment d2 to arise on atom #2. The

nonretarded Coulomb interaction energy between this dipole, and another dipole of or-

der α1d2R
−3 that it induces on atom #1, has a nonzero average value that can be esti-

mated [12] , [13] as

E = − <
(

α1d2R
−3
) (

−R−3d2

)

>≈ −C6R
−6, C6 = K~ω0α1α2. (1)

Here α1 and α2 are the dipolar polarizabilities of the atoms and ω0 is a characteristic fre-

quency (level spacing) of an atom. The coefficient C6 for this geometry has been obtained

using a harmonic oscillator analogy to estimate < d2
2 > = Kα2~ω0 and this contains a

dimensionless constant K, that is not easily specifiable from the above qualitative argu-

ment.

2.2 Model based on the static correlation hole: failure of LDA/GGA at large

separations

The spontaneous dipole d2 invoked above would be implied if we had found an electron

at a position ~r ′ on one side of atom #2. The induced dipolar distortion on atom #1

then represents a very distant part of the correlation hole density n2(~r, ~r
′|) [15] due to

discovery of the electron at ~r ′. The shape of this hole is entirely determined by the shape

of atom #1, and is thus quite unlike the long-ranged part of the xc hole present in a

uniform electron gas of density n(~r). It is therefore unsurprising that the local density

approximation (LDA) misses the long-ranged tail of the vdW interaction. In fact, the

LDA and the GGAs can only obtain the vdW tail via the distortion of the density of each

atom. This distortion is predicted by these theories to decay exponentially with separation

of the two atoms, thus ruling out the correct algebraic decay of the energy. The situation

with GGA is less clear when the densities of the interacting fragments overlap. If the

principal attractive correlation energy contribution comes from electrons near the overlap

42



region, then treating this region as part of a weakly nonuniform gas might be reasonable.

In keeping with this, various different GGAs can give qualitatively reasonable results for

vdW systems such as rare-gas dimers. The results are neither consistent nor reliable,

however [16], [17], [18], [19], though surprisingly good results near the energy minimum

are obtained [20], [21] with Hartree-Fock exchange plus the Wilson-Levy functional. Some

discussion is given in [12].

2.3 Model based on small distortions of the ground state density

Instead of considering the energy directly for two atoms separated by distance R , Feyn-

man [22] and Allen and Tozer [23] considered the small separation-dependent changes

δn(~r : R) in the groundstate density n(~r) of each atom, caused by the Coulomb interac-

tion V12 between atoms. The Coulomb field acting at the nucleus of each atom created by

δn(~r : R) as source, leads to a force which was identified as the vdW force, in the distant

limit. One can then obtain the correct result ~F = −∇R(−C6R
−6) in the widely-separated

limit, in agreement with (1). Such a result emerges, for example, if δn(~r; R) is calculated

from a many-electron wavefunction correct to second order in V12, involving a double

summation with two energy denominators. (The first-order wavefunction perturbation

makes zero contribution to δn(~r : R).) By contrast, looking at the total energy to second

order in V12 one already obtains the dispersion interaction with only a single summation

and one energy denominator, a substantially easier task of the same order as obtaining

the first-order perturbed wavefunction. From here on we restrict attention to approaches

based directly on the energy.

2.4 Coupled-plasmon model

Another simple way to obtain the R−6 interaction is to regard the coupled fluctuating

dipoles invoked above as forming a coupled plasmon mode of the two systems [13]. One

solves coupled equations for the time-dependent density distortions on the two systems,

leading to two normal modes (in- and out-of-phase plasmons) of free vibration of the

electrons. The R dependence of the sum of the zero-point plasmon energies
∑

i ~ωi/2

gives an energy of form −C6R
−6, in qualitative agreement with the coupled-fluctuation

approach described above for the case of two small separated systems (see, e.g., [24],

[1], [13]). A strength of the coupled-plasmon approach is that it is not perturbative,

and is equally valid for large or small systems, even for metallic cases where zero energy

denominators could render perturbation theory suspect. The coupled-plasmon theory

is linked to the correlation-hole approach by the fluctuation-dissipation theorem to be

discussed starting from Sect. 5 below.
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2.5 Perturbation theory picture assuming no overlap

The factor R−6 in (1) can be understood as arising from two actions of the dipolar field,

each proportional to R−3, suggesting that this simplest approach relates to second -order

perturbation theory in the inter-system Coulomb interaction . Indeed the application of

standard 2nd order Rayleigh-Schrodinger perturbation theory, regarding the electrons of

one system as distinguishable from those of the other and treating the inter-atom coulomb

potential V as a perturbation, yields the formula

E
(2)
AB = −

~

2π

∫ ∞

0

du

∫

d~r1d~r1
′d~r2d~r

′
2V (~r1 − ~r2)χA(~r1, ~r1

′, iu)V (~r2 − ~r1) χB(~r2, ~r2
′, iu)

(2)

where V is the bare electron-electron Coulomb potential and χA(~r1, ~r1
′, ω) exp(−iωt)

is the linear electron number density response at position ~r to an external potential

perturbation of form δV (~x) = δ(~x − ~r ′) exp(−iωt): see (e.g.) [25], or [26]. χA is usually

termed the electron density-density reponse of system A (or just the density response),

and the expression (2) is sometimes known as the ”(generalized) Casimir Polder formula”.

It is derived in a different fashion in Sect. 6.1 below.

