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Abstract

It is essential to know the arrangement of the atoms in a material in order to compute and

understand its properties. The search for stable structures of materials using first-principles

electronic structure methods, such as density functional theory (DFT), has grown rapidly in

recent years. Here we describe our simple approach to searching for structures with DFT

which we call ab initio random structure searching (AIRSS). Applications to discovering

structures of solids, point defects, surfaces, and clusters are described.

7.1 Introduction

Finding the most stable (lowest in energy or free energy) structure of a large assembly of atoms

is a very difficult problem. The number of minima in the potential energy surface (PES) of a

large system increases exponentially with the number of atoms. Finding the global minimum

energy structure with certainty presumably involves visiting every local minimum and conse-

quently the computational cost also increases exponentially with the number of atoms. This

effectively prohibits an exact solution for large systems. Although the problem of structure

prediction remains very difficult, steady progress has been made over the years. Advances in

computing power, methods for calculating accurate energies of assemblies of atoms, and progress

in searching methodologies has led to numerous successful predictions.

Predicting structure is important for a number of reasons. Structure prediction is relevant to all

areas of science in which one would like to know the relative positions of atoms. Computational

searching can be much easier and cheaper than experiments since a range of systems can quickly

be searched, often obtaining interesting results and sometimes discovering promising new mate-

rials. The low-energy metastable minima are also interesting as they can be accessed at finite

temperatures, or under pressure. Structures may also be trapped in metastable minima during

growth or processing. Computational searches can augment experimental studies when the data

is of poor quality or incomplete. For example, powder diffraction data may be insufficient for a
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complete structural determination but may suffice to yield information such as the dimensions

of the unit cell and an indication of its likely space group. The experimental data can then be

used as constraints in a structural search. The positions of hydrogen atoms within a crystal

cannot easily be determined from x-ray diffraction data, and here one can use the positions of

the heavier atoms and the dimensions of the unit cell as constraints. Computational searches

can also be used to investigate materials under conditions which cannot currently be accessed

experimentally, for example, the pressures within the deep interiors of massive planets. Perhaps

the most exciting possibility is the discovery of new materials in the computer which can be

synthesised and have useful applications.

We have used our searching strategy, AIRSS, to predict stable and metastable structures of

crystals and clusters and the atomic positions at point defects in solids, and we are beginning

applications to surfaces and interfaces. Only fully quantum mechanical calculations suffice to

deliver the required level of accuracy because of the wide range of inter-atomic bonding that

may be encountered throughout the searches. We calculate the energetics using first-principles

density-functional-theory (DFT) methods [1–3] which offer a high-level description of the elec-

tronic structure at a cost which is affordable for the many thousands of structures which must

be considered in the course of a reliable search.

There is a rich literature on computational searching for structures. It is not our purpose here

to review the entire field, although in Appendix A we briefly summarise other approaches to

structure searching and give references to the literature. In this article we describe our preferred

approach in detail, illustrating the discussion with a variety of examples.

7.2 Potential energy surfaces and the global searching problem

The exponential increase of the number of local minima with system size was derived and

discussed by Stillinger [4]. The basic idea can be gleaned from the following simple argument.

Suppose that a large system of N atoms can be divided into M equivalent subsystems, each of

N/M atoms. If the subsystems are large enough they will have independent stable configurations.

The total number of locally stable configurations of the system ns therefore satisfies

ns(N) = nM
s (N/M) . (1)

The solution to equation (1) is

ns(N) = eαN , (2)

where α is a constant. Computational studies of Lennard-Jones clusters support the exponential

dependence [5, 6].

The exponential increase in the number of local minima suggests that it will be very difficult to

devise a reliable approach for finding the global minimum energy state of a large system. Perhaps

clever methods can be found for eliminating the exponential scaling? Although it is not currently

possible to give a definitive answer to this question, the prospects appear bleak. Determining

the global minimum of a PES is classed as an NP-hard (non-deterministic polynomial-time

hard) problem. These are problems for which it is widely suspected (but not proven) that it
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is impossible to find an algorithm which works without fail in polynomial time. Reducing the

strength of the exponential scaling (i.e., reducing the value of α in equation (2)) is a more realistic

goal, but theory also provides us with a warning about this. Wolpert and Macready have proved

a “no free lunch theorem” for searching and optimisation which shows that all algorithms that

search for the global minimum of an energy function perform exactly the same when averaged

over all possible energy functions [7]. The implication is that it may be extremely difficult or

even impossible to find a smart algorithm which works well in all circumstances.

We are interested in the energy functions which represent the PES of assemblies of atoms,

and these form only a very small subset of all possible energy functions. Much of the PES

of a reasonably large assembly of atoms corresponds to very high energy structures in which

some atoms are much closer than an equilibrium bond length. This can readily be verified by

calculating the energies of an ensemble of “random” structures, each formed by placing atoms

at random positions within a box whose size gives a physically reasonable density. The average

energy will be far higher than even the highest energy local minimum because of the strong

short-range atomic repulsion. Other parts of the PES will correspond to fragmented structures.

These may contain interesting energy minima, but if we are only interested in fully connected

structures we can disregard them.

A basin of attraction of a PES is defined as the set of points for which downhill relaxation

leads to the same energy minimum. A PES can therefore be divided into basins of attraction.

Some rather general features of the PES of an assembly of atoms and its basins of attraction

are known:

(i) The substantial fraction of the PES in which some atoms are very close together contains

almost no minima.

(ii) The basins are normally arranged such that if one moves from a basin to a neighbour it

is more likely that the neighbour will have a lower energy minimum if the barrier between the

basins is small. This is a consequence of the relative smoothness of the PES at low energies

and is related to the Bell-Evans-Polanyi principle which states that highly exothermic chemical

reactions have low activation energies [8].

(iii) Another implication of the Bell-Evans-Polanyi principle is that low energy basins are ex-

pected to occur near other low energy basins. Of course low energy basins can occur in widely

separated “clumps”, which are normally referred to as “funnels”.

(iv) Studies of Lennard-Jones clusters show that basins with lower energy minima tend to have

larger hyper-areas than higher energy minima [9].

(v) The probability distribution of the energies of the local minima of a PES is close to Gaussian

for large systems, as would apply for the model which leads to equation (2).

(vi) The hyper-areas of the basins of attraction appear to follow a power law distribution [10].

It seems that the power law behaviour must derive from some type of order in the arrangement

of basins of different sizes, with smaller basins filling the gaps between larger ones [11]. The

power law distribution does not occur in a simple model PES formed by arranging Gaussians of

random width [11].

(vii) Both very-low (and very-high) energy minima tend to correspond to symmetrical struc-

tures. This principle has been annunciated in many forms over the years and it is also supported

by calculations [12,13].
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(viii) It has been observed that some space group symmetries are much more common than

others in crystals formed from small organic molecules [14–16]. Inorganic systems show different

space group frequencies [17,18].

(ix) As well as general features of the PES of assemblies of atoms, there are particular features

which arise from chemical considerations. In fact we normally know a great deal about the

chemistry of the systems we study. We often know which atomic types prefer to bond to one

another and the approximate lengths of the bonds, and the likely coordination numbers of the

atoms.

7.3 Random Structure Searching

If nothing is known about the likely low-energy structures it is reasonable to start searching

by relaxing random structures, which gives the widest coverage of the PES and an unbiased

sampling. The notion of “random structures” is explored in Subsection 7.3.1, and it will turn out

that we must impose limits on the initial structures for reasons of efficiency, so that our “random

structures” might better be described as “random sensible structures”. Using random sensible

structures is a useful approach which we have used successfully in several of the applications

described in Section 7.6. The rather surprising degree of success of this approach derives from

features (i), (iv) and (vi) described in Section 7.2. These features imply that even random

sampling has a good chance of finding low energy basins and that the wide coverage of the PES

gives a chance of sampling the different “funnels” mentioned in (iii). We exploit features (vii)

and (viii) by imposing symmetry constraints as explained in Section 7.4. We make use of the

proximity of low-energy basins of (iii) by “shaking” structures so that they fall into nearby

minima, see Section 7.4. Following (ix), we also make extensive use of chemical understanding

of the system, as described in Section 7.4.

Our approach is very simple as it requires very few parameters and is very easy to implement.

The biases are largely controllable, understandable, and based on sound principles. The searches

run very efficiently on modern parallel computers. Our experience with the primitive method

has been that we can perform highly reliable searches for the global minimum with up to at

least 12 atoms (of one or two species) and sometimes more. When imposing constraints we can

search successfully on much larger systems. Information from experiments, and chemical and

structural information for the system in question or similar systems, and information generated

by previous searches are combined to help design searches. The most successful approaches

to searching are those which make the best use of the available information to bias the search

towards finding the desired structures.

Our searches find many local minima, particularly if constraints are not imposed. As mentioned

in Section 7.1, it is not only the ground state structure which is of interest, higher energy

structures can also be important. For example, technologies such as molecular beam epitaxy

(MBE) and Metal-Organic Chemical Vapour Deposition (MOCVD) allow controlled epitaxial

growth of materials, which can result in structures far from equilibrium. Structure searching

allows the discovery of many possible stable and metastable materials, which can then be ranked

according to any property of interest such as the band gap or bulk modulus.

Random structure searching also teaches us chemistry! For example, we threw hydrogen atoms
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(H) and oxygen atoms (O) in the ratio 2:1 into a box and relaxed, finding the most stable

structures to consist of H2O molecules. Of course we expected this but, studying the higher-

energy structures, we found other low-energy small molecules composed of H and O atoms [19].

7.3.1 Generating random structures

What do we mean by the term “random structure”? The arrangements of atoms in real materials

are not at all random because the diameters of atoms and the bond lengths between them lie

within a rather small range of roughly 0.75 to 3 Å. An assembly of atoms therefore has a

“natural volume” which is proportional to the number of atoms present but only rather weakly

dependent on the identities of the atoms and the external conditions. We start searches from

fully-connected structures because separate fragments do not “see” each other and are unlikely

to join up during relaxation. We adopt different procedures for generating initial structures

for bulk solids, clusters and point defects in solids. Procedures can easily be devised for other

purposes such as finding surface or interface structures, see Fig. 1.

Figure 1: Iron clusters on graphene. A 24-atom supercell of graphene was set up and a (non-

magnetic) four-atom iron cluster of random shape was placed at a random position on top of the

graphene sheet, and all the atomic positions were relaxed. The lowest energy structure obtained

after relaxing 69 structures is shown. Note the distorted tetrahedron of the iron cluster and how

well the iron cluster matches the graphene lattice

Periodic solids: A random set of unit cell lengths (a, b, c) and angles (α, β, γ) is chosen and the

cell volume is renormalised to a random value within ±50% (or thereabouts) of a chosen mean
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volume. An appropriate mean volume can be determined from known structures composed of

the same atoms, by adding up atomic volumes, or by relaxing a few “handmade” structures.

The results are not very sensitive to the mean volume and range chosen. It turns out that a

unit cell with very large or small angles can be transformed into an entirely equivalent unit cell

with angles in the range 60◦–120◦. The more compact transformed cells are helpful for choosing

efficient grids for Brillouin zone integrations and in visualising structures. We transform to more

compact cells whenever possible.

Clusters: To generate initial structures for clusters we choose a box of a reasonable size to

enclose the cluster and insert the atoms at random, as in a calculation for a periodic solid.

We then place the box inside a considerably larger unit cell and impose periodic boundary

conditions. An example of searching in clusters is described in Fig. 2.

Point defects: We start from a supercell of the perfect host crystal. In our work on defects

in diamond-structure semiconductors (see Section 7.6) we have mostly used 32-atom supercells,

although some defects may require larger cells. We remove a few neighbouring atoms from the

crystal to make a “hole”, into which we place at random the desired host and impurity atoms.