By expanding the Coulomb potential in a multipole series around the centres of A and

B, one obtains to lowest order a result of the form (1) with

C6 =
~

2π

3
∑

jkℓm=1

∫ ∞

0

A
(A)
jk (iu)tjℓ(R̂)tkm(R̂)A

(B)
ℓm (iu)du, tjℓ(R̂) = R̂jR̂ℓ − 3δjℓ . (3)

(See e.g. [12]). Here ~R is the vector joining the centers of A and B, R̂ = ~R/
∣

∣

∣

~R
∣

∣

∣
and

A
(A)
jℓ =

∫

xjx
′
ℓχA(~x, ~x ′, iu)d~xd~x ′

is the is the dipolar polarizability tensor of species A. ~x is the position of an electron

relative to the center of A. For two isotropic systems A
(A)
jk = δjkA

(A) and similarly for

A
(B)
jk . This leads to the possibly more familiar expression

E(2) = −C6R
−6, C6 =

3~

π

∫ ∞

0

A(A)(iu)A(B)(iu)du . (4)

Using (3) or (4) one reduces the calculation of the asymptotic vdW interaction between

fragments to the calculation of the (imaginary) frequency-dependent dipolar polarizability

A of each fragment. This is a surprisingly demanding task. It can be done accurately

with high-level quantum chemical approaches, but even relatively sophisticated treatments

like RPA or ALDA obtain accuracies only of order 10-20% for small atoms and molecules,

where orbital self-interaction is an issue.

If the multipole expansion of the Coulomb potential in the Casimir-Polder formula (2) is

taken to higher order, additional terms of form C8R
−8, and higher powers, are added to
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the leading −C6R
−6 term. There are also mixed induction-dispersion terms in general.

A good and very detailed enumeration of the possible terms is given in [3].

2.6 vdW and higher-order perturbation theory

For non-overlapping electronic systems one can go further within perturbation theory

with respect to the inter-system Coulomb interactions Vij . In third order one finds an

interaction between three separated systems, which cannot be expressed as the pairwise

sum of R−6 terms such as (1). At large separations for spherical systems the leading

(dipolar) contribution to this third-order term has the Axilrod-Teller form EvdW, (3) ≈

C9R
−3
12 R−3

23 R−3
13 , (see e.g. [27]) where C9 contains some angular dependence. There are

also corrections to the pair interaction (2) from perturbation orders beyond 2 [3].

2.7 Perturbation theory including overlap: Symmetry Adapted Perturbation

Theory

When the electron clouds of two systems 1 and 2 are allowed to overlap, the electrons

in 1 and 2 can no longer be treated as indistinguishable, and Eq (2) is inapplicable.

A perturbative approach in this case requires Symmetry Adapted Perturbation Theory

(SAPT) [3]. In SAPT the antisymmetry of the many-electron wavefunction is imposed

upon perturbation theory via a projection operator technique. This approach has been

developed to a very high level of sophistication (including judicious use of Time Depen-

dent Density Functional Theory to ease parts of the calculation) [28]. SAPT probably

represents the current state of the art for the van der Waals interaction between pairs

of molecules up to medium size. So far it seems not to be feasible for solids and large

nanostructures, so it will not be considered further here.

3 The simplest models for vdW energetics of larger systems

3.1 Simple pairwise addition of C6R
−6 for well-separated macroscopic bodies

The simplest approach to the vdW interaction between many-atom systems, including

solids, is to add energy contributions of form −C6(ij)R
−6
ij between each pair (i, j) of atoms.

There is a large early literature of calculations of this kind for macroscopic solids with an

empirical C6 value. Often one replaces sums over atoms by continous integration using

volume elements that may each contain many atoms. In this way one easily obtains

analytic dependence on the separation D for macroscopic objects of each well-defined

shape (thick slab, thin slab, sphere, cylinder etc). [1], [13], [8]. See also the right-hand

column of Figure 1 below, for a few specific cases.

45



3.2 Pairwise addition with empirical short-range repulsion

If the interacting bodies can come into close contact, the attractive −C6R
−6 interation

must be attenuated (damped, saturated) at short range and replaced by a Pauli repulsion

term. In empirical pairwise theories the short-ranged part is often of form +C12R
−12

(Lennard-Jones potential) or +B exp(−CR). Since the polarizability A (see (3)) of an

atom in a molecule or solid is usually quite different from that of the isolated atom,

all coefficients C6, C12 or B are often determined empirically. Two examples are the

”universal graphitic potentials” [29], [30]. Such models have been used extensively to

model interactions between carbon nanotubes, graphene sheets, bucky balls etc: see (e.g.)

[31]. Similar terms are included in force fields (e.g. CHARMM) used for biochemical

modelling.

3.3 Pairwise addition as a dispersion energy correction to LDA

Perhaps because of the availability of high-level quantum chemical methods, the simple

pairwise approach seems to have been pursued much later for finite molecular systems

than for other appplication areas. Wu and Yang [32] introduced a pair interaction of form
∑

ij f ij
d (Rij)C

(ij)
6 R−6

ij to be added to the Local Density Functional (LDA) energy, which

of course already contains the Pauli repulsion. The coefficients C6 were optimized by

fitting a set of accurate molecular energies. They turned out to be surprisingly, though

not perfectly, transferrable. This general approach is now often called ”DFT+D” or

DFT-D” and has been furthered by Grimme and others [33], [34]. In the last approach,

transferability is improved by counting the number of effective bonds in which an atom

participates, then using this to modify the atomic C6 coefficients. Another approach [35]

starts from accurate quantum chemical data for the vdW C6 coefficients of free atom

pairs. The vdW interaction is then modified to account for Pauli compression effects of

nearby atoms on the atomic polarizabilities, using the effective volume of each atom in

its molecular environment, according to a standard molecular space partitioning scheme.

4 Effects beyond pairwise additivity

As already indicated in Sect 2.5 above, perturbation theory naturally produces triplet

and higher contributions to the dispersion energy, beyond pairwise interaction of atoms

or spatial elements. For small weakly polarizable systems such as rare gas atoms, these

terms are relatively small but can be significant, along with R−8 and higher terms, at

shorter range as in rare gas crystals [36].

Stronger effects, not describable by a small number of triplet and higher perturbation

terms, have been discovered in polarizable, highly anisotropic systems. Kim et al [37]

studied chains of non-contacting polarizable SiO spheres in various geometric arrange-

ments. They obtained the vdW interaction from the zero-point energy of coupled plas-

mons within a polarizable point-dipole model similar to that in [13] and found major
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discrepancies compared with pair-summation. These discrepancies were not significantly

improved by adding just triplet terms. Martyna et al. have applied a somewhat related

model of coupled oscillators to solid xenon [38]. The multiple-coupled dipole approach

has been popular in the past [13] and can be used [39] to derive the nonretarded Lifshitz

interaction - see Sect 6.1 below.

Other formalisms have yielded equally large discrepancies for semiconducting linear hy-

drogen chains [40], [41]. The beyond-pairwise effects can be understood in terms of the

screening of the coulomb interaction that couples fluctuations on two atoms, due to po-

larization of the electon clouds on other atoms . The non-additive effects are strong when

the systems are very anisotropic (e.g. chains or thin films) and highly polarizable. An

extreme case of a polarizable system is a metal, especialy in low dimensions (wires, sheets,

graphene) where internal coulomb screening is less effective. For such cases it has been

shown [42], [43], [44] that one can even obtain an exponent p in the asymptotic vdW

power law E ≈ −CD−p that differs from that predicted by
∑

C6 R−6 theories. (See

Figure 1 below).

5 The adiabatic connection - fluctuation dissipation (ACFD)

approach to groundstate correlation energy

While coupled point polarizable dipole models are sensible and exhibit the required non-

pairwise–additive vdW behavior, in general one needs a more general approach that allows

for overlap and a detailed description of metals. This leads one to seek more fundamental

approaches. The electronic Diffusion Monte Carlo (DMC) approach has been applied to

a few simple nanostructures [45] [46], but it is very hard to ensure convergence of DMC

in such systems, because of the need for a very big sample cell in order to capture long-

ranged vdW correlations. In what follows we therefore concentrate mainly on approaches

to the electronic correlation energy based on the Adiabatic Connection Formula and the

Fluctuation Dissipation Theorem (ACDF approach) of which the simplest example is the

(direct) Random Phase Approximation (dRPA) correlation energy to be described in the

next Section.

The vdW energy is part of the electronic correlation energy in the groundstate of the

total many-electron system. An exact formal expression for this groundstate correlation

energy is the ACFD formula

Ec = −
1

2

∫ ∞

0

du

∫ 1

0

dλ

∫ ∞

0

~

π
du

∫

d~rd~r ′V (~r, ~r′) (χλ(~r, ~r
′, iu) − χ0(~r, ~r

′, iu)) . (5)

Here we have defined a ”λ-system” in which the bare inter-electron coulomb interaction

V (~r, ~r ′) ≡ e2 |~r − ~r ′|−1 has been replaced by λV (~r, ~r ′) while a λ-dependent static external

potential is applied in order to keep the groundstate density constant at the true (λ = 1)

value while λ is varied. χλ is the electronic density response of the λ-system, defined in

general such that the linearized density perturbation of the λ-system under an external
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potential δV ext(~r) exp(−iωt) is

δn(~r, t) = exp (−iωt)

∫

χλ(~r, ~r
′, ω)δV ext(~r ′)d~r ′ .

In (5) the integration over imaginary frequency u implements the Fluctuation–Dissipation

theorem [47], [48], [14]: as such it constructs the correlated groundstate pair density

n2λ(~r, ~r
′) using the density response as input. The expression (5) is thus of the form

of an electrostatic energy, except for the λ integration, which implements the Adiabatic

Connection formula [49], [15]. The λ integration is based on the Feynman-Hellman theo-

rem, and physically it re-introduces the zero-point kinetic energy of correlation, otherwise

missed in an electrostatic energy type of integral. A particularly clear explanation of the

Adiabatic Connnection is given in Gunnarsson and Lundqvist [15] starting from their Eq

(28), with their ”g” representing our ”λ”. A complete pedagogic derivation of (5) in the

present context, including a first principles derivation of the appropriate version of the

FD theorem, is given in [14].

Expressions based on (5) can be obtained for the exchange-correlation energy

Exc = −
1

2

∫ ∞

0

du

∫ 1

0

dλ

[
∫ ∞

0

~

π
duχλ(~r, ~r

′, iu) + n(~r)δ(~r − ~r ′)

]

and the exact exchange energy

Ex = −
1

2

∫ ∞

0

du

∫ 1

0

dλ

[
∫ ∞

0

~

π
duχ0(~r, ~r

′, iu) + n(~r)δ(~r − ~r ′)

]

The latter reproduces the ”DFT exact exchange”, namely the Hartree-Fock expression

for the exchange energy, but with Kohn-Sham orbitals in place of Hartree-Fock orbitals.

An explicit constructive proof of this statement is given in [14].

6 The (direct) RPA for the correlation energy

Eq (5) is a purely formal expression giving the correlation energy in terms of the response

function χ, and it is not immediately clear how sophisticated an approximation to χ is

required in order to obtain useful accuracy in Ec. In fact it turns out that no explicit

correlation physics is needed in χλ in order to obtain a non-zero correlation energy from

(5). Indeed a very simple time-dependent Hartree approximation for χλ, namely

χdRPA
λ = χ0 + χ0λV χdRPA

λ , (6)

produces the well-known Random Phase approximation for the correlation energy, first

introduced long ago for the special case of the homogeneous electron gas. The correlation

energy includes the mutual energy of coupled fluctuations of the density about the ground-

state, fluctuations whose average value in the groundstate is zero so that they cannot con-

tribute any extra energy in the static Hartree approximation. However when an explicit
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density disturbance (with non-zero ensemble average) is introduced by a time-dependent

external field, this can interact with disturbances elsewhere even at the (time-dependent)

Hartree level. The Fluctuation Dissipation Theorem relates such interactions in the non-

equilibrium driven system to the interactions between spontaneous fluctuations around

the non-driven groundstate.

For the dRPA case the λ integration in (5) can be carried out analytically using the

following formal operator identity in (~r, ~r ′) space: ∂λ ln(1−λχ0V ) = (1 − λχ0V )−1 χ0V =

χdRPA
λ V in which products are to be interpreted as spatial convolutions:

EdRPA
c = −

1

2

∫ ∞

0

~

π
du

∫

d~r [ln(1 − V χ0) + (V χ0)]~r~r (7)

= −
~

2π

∫ ∞

0

duTr [ln(1 − V χ0) + (V χ0)] (8)

= −
~

2π

∫ ∞

0

duTr
[

ln(1 − V 1/2χ0V
1/2) +

(

V 1/2χ0V
1/2
)]

(9)

where the properties of the trace operation have been used in the last line to introduce a

hermitian operator V 1/2χ0V
1/2 which is convenient especially when diagonalization meth-

ods are used to evaluate the correlation energy.