Keeping atoms/molecules apart: Random structures may contain atoms which are very

close together. Such occurrences are often harmless as the forces on the atoms are very large and

they quickly move apart under relaxation. We have, however, sometimes encountered problems

when transition metal atoms are nearly on top of one another which can make it very difficult to

achieve self-consistency so that accurate forces cannot be obtained. A related problem occurs in

searching for the structures of molecular crystals, where starting from randomly placed molecules

can lead to unwanted chemical reactions. These difficulties can be avoided by rejecting starting

structures in which atoms or molecules are too close. For very large systems the fraction of

structures rejected will approach unity and a more efficient procedure should be used in which

atoms or molecules are “nudged” apart.

7.4 Biasing the searches

Choosing stoichiometries: Does element A react with element B to form the compound AB,

or perhaps A2B, or A2B3 etc., or is the compound A2B3 unstable to the formation of A2B +

2B, or 2AB + B ? These questions can be answered by determining the energies of the most

stable structures of each compound, which allows the thermodynamically most stable state of

a mixture of A and B to be determined. This problem involves searching a larger space than

is required for determining the most stable structure of a particular stoichiometry, but it can

be tackled by carrying out structural searches for a range of stoichiometries. Searching with a

particular stoichiometry may give hints about more stable stoichiometries as phase separation

can occur within the unit cell. We have often noticed such behaviour although the limited size

of the cells means that calculations with other stoichiometries and cell sizes may be necessary to

unambiguously identify phase separation. An example of searches over different stoichiometries

is described in Fig. 14. The first source of bias in studying a system is therefore the choice of

stoichiometries.

Choosing the number of units: When searching for crystalline phases of a given stoichiom-
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Figure 2: Silicon clusters were generated by placing atoms randomly within a small box inside

a large unit cell and relaxing within DFT. The algorithm generated the same lowest-energy

structures obtained in previous DFT studies [20], including the two “magic” number clusters

with seven and ten atoms. We also found many local minima. The highest-energy minimum

for each cluster size is only about 0.25 eV per atom higher in energy than the minimum energy

structure

etry one does not a priori know how many formula units the primitive unit cell contains, and

one should perform searches with different numbers of units. Searching using “usual” numbers

of formula units, such as 2, 4, 6, and 8, will normally be an effective way to bias the search.

However, it will preclude unexpected results, for example the 11 and 21 atom host-guest phases

of aluminium (discussed in Section 7.6). We are fighting a computational cost which grows

rapidly with system size and performing nearly exhaustive searches with more formula units

rapidly becomes impracticable. Random structures are a perfectly reasonable starting point if

one has no knowledge of the likely structures, but with a little thought one can often greatly
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improve the efficiency of the search by biasing it towards finding low energy structures. This

makes it possible to perform more comprehensive searches with larger numbers of atoms.

Imposing chemical ideas: Extensive knowledge of the chemistry of a system is often available,

even if we know little about the actual structures which are favoured. Under these circumstances

one can use chemical ideas to bias the searching. We already mentioned the idea of choosing

initial structures composed of molecular units, and other examples of imposing chemical ideas

are discussed in Section 7.3. Even if the system is non-molecular it is often possible to use

chemical units to increase the efficiency of the search. For example, if one is interested in

structures of gallium arsenide one can make initial structures from Ga–As units. This has the

effect of making the densities of the Ga and As atoms much more uniform than a random

structure, which becomes increasingly important for larger system sizes. Another important

chemical idea is that of coordination number. For example, we can generate initial structures

of carbon with sp2 bonding by creating random structures and rejecting all those which are not

3-fold coordinated, as illustrated in Fig. 3.

Figure 3: Left: A structure built by placing carbon atoms randomly within a small sub-box,

subject to symmetry constraints. Random structures were generated and then screened to

determine whether the atoms were three-fold coordinated. If not, the structure was rejected and

another one was generated. Right: relaxation of this structure within DFT gave the well-known

C60 “buckyball”

Imposing symmetry: As noted in Section 7.2, minima with very low or very high energies

tend to correspond to symmetrical structures. Imposing a degree of symmetry on the initial

structures and maintaining it during relaxation therefore eliminates a large amount of the PES

while (hopefully) still allowing the global minimum energy structure to be found. We implement

this strategy by searching randomly over all space groups with Ns symmetry operations. Such

a search also allows structures to relax into space groups which are super-groups of those with

Ns symmetry operations. Symmetry constraints have often been used in searching for crys-

talline polymorphs composed of small molecules such as the drug molecules developed within

the pharmaceutical industry [21].

Using experimental data: We already mentioned the possibility of using experimental data to

bias the searching in Sections 7.1 and 7.2. It may turn out that a powder diffraction spectrum is

obtained with quite a few well defined peaks which, however, are insufficient for a full structural

determination. In such cases it is often possible to determine the dimensions of the unit cell
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and perhaps an indication of the most likely space groups from the data. Such information is

extremely useful when performing a structural search, and an example of this type of constrained

search is described in Section 7.6 for a high-pressure phase of ammonia monohydrate, and a test

calculation for a dipeptide is illustrated in Fig. 4. Knowledge of the different space group

frequencies, which we mentioned in Section 7.2, could also be used to bias searches.

Figure 4: The crystal structure of the beta-L-aspartyl-L-alanine dipeptide is known experimen-

tally. In this test we made structures from the experimental unit cell shown on the right and the

P212121 space group of the crystal and the structure of the beta-L-aspartyl-L-alanine molecule

(top left). Carbon atoms are shown in grey, oxygen in red, nitrogen in blue and hydrogen in

white. A single molecule was placed randomly in the unit cell and the positions of the other

three molecules were determined by the space group symmetry. The structure was rejected if two

molecules overlapped and a new one was generated. Each non-overlapping structure was relaxed

within DFT while maintaining the size and shape of the unit cell and the P212121 symmetry.