While the dRPA correlation energy was calculated for the homogeneous electron gas many

decades ago (see e.g. [50]), its practical evaluation in more complex systems including

periodic systems is often numerically costly, and has only been carried out quite recently

[51], [52], [53], [54], [55], [56], [57], [58], [59]. When used as a post-functional starting

from PBE orbitals, it has proved to give a very good description of the lattice constants

and elastic constants of many crystals [58] including most of the van der Waals bound

rare gas crystals [60] (except He where self-interaction issues are arguably dominant - see

the next Section). Atomization energies in the dRPA are good but slightly worse than

those from a groundstate PBE calculation, which again may be related to self-interaction

issues. Some methods have also been given to increase the numerical effiiciency of dRPA

and exact exchange calculations in solids [57].

For finite molecular systems the correlation energy in the dRPA and the related RPAx

(see below) have been implemented in an efficient way, via methods and codes originally

designed for molecular time-dependent Hartree-Fock calculations (see [55] and references

therein) . On the formal side Furche [55] proved that

EdRPA
c =

~

2

∑

n

(

Ωn − ΩD
n

)

where Ωn is an eigenfrequency of the RPA equation (6) and ΩD
n is the same quantity

to linear order in the Coulomb coupling strength λ. In fact the notion of using the

separation-dependent part of the sum of zero point energies ~Ω/2 of collective modes

to obtain vdW energies is quite an old one ( [1], [13]). For the macroscopic collective-

mode-only models used in these old calculations one can show that this is correct (see

e.g. [61]), but the Furche result is more general. For some discussion of the sum of zero
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point energies see also Sec. 5 of [61] where it is pointed out that the asymptotic vdW

interaction of undoped graphene planes is dominated by single-particle-type modes so

that the older collective mode zero-point energy model is not sufficient.

Within formal perturbation theory, the dRPA is represented in Feynman energy diagrams

by a sum of rings of open bubbles (where each open bubble represents χ0). The dRPA

and many other variants of the RPA idea can also be expressed as doubles ring diagrams

in the Coupled Cluster approach.

6.1 Lifshitz-like vdW energy formula for non-overlapping systems, and its

relation to RPA

The Lifshitz theory [5], [6] was the mainstay of macroscopic vdW calculations for many

years. One can use a modified form of the ACFD to derive a slight generalization of the

macroscopic Lifshitz formula [62] that renders it suitable for noncontacting nanosystems

as well as the thick parallel slabs for which it was originally intended.

Consider 2 separated systems ”1” and ”2” separated by a variable distance D and with

Coulomb interaction split into inter- and intra system interactions

V11 + V22 + µ(U12 + U21) ≡ V11 + V22 + µV12

We assume no overlap so the systms lie in separated regions ”S1” and ”S2” of space.

Then U12(~r1 ,~r2) = e2 |~r1 − ~r2| when both ~r1 ∈ S1 and ~r2 ∈ S2 but U12 is zero otherwise.

Similarly for U21 while V11, V22 only connect points inside the same system, Then V12 ≡

U12 + U21 = 0 if ~r1 and ~r2 lie in the same subsystem.

We start from two systems with no intersystem interaction (µ = 0), but with full Coulomb

interactions inside each subsystem. The energy in this situation is the same as for D → ∞.

That is

E(D → ∞) = E(D, µ = 0)

Then the D-dependent part of the energy is

Ecross ≡ E(D, µ = 1) − E(D → ∞) = E(D, µ = 1) − E(D, µ = 0)

=

∫ 1

0

dE(D, µ)

dµ
dµ =

1

2

∫

ρ(D, µ, r, ~r′)V12(~r, ~r
′)d~rd~r′

where ρ(D, µ, r, ~r′) is the electronic pair distribution for slabs at distance D and interaction

V11 + V22 + µV12 : the Feynman-Hellmann theorem was used in the last step.

By the Fluctuation Dissipation theorem this is related to the density response function

dE(D, µ)

dµ
=

1

2

∫
[

−
~

π

∫ ∞

0

χ(D, µ,~r, ~r′, ω = iu)du − n0(~r)δ(~r − ~r ′) + n0(~r)n0(~r
′)

]

V12(~r, ~r
′)d~rd~r′

where χ is the density-density response of the fully interacting system. The direct Hartree

cross energy (the last term) is not part of the vdW energy, and so will be ignored (see

also [63]). The self-term with the delta function gives zero when folded with V12. Thus
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the cross energy is entirely due to correlation (because the in-principle-included exchange

part is zero in this non-overlapped regime) and is given by

Ecross(D) = −
~

2π

∫ ∞

0

du

∫ 1

0

dµ

∫ ∞

0

χ(D, µ,~r, ~r′, ω = iu)V12(~r, ~r
′)d~rd~r ′

= −
~

2π

∫ ∞

0

du

∫ 1

0

dµ

∫ ∞

0

(χ12(D, µ,~r, ~r′, ω = iu)V12(~r, ~r
′) + [1 ⇆ 2]) d~rd~r ′

where χ12 (unlike χ012) is NOT zero because of the coulomb interaction between the

slabs. We now make the RPA assumption for the interaction between the slabs. This is

the essential Lifshitz approximation - see the ring diagrams in [6]. Then χ21 = δn2/δV1

can be found from the linear mean field equations in the presence of time dependent

external potentials δV1, δV2 acting separately on the two systems. This gives

χ21 =
(

1 − µ2χ22V21χ11V12

)−1
µχ22V21χ11

and similarly for χ12. Then the vdW interaction is

Ecross(D) = −
~

2π

∫ ∞

0

du

∫ 1

0

dµ

∫ ∞

0

χ12(D, µ,~r, ~r′, ω = iu)V12(~r, ~r
′)d~rd~r ′ + {12 → 21}

= −
~

2π

∫ ∞

0

du

∫

d~r

∫ 1

0

dµ
d

dµ
ln
(

1 − µ2χ11V12χ22V21

)

~r~r

=
~

2π

∫ ∞

0

duTr ln (1 − χ11V12χ22V21) (10)

where in general the ”ln” is an operator log over the (~r, ~r′) space. Also, χ11 and χ22 are

for D → ∞ - i.e. for the isolated subsystems but with full-strength e-e-interactions within

each subsystem. Using the operator idensity Tr ln Ô = ln DetÔ one can see that (10) is

related to the interaction in the general Casimir scattering theory, Eq (5.16) of [10].

(10) is also valid within the dRPA. A more direct proof of (10) from the full RPA-

adiabatic connection formalism, switching on all interactions together, can be constructed

by diagrammatic means: a version for a specific case is given in ref. [62]. We will show

presently that Eq (10) reduces to the non-retarded Lifshitz formula [5] for macroscopic

slab systems. (See Eq (12) below). In general, because (10) is closely related to the

Lifshitz approach, we expect that it will lead to the same asymptotic vdW power laws as

Lifshitz in the electromagnetically nonretarded limit.

To obtain the nonretarded Lifshitz result we note that, from charge conservation and from

insensivity to a spatially uniform applied potential [64], the ”direct” responses χ̄11 and

χ̄22 can be written in terms of a (generally nonlocal) polarizability α = (ε − 1) /4π,

χ̄11 =

3
∑

µν=1

∂2

∂rµ∂r′ν
α11µν(~r, ~r

′, ω) . (11)

For insulators (and for 3D metals with a finite plasma frequency ωP (q → 0)), a remans

finite as both q → 0 and ω → 0. For two thick slabs of matter in vacuo with paral-

lel surfaces separated by D, the standard non-retarded limit of the Lifshitz formula is
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reproduced from (10) by approximatiing α11 and α2,2 via a macroscopic local dielectric

functions ε1, ε2:,

α11µν = δ(~r − ~r ′)
ε1(ω) − 1

4π
θ(~r)δµµ

and similarly for α22. Here θ restricts ~r and ~r ′ to lie within the slabs and ε(ω) is a local

spatially constant dielectric function of each slab. After some algebra for fields varying

as exp(i~q||~r) parallel to the slab surfaces, we obtain χii from χ̄ii via the screening relation

χ = χ̄ + χ̄V χ, and we then reduce (10) to

Ecross =
~

32π2D2

∫ ∞

0

du

∫ ∞

0

dxx2

(

ε1(iu) + 1

ε1(iu) − 1

ε2(iu) + 1

ε2(iu) − 1
ex − 1

)−1

, x = 2q||D (12)

which upon differentiation yields the nonretarded Lifshitz force result given in Eq 3.1

of [5].

An expansion of the logarithm in (10) to lowest order in V12 also reproduces the generalized

Casimir Polder formula (2), so (10) can also be regarded as is a generalization of (2).

At the RPA level, higher terms in the expansion of the logarithm in (8) produce vdW

interactions between theree or more centres (Axilrod-Teller and higher terms) [65]. One

might think the perturbative form (2) always becomes asymptotic to (10) at sufficently

large separation between two subsystems so that the perturbation V12 is ”small”. This

is not in fact the case when the interacting systems have an infinitely large area as in

sheets or slabs. The reason is that as D → ∞ the interaction is dominated by excitations

with a small wavenumber q|| = O(D−1) → 0 parallel to the surface, and the coulomb

interaction between such excitations goes as exp(−q||D)q−1
|| which is never small since

q||D = O(1). For thick parallel plates this can give a discrepancy of up to around 20%

between the Lifshitz result (10) and the generalized Casimir-Polder formula (2), a point

already noticed by Lifshitz [5]. A discussion of this discrepancy for other geometries is

given in Sec. 4 of [61].

In (10) no approximation has yet been made for the internally-interacting responses χ11,

χ22 of the isolated fragments. If these are approximated with the dRPA then (10) gives

a useful form of the dRPA correlation energy, suitable for nonoverlapping systems.

6.2 Unusual asymptotic vdW power laws from dRPA

The dRPA correlation energy can sometimes be evaluated analytically for widely-separated

nanostructures (D → ∞) because then only the long-wavelength (q ≈ D−1 → 0) limit

of the response χ0 is needed. This long-wavelength form can be taken as χ0(~q, ω =

iu) ≈ −n0q
2/mu2 for metals, −n0q

2m−1(u2 + ω2
0)

−1 for insulators and (see [66], [67],

[63]) χ0(q||, ω = iu) = 1
4
~
−1q2

||(u
2 + v2

0q
2
||)

−1/2 for graphene. When these bare responses

are applied to the dRPA for non-overlapping structures distant D, one can show [42],

[43], [68], [69], [59], [70] that the asymptotic form of the vdW interaction is sometimes

qualitatively different in dRPA from the predictions of pairwise additive theories where

E =
∑

ij C6ijR
−6
ij . In particular the exponent p in the form EvdW = −CD−p can be

different as summarized in Fig. 1.
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Figure 1: Asymptotic vdW energy formulae for thick and thin slabs, and for parallel wires,

pictured in the left column. Red indicates an insulator, blue a conductor, purple a semimetal

(graphene). Right column: Predicted energy from pairwise additive theories. Middle column:

Predicted energy from RPA [43]. For further cases of unusual powers see Refs. [44], [69], [70].
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This can occur when all of the following are satisfied: (i) each system is macroscopic in at

least one dimension so that electron density fluctuations of arebitrarily long wavelength

(q → 0) are possible; (ii) each system is small in at least one other space dimension, so

that intra-system Coulomb screening of the charge fluctuations is incomplete; and (iii)

the systems have a zero homo-lumo gap, as in 2D or 1D metals or graphene. The un-

usual power laws arise from the coupling of long-wavelength excitations that involve the

coherent motions of electrons on many atoms, quite different from the pairwise physics.