The correct molecular packing (bottom left) was found after relaxing 18 structures

Shaking: In Section 7.2 we encountered the idea that low energy basins may be clustered

together. This motivates the “shake”, a random displacement of the atoms and, if appropriate,

a random adjustment of the unit cell. Atomic displacements of a large fraction of a bond length

have a reasonable chance of pushing the system into a nearby basin of attraction. We have also

used shaking to look for distortions of structures into doubled (or larger) unit cells. The shake

is the same as a step in the basin hopping algorithm [22–24] (see also, Appendix A), although

we have used it only with zero temperature and after considerable searching has already located

low-energy structures.

A related idea is to calculate the harmonic phonon modes of a structure. The phonon modes

at zero wave vector of a fully relaxed structure found from random searching must be stable,

and the structure must also be stable against elastic distortions. The phonon modes at non-zero
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wave vectors may, however, be unstable, so that the energy can be reduced by a distortion

in a larger unit cell. Calculating the second derivatives of the energy to obtain the phonon

frequencies and displacement patterns is expensive and we only perform such calculations on a

few structures of interest after extensive searching. If unstable phonon modes are found then

the energy-reducing distortions of the corresponding phonon eigenvectors can be followed to find

more stable structures.

7.4.1 Have we found the global minimum?

The searching is not exhaustive and therefore we cannot be sure that we have found the global

minimum. One way to gauge the quality of a search is to look for known “marker” structures (if

available). We happily terminate searches when the same lowest-energy structure has been found

several times. This criterion is reasonable because we relax a very wide range of initial structures.

When we apply constraints to the initial structures and maintain them during the relaxation we

obviously cannot obtain structures which violate the constraints. When we apply constraints

to the initial structures but allow free relaxation we are biasing the search, presumably towards

structures which obey the initial constraints, but also perhaps in ways which we cannot predict.

When we bias a search it is important to understand as well as possible which parts of the

PES are being excluded or de-emphasised. This allows the user to assess the strengths and

weaknesses of a search and, if required, to design further searches. It is therefore important that

the effects of the “knobs” of the search (the parameters which can be varied) are as transparent

as possible. We believe that the simplicity of our searching procedures results in a relatively

small number of understandable and useful knobs.

7.5 Some technical aspects of the calculations

First-principles DFT calculations: DFT calculations are much more expensive than empir-

ical potential ones and the number of structures whose energies may be evaluated is therefore

greatly fewer. Many first-principles DFT codes are available, and we use the CASTEP pack-

age [25] which uses a plane wave basis set, periodic boundary conditions, and pseudopotentials.

The code returns the total energy of a structure and the forces on the atoms and stresses on

the unit cell. We use the forces and stresses to relax structures to the nearest local minimum

in the PES. The second derivatives of the energy may also be calculated, but this is much more

expensive and although very useful in checking for unstable phonons/elastic distortions and in

calculating thermal effects in stable structures, it is far too expensive to be used routinely as

part of the search strategy.

Pseudopotentials: Accurate results at very high pressures can be obtained using pseudopo-

tentials, but they must be constructed with sufficiently small core radii and with the appropriate

electrons treated explicitly. The pseudopotentials provided with standard codes may be inad-

equate at the high pressures we often work at. Lithium is an unusually difficult case. It is

standard to treat all three electrons of lithium explicitly, but the pseudopotential core radii

must still be small [26] in high-pressure studies. We use ultrasoft pseudopotentials [27] and

find them to be accurate when the distance between neighbouring atoms is about equal to or
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greater than the sum of the core radii of the atoms. We recommend that pseudopotentials

be tested for each application by generating them with different core radii and checking that

energy differences are accurate for the shortest inter-atomic distances that will be encountered.

For some of the applications described in Section 7.6 we have treated some core and semi-core

states explicitly. For example, we used pseudopotentials with 11 electrons treated explicitly for

our work on aluminium [28] and 16 electrons for iron [29].

k-point sampling: We use quite good Brillouin sampling and basis sets when searching because

we find that poor quality calculations can lead to strong biases. We have come across modulated

phases when searching in metals which went away when we relaxed them further with denser k-

point sampling. We use Monkhorst-Pack (MP) meshes of k-points which are defined by choosing

the smallest MP mesh where the smallest separation between k-points is less than some distance

∆k. We often use ∆k = 2π×0.07 Å−1 when searching and then perhaps ∆k = 2π×0.03 Å−1

when refining the structures and their energetics. We deform the k-point mesh with the changes

in the cell shape and occasionally recalculate the integer parameters of the MP mesh.

Predicting stability over a range of pressures: In our high-pressure studies we search

at constant pressure, although one can just as easily search at constant volume. A search at

pressure ps may give many different structures. The structure with the lowest enthalpy H(ps)

is the most stable at ps, but different structures may be more stable at another pressure p. To

investigate this we can use the thermodynamic relation

H(p) ≃ H(ps) + (p − ps)
dH

dp

∣

∣

∣

∣

ps

+
1

2
(p − ps)

2 d2H

dp2

∣

∣

∣

∣

ps

(3)

= H(ps) + (p − ps)Vs −
1

2
(p − ps)

2 Vs

Bs

, (4)

where Vs and Bs are the volume and bulk modulus at ps. Equation (4) can be used to approximate

the enthalpy of each structure over a wide range of pressures. The simple linear approximation

H(p) ≃ H(ps) + (p − ps)Vs (5)

is particularly convenient because the quantities required (H(ps), ps, Vs) are obtained directly

from the search calculations. Suppose we apply equation (5) to two structures, A and B, found

at ps. Equation (5) tells us that if V A
s < V B

s then structure A will become more favourable with

respect to structure B at p > ps and less favourable for p < ps. If B is more stable than A at ps a

phase transition from B to A could occur at some p > ps. It may be possible to use the quadratic

form of equation (4) with an empirical relationship between the bulk modulus and volume, but

we have not explored this further. We find, however, that the linear approximation is very useful

for estimating the stability regions of different phases over a wide range of pressures, which gives

the approach a “far sightedness”. Equations (4) and (5) can be used in both constant volume

and constant pressure calculations, but we normally use a simple scatter-diagram representation

in our constant pressure calculations, as explained in Fig. 5.