Significant differences in vdW interaction have also been predicted between metals and

semiconductors in the non-asymptotic limit [71]. When condition (iii) is not satisfied but

the gap is small, as in highly polarizable systems, then the asymptotic power exponent p

in the form EvdW = −CD−p will not be anomalous, but nevertheless non-pairwise addi-

tivity makes the coefficient C differ strongly from the prediction of
∑

C6R
−6 theory. The

unusual power exponents p predicted by dRPA (Fig. 1, second column) have been verified

by electron Diffusion Monte Carlo calculations [46] for the case of parallel linear conduc-

tors. In the case of planar conductors these DMC calculations only partly confirmed the

analytic dRPA result [68], but in this case there is a possibility that the simulation cell did

not have a large enough area to capture the very long-wavelength fluctuations/correlations

involved in the large-D vdW interaction. For the case of graphite a full numerical dRPA

calculation of the layer binding energy E(D) has recently been performed [59]. This cal-

culation was able to confirm the presence of the predicted anomalous D−3 contribution

at the largest D values (≈ 3 nm) where the numerics were still feasible, but also showed

that the D−3 contribution from the gapless electronic πz → π∗
z transitions was still essen-

tially negligible at this separation, compared with the much larger vdW energy from the

gapped transitions involving ”majority” Bloch bands other than the πz bands. A similar

consideration applies to observation of the anomalous asymptotic −CD−2(ln D)−3/2 en-

ergy predicted [42], [43] for parallel metallic carbon nanotubes (though the unusual energy

contribution may be more dominant for nanowires made of metallic atoms). Nevertheless

at suffciently large separation D the anomalous metallic term will dominate, and it will

be interesting to see whether sensitive modern force detection techniques such as atomic

Force Microscopy are able to measure these anolamous forces directly. In terms of gen-

eral modelling of solids and nanostructures, however, the wrong magnitude of the vdW

interaction at short to intermediate distances because of non-pairwise-additivity effects is

probably more important than the power law at asymptotic separations.

7 Diseases of dRPA

Despite the good success of the dRPA for many solids, with inclusion of vdW effects

as just described, this theory has some very serious shortcomings in general, and it is

important to use it only in circumstances where these are not significant or where they

can be easily corrected.
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7.1 Over-correlation by dRPA

Firstly, the depth of the short-ranged part of the electronic correlation hole is seriously

over-estimated in dRPA, resulting in overestimation of the magnitude of the absolute

correlation energy. This was apparent already in early work on the homogeneous electron

gas. Fortunately, one is most often interested in energy differences ∆Ec = Ec(
{

~Rj

}

) −

Ec(
{

~R′
j

}

) between different arrangements of the same set of nuclei, with positions ~Rj in

one configuration and ~Rj
′ in the other configuration. Here the incorrect short-ranged

part of the hole is much less important as it is likely to be very similar in the two nuclear

configurations and hence largely cancels in ∆Ec, provided that the nuclei are not moved

too close to one another. Indeed Perdew and co-workers [72] noted that dRPA tends

to overestimate |Ec| per electron by a constant amount, so that ”isoelectronic” energy

differences (those with Nelectrons held constant) are relatively well described. Since the

short-ranged hole is described much better in LDA/GGA, Perdew and collaborators also

proposed in the same paper a theory correcting the RPA correlation energy for short-

ranged effects by using LDA data

ERPA+
c = EdRPA

c +

∫

(

εhom
c (n(~r)) − εhom,dRPA

c (n(~r))
)

n(~r)d~r .

Here εc(n) is the correlation energy per electron in the homogeneous electron gas of density

n. More sophisticated versions termed ”RPA+” based on gradient functionals were also

derived [73]. Note that all of the sucessful dRPA calculations for solids by Harl et al., [58]

were for isoelectronoic energy differences.

A different approach to the short-ranged diseases of dRPA is that of range separation,

originally introduced by Savin and Stoll for molecular problems [74], [75]. This involves

splitting the bare Coulomb interaction into short ranged and long ranged parts, with

different many-body treatments applied to the two parts - e.g. dRPA for the long ranged

part and LDA for the short ranged part. This has been tried recently as a correction to

the dRPA with some success [76], but the approach probably deserves wider application

for RPA as it also lessens the computational load associated with reproduction of the

coulomb cusp in the pair function

7.2 Spurious electron self-interaction and dRPA

In a one-electron electron system the bare density response χ0 is the exact response, and

the correlation energy should be zero. However the time-dependent Hartree equation

(6) contains a non-zero self-interaction term, the second mean-field term on the right

side, which correponds in this case to an electron avoidiing itself. As a result the dRPA

contains an incorrect self-correlation energy for a one-electron system. Bacause of the r−1

dependence of the Coulomb energy, this can be a very serious error for orbitals that are

highly localized (having small radius r), as in the He atom for example. Partly as a result

of this, dRPA starting from LDA or GGA orbitals gives an extremely bad account of the

55



binding energy curve of small dimers [77], [78]. Some improvement can be obtained by

using starting orbitals and/or KS potential that incorporate groundstate self-interaction

correction, since the correponding effective potential includes the correct −e2/r tail and

reduces the polarizability of the outer orbitals compared with the incorrect high values

obtained from the LDA potential. The problem of singles contributions, related to a

non-self-consistent choice of starting orbitals, is also a significant issue [79].

The best-justified method to correct the self-interaction in dRPA is to go to higher mem-

bers of the RPA class of theories. For example the ”RPAx” energy comes from replacing

(6) by the antisymmetrized Hartree Fock version of the mean field, and this entails the re-

sponse of the 1-electron density matrix rather than just the density. This is implemented

in a number of molecular packages, and it does improve the binding energy curves of small

dimers where self interaction correction (SIC) is an issue [77], [76] . RPAx does have some

problems and instabilities of its own, however, and is computatinally demanding in solids.

Another systematic way to improve dRPA is to add, to the dRPA ring energy diagrams,

a sum of higher terms in the form of the Second Order Screened Exchange (SOSEX)

diagram [80]. This exactly cancels the one-electron self-correlation term in the dRPA.

It also makes a significant further improvement to the already good dRPA results for

the energetics of solids [80] and gives excellent lattice spacings. Unfortunately it adds

significantly to the already large computational cost of dRPA energy calculations for

solids.