7.6 Brief survey of AIRSS calculations to date

Silane: In our first AIRSS paper we studied high pressure phases of silane (SiH4) [31]. This

group IVB hydride is a metastable compound under ambient conditions, but above about 50 GPa
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Figure 5: Scatter plot of the relative enthalpies against volume for a search at ps = 1 GPa with

4 silicon atoms per cell. The diamond structure (cd) is the most stable at this pressure and

was found 49 times from a total of 1000 relaxed structures. The positions of the observed high-

pressure phases [30], beta-Sn, Imma, sh (simple hexagonal) and Cmca-like, are also indicated

on the figure. The hexagonal-close-packed (hcp) and face-centred-cubic (fcc) phases which are

observed in experiments at pressures beyond the Cmca phase [30] were not found in the searches

and we presume they are mechanically unstable at 1 GPa. Equation (5) shows that the stable

phases can be found by drawing lines underneath the data points as shown in the figure. The

stable phases at pressures greater than 1 GPa can then be read off the figure as those through

which the dotted lines pass, and it can be seen that these are the experimentally observed ones

at positive pressures where the dotted line has a negative slope. The slope of the line joining

the cd and beta-Sn phases corresponds to a pressure of about 10 GPa, which is similar to the

coexistence pressure [30]. The phases above the dotted lines are not the most stable at any

pressure. The P63/mmc phase differs from cd only in the stacking of layers

it becomes stable against decomposition into its elements. Our work was motivated by a theoret-

ical study [32] which used chemical intuition to predict interesting high pressure non-molecular

phases of silane. We found more-stable phases, most notably an insulating phase of I41/a sym-

metry, shown in Fig. 6, which was the most-stable structure from about 50 GPa to over 200 GPa.
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Each Si atom is bonded to eight H atoms which form bridges between neighbouring Si atoms.

Each of the Si and H sites are equivalent in this high-symmetry structure. All of the bonds are

electron-deficient three-centre-two-electron “banana” bonds, similar to those linking the boron

atoms in diborane (B2H6). Interestingly, Feng et al [32] predicted structures with some Si-H-Si

banana bonds, and their chemical intuition was essentially correct, but our structure is totally

bananas. The I41/a phase has subsequently been observed in x-ray diffraction studies [33] and

its insulating behaviour was verified. We also found a slightly-less-stable phase of I 4̄2d symme-

try only 0.1 eV per SiH4 unit above I41/a at 100 GPa. The I 4̄2d phase of silane has also been

identified in experiments by Degtyareva et al [34]. An impressive debut for AIRSS!

Figure 6: The I41/a structure of silane (left) and the slightly less stable I 4̄2d structure (right).

Silicon atoms are shown in gold and hydrogen atoms are in white. All of the bonds in I41/a

and I 4̄2d are of the Si–H–Si type. Both phases were subsequently found experimentally

Aluminium hydride: The silane studies were motivated by the quest for metallic hydrogen.

Although metallic hydrogen has been formed fleetingly in shock wave experiments and must

exist within planets such as Jupiter, it has not been produced in static compression experiments,

where it could be studied in detail. Hydrides have been thought of as containing “chemically

pre-compressed” hydrogen which might become metallic at pressures achievable in diamond

anvil cells and might exhibit phonon-mediated high-temperature superconductivity [35]. The

group IVB hydrides contain 80% hydrogen atoms, but the group IIIB hydrides contain nearly

as much (75%). We studied aluminium hydride (AlH3) and predicted the stability of a metallic

Pm3̄n phase at pressures readily achievable in diamond anvil cells [36]. The structure of the

Pm3̄n phase is illustrated in Fig. 7. Hydrogen atoms are considerably more electronegative than

aluminium ones, so the electron density on the hydrogen atoms is large, which suggests that

the high-frequency hydrogen-derived phonon modes could provide substantial electron-phonon
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coupling and promote superconductivity. However, the Pm3̄n phase of AlH3 is a semimetal at

the transition pressure with a relatively small electronic density of states at the Fermi energy,

which strongly militates against superconductivity. Pm3̄n develops a band gap on further

compression but, on the other hand, reducing the pressure increases the density of states at

the Fermi energy which would promote superconductivity. The semi-metallic Pm3̄n phase was

subsequently observed in high-pressure x-ray diffraction experiments [37], but it was not found

to be a superconductor.

Figure 7: The Pm3̄n phase of aluminium hydride. The Al cations are shown in purple and the

H anions are in white. The linear chains of H atoms can clearly be seen. This structure is also

adopted by niobium stannide (Nb3Sn) which is a superconductor used in high magnetic field

applications

Hydrogen: Pure hydrogen has been compressed to over 300 GPa in a diamond anvil cell [38],

but it stubbornly remains insulating. It is expected that a non-molecular and presumably

metallic phase will become stable somewhere in the range 400-500 GPa [39], and such pressures

will probably be achieved in static experiments in the near future. The metallic phase is expected

to be a high-temperature superconductor, perhaps even a room-temperature superconductor.

The structure of the low-pressure phase I of solid molecular hydrogen is well established [40].

Phase II is stable above 110 GPa, and probably consists of molecules arranged on a distorted

close-packed lattice, and a molecular phase III of unknown structure appears above 150 GPa.

Our AIRSS studies [41, 42] have shown there to be several candidate structures for phase II

consisting of packings of molecules on distorted hexagonal-close-packed lattices. These structures

are almost degenerate in enthalpy and quantum motion of the protons could mean that several

significantly different local molecular configurations contribute to the overall structure of phase
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II. Prior to our work, the DFT phase diagram showed a transition to a metallic phase below 200

GPa, in strong disagreement with experiment. We predicted new insulating molecular phases

which are stable up to pressures well above 300 GPa. In particular, the predicted vibrational

properties of our C2/c molecular phase (which has 24 atoms in the primitive unit cell and is

shown in Fig. 8) agree with the available experimental data for phase III [41].

Figure 8: A slice through the charge density of a layer of the C2/c molecular hydrogen phase

which we predicted to be the most stable in the pressure range 105–270 GPa [41]. Note that

the two ends of the molecules are inequivalent so they have dipole moments and the crystal

has infra-red (IR) active vibron modes. The calculations show intense IR vibron activity with

strong absorption peaks which are close in frequency and would appear as a single peak in

experiments [41]. The IR activity of the strong IR active vibrons in C2/c increases with pressure,

as is observed in phase III [43]. The variation with pressure of the strong IR peak and the Raman

active vibron frequency of C2/c are in good agreement with experiment [44]

Nitrogen: The phase diagram of nitrogen has been much studied, with a number of apparently

stable and metastable molecular phases having been reported [45–47], although their structures

are mostly unknown. We found a new class of molecular structures which we predicted to be

more stable than previously suggested ones over a wide range of pressures [48]. The dissociation

energy of a nitrogen molecule is more than twice that of a hydrogen molecule, and yet nitrogen

molecules dissociate at far lower pressures [49]. The reason for this is simply that nitrogen

atoms can form up to three covalent bonds so that molecular, polymeric and dense framework

structures are possible, whereas a hydrogen atom can form only one covalent bond. “Polymeric”

nitrogen can in fact be recovered to ambient conditions as a metastable high-energy-density

material [50]. The structure of the high-pressure singly-bonded “cubic gauche” phase formed on

molecular dissociation was in fact predicted using DFT calculations [51] over a decade before

it was observed experimentally [50], a triumph for chemical intuition. Computational searches

for the phases beyond cubic gauche have also been performed [48,52]. Ma et al [52] used DFT

and a genetic algorithm to predict the phase beyond cubic gauche to be a singly-bonded layered

structure of Pba2 symmetry with 16 atoms in the primitive unit cell. This structure is slightly

more favourable than the very similar P 4̄21m structure we found with 8 atoms. Unfortunately
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we did not perform searches with more than 12 atoms, so we could not have found the Pba2

phase. This serves as a warning to all searchers - there could always be a better structure in a

larger unit cell.

Figure 9: The P41212 molecular phase of nitrogen which we predict to be the most stable from

∼9.5 GPa up to molecular dissociation at about 56 GPa [48]

Water: Our work on structures of H2O [19] was motivated by an experimental study [67] in

which a new metastable form of H2O was synthesised. Mao et al subjected water to an applied

pressure of about 20 GPa and 10 keV x-ray radiation for many hours within a diamond anvil cell,

producing a crystalline phase which does not consist of water molecules. Mao et al [67] concluded

that they had synthesised an alloy of O2 and H2 molecules. We performed a AIRSS study at

20 GPa, finding that the structures obtained consisted almost entirely of weakly bonded H2O,

H3O, H2O2, H2OH· · ·OH, H2, and O2 species. O–H bonds are the most energetically favourable

at 20 GPa, so that the most stable phases consist of H2O molecules and the highest enthalpy

metastable phases consist of an “alloy” of H2 and O2 molecules (rocket fuel!). We argued [19]

that the experimental x-ray diffraction, energy loss, Raman spectroscopy and other data were

best rationalised not by an H2/O2 alloy but by a much more stable mixture of H3O, O2 and H2

species, no doubt containing amounts of the other low-enthalpy species.

Ammonia: Compressed ammonia (NH3) plays a significant role in planetary science. Ammonia

forms hydrogen-bonded solids at low pressures, but we predict that at high pressures it will form

ammonium amide ionic solids [53]. These structures, consisting of alternate layers of ammonium

cations (NH+
4 ) and amide (NH−

2 ) anions are expected to be stable over a wide range of pressures

readily obtainable in diamond anvil cells, although experimental verification of our prediction

is still lacking. The ionic Pma2 phase, which is illustrated in Fig. 10, is predicted to be stable

above 90 GPa. The driving force for the proton transfer reaction is that the ionic solid is

substantially denser than the molecular one. The proton transfer costs energy under ambient

conditions, but at high pressures the cost is overcome by the lower value of the pV term in

the enthalpy. A proton transfer between water molecules, forming OH− and H3O
+ ions, costs
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more energy than in ammonia and water molecules pack better than ammonia molecules, so

that proton transfer is not predicted to occur in compressed water. Proton transfer is even

more favourable in water/ammonia mixtures which are expected to form OH− and NH+
4 ions at

moderate pressures [54].

Figure 10: The ionic Pma2 phase of ammonia is predicted to be stable above 90 GPa and

consists of alternate layers of NH+
4 and NH−

2 ions. This view shows the three layers of the crystal

structure. The top layer consists of NH−

2 ions with orientation , the second layer consists of

tetrahedrally bonded NH+
4 ions and bottom layer consists of NH−

2 ions with orientation

Ammonia monohydrate: The properties of compressed ammonia monohydrate (NH3 · H2O)

are of direct relevance to models of the formation of Titan, Saturn’s largest moon. Fortes and

coworkers performed neutron diffraction experiments under pressure which yielded the unit-

cell parameters and the candidate space groups (Pcca, Pnca and Pbca) of phase II of ammonia

monohydrate, which is formed at pressures of a few tenths of a GPa [55,56]. The cell parameters

indicated that the unit cell contains 16 NH3 · H2O formula units, giving a total of 112 atoms.

We performed AIRSS calculations using the experimental unit cell with the further assumption

that the crystal consisted of weakly hydrogen-bonded NH3 and H2O molecules. Each of the

candidate space-groups contains eight symmetry operations, so the asymmetric unit contains

two formula units. The initial structures were generated by inserting two H2NH · · ·OH2 units at

random, generating the rest of the structure using the symmetry operations and rejecting initial

configurations in which the molecules overlapped strongly. Searches were performed using each

of the three candidate space groups, and the lowest enthalpy structure was obtained with space

group Pbca, which allowed a refinement based on the original data to be performed. These

results motivated new experiments which yielded diffraction data which, with additional insights

from our predicted structure, were of sufficient quality to allow a full structural determination.