Another possible improvement to dRPA is the use of the Inhomogeneous Singwi-Tosi-

Land-Sjolander (ISTLS) correlation theory [81], [82], [83], which not only cures the one-

electron self-interaction problem but may improve the ”many-electron self interaction”

properties disciussed by Perdew and coworkers [84]and byYang and coworkers [78], related

to the need for a linear dependence on any fractional orbital occupation numbers. Of couse

ISTLS is also computationally very costly.

The success of the dRPA energetics for crystals with diffuse outer orbitals such as the

π-clouds of graphene systems [59], or crystals of the larger rare-gas atoms [60], reflects

the unimportance of orbital self-interaction for such diffuse orbitals. Significantly, the

bonding of the He crystal with its tightly bound atomic orbitals was described much less

well by dRPA than the higher rare-gas crystals [60].

8 Approximations to microscopic energy expressions for vdW

energetics

A number of approaches have been proposed to obtain efficient vdW energy functionals

by approximating microscopic energy expressions. Racpewicz and Ashcroft [27] and An-

dersson, Langreth and Lundqvist [85] postulated a nonlocal density based approximation

for well-separated pairs of systems via indirect arguments. Dobson and Dinte [64] showed

that this expression could be derived directly from the generalized Casimir Polder pertur-
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bation theory (Eq (2) above) , via a local conserving density-based approximation to the

density response χ. More complex theories have recently been proposed with this type of

approach as a starting point [86], [87].

It is also possible to approximate non-perturbative ACFD energy expressions using only

the groundstate electron density n(~r) as input. An early attempt in this direction was the

functional of Dobson and Wang [88]. This approximated χ0 by the double space gradient

of a density-based approiximation to the polarizabillity, followed by RPA screening with-

out further appoximation. This approach reproduced the RPA cohesion energy of a pair

of metal slabs right down to contact with overlap of electron clouds. Unfortunately the

functional is not very efficient numerically and needs explicit cutoffs to describe insulators,

and so far it has not been pursued further.

8.1 vdW-DF

By far the best-known functional of the ”approximated ACFD” type is the ”vdW-DF”

of Dion et al [89], [90], [91]. A complete self-contained derivation of this functional seems

to be lacking in the literature, but an attempt will be made here to list some features

of the reasoning. The starting point is the exact ACFD, Eq (5). From this starting

point the vdW-DF provides a nonlocal correction Enl
c to the LDA correlation energy of a

nonuniform system . The method is not limited to the RPA, but it is approximate, and

five distinct approximations/assumptions appear to have been made in obtaining it:

Approximation (i) The method notes that the quantity ε(~r, ~r ′, ω) defined in electrody-

namics is equal to the screening function 1 − χ̄ ∗ V for the special case of the uniform

gas. Here χ̄ denotes the ”direct” response function relating the electron density to the

total classical electrodynamic potential. The ACFD then assumes that plugging ε into

the ACFD, instead of the exact χλ = (1 − χ̄λ ∗ V )−1 χ̄λ, results in the LDA correlation

energy. The nonlocal correction to the LDA would then be given by

Enl
c =

1

2

∫

dλ

λ

∫ ∞

0

~

π
duTr

[

(1 − χ̄λ ∗ λV )−1 χ̄lVλ − ε−1
λ (ελ − 1)

]

where the dependence on (~r, ~r ′, ω = iu) is suppressed for brevity, products are space

convolutions and the Trace operation is TrF =
∫

F (~r, ~r)d~r. The subtracted term is not

exactly the LDA, so this amounts to the first approximation.

Approximation (ii) The ”full potential approximation”, explicitly introduced in vdW-DF,

assumes that the λ integration in the ACFD can be done analytically to give an operator

logarithm:

Enl
c =

~

2π

∫ ∞

0

duTr ln
[

ε−1(1 − χ̄λ ∗ λV )
]

(13)

This is exactly true in the dRPA where χ̄λ = χ0 independent of λ, but it constitutes an

approximation in other formalisms.

Approximation (iii) Since χ̄ = ∇(ε−1)∇/4π exactly in general (see e.g. [64]), the nonlocal

correlation energy correction (13) can be expressed in terms of ε alone. The logarithm
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in (13) represents the solution of the time-dependent Hartree-coulomb screening problem.

In vdW-DF, this screening problem is solved approximately by expanding the logarithm

to second order in the quantity (ε−1 − 1), termed ”S” in [89], (but not exactly equal to

to the dynamic structure factor despite the similarity to a common notation). This gives

Enl
c =

~

4π

∫ ∞

0

Tr



S2 −

(

~∇S.~∇V

4πe2

)2


 du . (14)

Here once again all products represent convolutions in position space.

Approximation (iv) Finally a modified plasmon pole type of approximation is made for S

and substituted into (14), yielding after some algebra a functional of form

Enl
c =

∫

n(~r)n(~r′) φ(~r, n(~r),∇n(~r) : ~r ′, n(~r ′),∇n(~r ′)) d~rd~r′ (15)

where φ ∼ |~r − ~r ′|−6 as |~r − ~r ′| → ∞. The dependence on gradients is built into the

modification to the simple plasmon pole approximation, and the physics of this is based

on many years of success by Langreth and co-workers with the development of gradient

density functionals.

Approximation (v) In order to implement the functional in practice, it must be combined

with a suitable approximation for the exchange energy E0
x. Tests on a number of systems

showed that neither LDA exchange nor exact DFT exchange produced results of useful

accuracy. However it was found that the revPBE exchange functional was suitable, and

some physical reasons were advanced for this choice. This is very crucial to the behavior

of the functional for vdW-bound systems near to their equiilibrium binding separation

D0.

8.2 Features of vdW-DF

The vdW-DF turns out to be a numerically efficient approach with some very good gen-

eral features. It has the −
∑

C6R
−6 form at for well separated systems and hence never

fails to produce a vdW interaction where required. A very strong feature is the natural

saturation of the function φ at short distances (see Eq (15) above), without the need

for any empirical input, in contrast to more empirical pairwise summation approaches.

vdW-DF gives sensible results for a wide range of van der Waals bonded systems from

rare gas dimers to solids and surfaces, often giving good vdW energies but sometimes

significantly over-estimating D0 [92], [93], [94]. Significant improvements have recently

been made in its numerical implementation (e.g. [95], [96] and its speed is now quite

competitive with more empirical pairwise-additive theories. Attention has also been fo-

cussed on improving the generalized plasmon pole approximation (”approximation (iv)”

described above). Vydrov and van Voorhis [97], [98] took a frankly empirical approach

and modified approximation (iv) so as to improve the predicted C6 for atom dimers. The

original authors [99] also suggested improvements to aspects (iv) and (v). Overall the

method is robust and continues to be used for a variety of systems [100].
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There are however a number of further aspects (approximations (i)-(iii) listed above) that

could probably be improved. For example, as a result of approximating the logarithm as

in Approximation (iii) above, the theory ends up having a pairwise additive form, with
∑

ij CijR
−6 behavior at large separations (compare Sect 4 above). This

∑

ij CijR
−6 long-

ranged behavior means that the asymptotic vdW interaction for metallic systems will have

the same exponent as for insulators in any geometry, contrary to known properties of thin

metal or graphene sheets or metallic wires: see Sect 6.2 above. While the unusual behavior

of such low-dimensional zero-gap systems at large distances is interesting, the force there is

small and this alone would not constitute a serious disadvantage of the theory for practical

binding calculations [59]. However the same pairwise property means that one might need

to be careful about this functional for polarizable, highly anisotropic systems even in the

non-asymptotic region of electron cloud overlap (see for example [37], [71], [41]). One

should probably not be surprised that the theory appears not give a satisfactory account

of the selective binding of graphene to specific metal surfaces [94], for example.

8.3 New directions for ACFD-based vdW functionals

It is tempting to try to go beyond the dRPA by using the ACFD (Eq (5)) but replacing

the time dependent Hartree equation (6) of dRPA by the exact equation of linear Time

Dependent Density Functional Theory (TDDFT) [101]:

χλ = χ0 + χ0 (λV + fxcλ)χλ . (16)

If the usual Adiabatic Local Density Approximation (ALDA) is used for the dynamic

exchange-correlation kernel fxc, the ACFD energy from (16) is typically not improved

over dRPA, because the ACFD energy samples all frequencies, not just low frequencies

for which the ALDA is suited. Instead of this dRPA+ALDA approach, an ACFD energy

formalism has been tried, with use of an ”energy optimized” local exchange correlation

kernel fxc designed to improve the short ranged hole properties, and fitted to the xc energy

of the homogeneous gas [102], [103]. This approach improved the energy over RPA for

jellium spheres [104] and in fact it did better than the RPA+ approach described above

in Sec 7.1. Other than this it has received little testing. The xc kernel fxc[n](~r, ~r ′) used

in these theories was local or semi-local in r and ~r ′ and had a similarly local functional

dependence on the groundstate density n(~r ′′). However it has become clear that any

beyond-dRPA theory of van der Waals interactions requires fxc to have a highly nonlocal

functional dependence on n(~r′′) A limited discussion of this is given in [14], and work is

proceeding on a possible implementation of this idea.

Even the simplest of the full many-body theories, the dRPA, is very costly numerically.

For example a recent implementation [59] of dRPA for the binding energy curve E(D)

of graphite as a function of the layer spacing D using an efficient periodic code was near

the limit of present numerical capabilities despite the small size (4 atoms) of the unit

cell of graphite. This was partly because of the need to sample k space finely near the
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Dirac points in the Brillouin zone - see e.g. [63]. dRPA-based modelling of technologically

interesting graphenic nanostructures, such as graphene bound on various metals, would

seem to be presently out of reach because large crystal unit cells are required. Pair-

wise additive theories including vdW-DF are not a priori reliable because of the highly

anisotropic, highly polarizable nature of the systems involved. (see Sect 4). Thus a highly

non-additive nonlocal but numerically efficient theory is required. One current approach

to this problem is to keep a full solution of the time dependent Hartree screening problem

(Eq (6)), corresponding to retention of the full logarithm in (8) or (13), without use of a

second order expansion, thus avoiding restriction to pairwise additive physics. Instead

one approximates the independent-electron response function χ0(~r, ~r
′, iu). A very recent

development [105] is the use of the new Continuum Mechanics (CM) formalism of Tokatly,

Vignale and co-workers [106] , [107] to calculate χ0. CM is a hydrodynamic-style theory

with the remarkable property that it gives the exact response χ0 of one-electron and two

electron systems at all frequencies, and for general many-electron systems at high frequen-

cies. It satisfies the f-sum rule and various other exact constraints such as the Harmonic

Potential Theorem [108]. Ref [105] develops this approach into a general-geometry non-

pairwise theory that has good vdW properties both for insulators and for a simple metal

test model. Work is proceeding on formal properties of the CM-based correlation theory,

and on its numerical implementation for realistic geometries.

9 Summary

Macroscopic (Lifshitz) and few-atom (quantum chemical) approaches to dispersion forces

have long been available. In recent years here has been much progress in the first-principles

microscopic description of dispersion forces in solids and larger nanostructures, right down

to microscopic contact separations. Modellers can now choose from a variety of computa-

tionally tractable semi-empirical pairwise-additive theories of these phenomena, as well as

the pairwise additive vdW-DF theory. These are adequate for medium-accuracy calcula-

tions in the electromagnetically non-retarded limit, with the possible exception of systems

that are simultaneously highly anisotropic and highly polarizable. An improvement for

such cases can be obtained with models evaluating the zero point energy of self-consistent

dynamical collective polarization modes, in arrays of localized polarizable dipoles. For

a full decription of such cases however, including a detailed account of low-dimensional,

low-gap systems one probably needs the computationally expensive full many body ap-

proaches, which are now available in packages such as VASP and ABINIT. These start

with the simplest direct Random Phase Approximation (dRPA). Recent additions such

as RPAx and dRPA+SOSEX can improve numbers but are even more costly. Currently

these approaches are not feasible for large nanostructures in realistic, technologically in-

teresting geometries. Work is continuing to remedy this situation.
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