A structure of space group Pbca was determined whose hydrogen bonding network is almost

identical to that of the computationally-derived structure [55,56]. Subsequent DFT calculations

have shown that the experimentally determined structure is about 0.01 eV per seven-atom
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formula unit lower in enthalpy than the theoretically predicted one [57]. This project shows

the power of constrained searches. The size of the parameter space was enormously reduced by

using the cell parameters and candidate space groups from experiment and the H2NH · · ·OH2

unit assumed on chemical grounds. One can never be sure when it is safe to stop searching, and

in this case the search was terminated before the correct structure was found. It would certainly

have been possible to carry out many more searches in which the correct structure might well

have been found, but the experimental determination made this redundant. This project is a

nice example of synergy between experimental and computational structure determination.

Figure 11: The structure of phase II of ammonia monohydrate predicted using AIRSS. Oxygen

atoms are shown in red, nitrogen atoms in blue, and hydrogen in white. The dashed lines

indicate close contacts between the molecules. The structure illustrated above and the structure

obtained from the neutron diffraction data are very similar and both have Pbca symmetry, but

they have slightly different proton orderings

Graphite intercalation compounds: Superconductivity was observed in some graphite in-

tercalation compounds (GICs) in the 1960s. Interest in GICs was rekindled by the discovery

of substantial superconducting transition temperatures in C6Ca and C6Yb which increase with

pressure [58, 59]. The occupation of an inter-layer state is correlated with the occurrence of

superconductivity [60]. Csányi et al [61] searched for low-enthalpy structures of C6Ca under

pressure. Energetically competitive structures were found at low pressures in which the six-

membered rings of the graphene sheets buckle to accommodate Ca atoms within the troughs.

Stone-Wales bond rotations [62] within the graphene sheets become favourable at higher pres-

sures, leading to structures with five-, six-, seven- and eight-membered rings, with the Ca atoms

sitting within the larger-diameter rings, see Fig. 12. The occurrence of large rings accommodat-

ing the intercalate atoms might be a general features of highly-compressed GICs, and suggests

a route to synthesising novel layered carbon structures.

Hypothetical group IVB clathrate: AIRSS produces many structures and the metastable

ones are often interesting. Looking at the results of a search on carbon we noticed a low-density

high-symmetry sp3-bonded structure which was unfamiliar to us [63]. This structure (Fig. 13)

has a six-atom primitive unit cell with all atoms equivalent, and it is chiral, so that it cannot be

superimposed on its mirror image. We have named this the “chiral framework structure” (CFS).

It is only 112 meV per atom higher in energy than carbon diamond, while in silicon it is 53

meV per atom higher in energy than the diamond structure [63]. Further investigation revealed
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Figure 12: A CaC6 graphite intercalation compound of Cmmm symmetry. The carbon atoms

are shown in grey and the calcium atoms in green. In the Cmmm structure the hexagonal rings

of the graphene sheets are replaced by five- and eight-membered carbon rings. This phase is

very favourable at high pressures because the cost of the Stone-Wales bond rotations is offset

by a large volume reduction as the metal ions are accommodated within the larger rings [61]

it to be the elemental analogue of a zeolite-type structure and it is also related to clathrate

structures. Clathrate structures of several different types have been synthesised consisting of

silicon, germanium and tin (but not carbon) [64, 65]. The synthesis can only be performed by

including “guest” atoms such as Na, K, Rb, Cs or Ba, which act as templates for the self-assembly

of the nano cages forming the structures, although in some cases the guest atoms can largely

be removed. The clathrate II structures of silicon and carbon are calculated to be about 52

meV per silicon and 72 meV per carbon atom higher in energy than the corresponding diamond

structures. Considering that the silicon clathrate II structure has been synthesised [66], might

it be possible to synthesise the silicon CFS? A suitable template would have to be found, but it

is an intriguing possibility.

Tellurium dioxide: Metal dioxides with large cation radii often form cotunnite phases under

high pressures, and presumably these transform to post-cotunnite structures at higher pressures.

Tellurium dioxide (TeO2) is apparently the only dioxide in which a post-cotunnite phase has

been observed [68], and it is therefore a candidate for the post-cotunnite structure of other metal

dioxides. Unfortunately the quality of the x-ray diffraction data obtained by Sato et al for post-

cotunnite TeO2 was insufficient to allow a structural determination, although it was possible to

eliminate the known post-cotunnite structures of dihalides [68]. Our AIRSS study [69] found

a transition to a post-cotunnite phase of TeO2 at 130 GPa, which is a little higher than the

experimental transition pressure of 80-100 GPa. The calculated x-ray diffraction data for the

predicted phase of P21/m symmetry is in reasonable agreement with experiment. Interestingly

we found that the cotunnite phase shows re-entrant behaviour, becoming more stable than
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Figure 13: View of the “chiral framework structure” (CFS) along the axis of the helices [63]. The

CFS is a low-energy hypothetical structure of group IVB elements which is only a little higher

in energy than the diamond structure. The CFS has six atoms per primitive unit cell which are

all equivalent by symmetry. The atoms are arranged in five-membered rings and are four-fold

coordinated. The CFS has three bond angles slightly smaller than the perfect tetrahedral angle

of 109.5◦ and one bond angle of about 125◦. The structure consists of a hexagonal packing of

helices which are crosslinked to satisfy four-fold coordination. The helices all twist either to the

left or right, so that the crystal is chiral and cannot be superimposed on its mirror image

P21/m again above 260 GPa. We tried our P21/m structure in other metal dioxides but it was

never the most stable phase [69]. Higher quality x-ray diffraction data are required to test our

identification of the P21/m structure as post-cotunnite TeO2.

Lithium-beryllium alloys: Feng et al [70] used random structure searching to explore lithium-

beryllium (Li-Be) alloys under pressure. These elements are immiscible under ambient condi-

tions, but the calculations show they can react under pressure, with LiBe2 becoming more stable

than the separated elements above about 15 GPa, and Li3Be, LiBe and LiBe4 having regions

of stability at higher pressures. The electronic structure of the most stable LiBe compound

shows two-dimensional character, with a characteristic step-like feature at the bottom of the

valence band. The changes in the electronic structure which allow the formation of Li-Be alloys

under compression arise from overlap of the Li 1s core electrons which leads to charge transfer

towards the Be atoms. In this work [70] the relative stabilities of the different stoichiometries

was displayed using a “convex hull” diagram. An example of a convex hull diagram constructed

using data obtained from our random searches for the Li-H system is shown in Fig. 14.

Lithium: One of the surprises in high pressure physics in recent years has been the discov-

ery that sp-bonded elements often adopt complex non-close-packed structures under sufficient

compression. The ionic cores take up a larger fraction of the total volume under pressure and

some of the valence charge is pushed away from the atoms and into interstitial regions forming

61



Figure 14: Zurek et al have found that “a little bit of lithium does a lot for hydrogen” [71]. In

more extensive variable stoichiometry searches we find that even less lithium will do the trick of

“metallising hydrogen”. We determined the low enthalpy structures of LiH2n for n = 3 − 10 at

100 GPa using AIRSS, displaying the results on a convex hull. LiH16 (shown) is stable against

decomposition into LiH8 and H2. It is metallic and is based on a body-centred-tetragonal (bct)

packing of lithium atoms “coated” in H2 molecules

“blobs” which are rather isolated from one another. The resulting structure can be thought

of as an “electride” in which the interstitial electrons are the anions. The valence electronic

energy bands consequently become narrower than the free-electron bands [72,73]. Lithium (Li)

adopts the fcc structure under ambient conditions, but it transforms to a three-fold coordinated

structure at about 40 GPa [74]. We searched for structures of Li at high pressures, finding two

new candidate phases of Pbca and Aba2 symmetry which are predicted to have small regions of

stability around 100 GPa [26] and are distortions of the Cmca-24 structure found in a previous

theoretical study [75]. All of these structures have substantial dips in their electronic densities

of states (e-DOS) around the Fermi level. This is consistent with, but does not fully explain,

the significant increase in electrical resistivity and change in its temperature dependence near

80 GPa observed by Matsuoka and Shimizu [76]. The occupied valence bandwidths of the Pbca,

Aba2 and Cmca-24 phases are substantially narrower than the corresponding free-electron val-

ues, demonstrating their electride nature. The low (three-fold) coordination number of these

structures arises from Jahn-Teller-like distortions which lower the e-DOS around the Fermi level,

and we predicted that the coordination will increase to four-fold above about 450 GPa [26], with
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the diamond structure, see Fig. 15, becoming stable above ∼500 GPa. A first-principles study

was also performed by Yao et al [77], who found similar results using random structure searching

and an evolutionary algorithm. Overall we are, however, left with the impression that there are

many nearly-degenerate structures around 100 GPa, and more twists in the story of compressed

Li are likely.

Figure 15: The diamond-structure electride phase of Li, which is predicted to be stable above

483 GPa. The Li atoms are shown as purple balls and nearest neighbour contacts are shown as

sticks. The charge isosurface in blue shows electrons also located on a diamond lattice, in the

voids between the lithium ions

Aluminium: Aluminium is used as a standard material in shock wave experiments, for which

purpose an accurate equation of state must be available. Aluminium adopts the fcc structure

under ambient conditions and transforms to hcp at 0.217 terapascals (TPa) [78], and a further

transition to a body-centred-cubic (bcc) structure has been predicted at 0.38 TPa using DFT

methods [79]. Our searches have identified a transformation from bcc to the Ba-IV non-close-

packed incommensurate host-guest structure at 3.2 TPa and a further transition to a simple

hexagonal structure at 8.8 TPa [28]. The non-close-packed structures have smaller volumes

than bcc and their occurrence significantly alters the high-pressure equation of state. An im-

portant feature of our searches was that we studied cells containing 2, 4 and 8–21 atoms. Such

a systematic search can yield interesting results and we found commensurate analogues of the

host-guest structures in cells of 11, 16, and 21 atoms. The physics behind the occurrence of

non-close-packed structures in highly compressed aluminium is similar to that described above

for lithium at much lower pressures. The simple hexagonal structure consists of alternate layers

of aluminium ions and electrons. There are two “blobs” of electronic charge for every ion and,
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considering the aluminium ions as the cations and the electron blobs as the anions, the structure

is that of magnesium diboride (MgB2), which is well known in ionic compounds of AB2 stoi-

chiometry. We described the stability of the different structures under pressure using empirical

inter-atomic potentials to describe the aluminium ions and electron blobs. The potential pa-

rameters were tuned to stabilise the host-guest structure, and it then gave the bcc structure at

lower pressures and the simple hexagonal structure at higher pressures. We also found a duality

between the Ba-IV structure and the other incommensurate host-guest structure found in the

elements, the Rb-IV structure, as explained in Fig. 16.

Figure 16: A representation of the Ba-IV incommensurate host-guest structure is shown on the

left, with the host atoms in purple and the guest atoms in blue. The Ba-IV structure is also

found in compressed Sr, Sc, As, Sb and Bi, and we predict it to be stable in aluminium in the

range 3.2–8.8 TPa. A representation of the Rb-IV incommensurate host-guest structure is shown

on the right with the guest atoms in red and the host atoms in white. The Rb-IV structure

is found in Rb, K and Na at high pressures. Both structures consist of positively charged ions

and negatively charged electron blobs located within interstitial regions. The Ba-IV and Rb-IV

structures show a remarkable duality. The electron blobs in the Ba-IV structure occupy the

atomic positions of the Rb-IV structure, while in the Rb-IV structure the electron blobs occupy

the atomic positions of the Ba-IV structure [28]. The figure shows a view along the axis of the

guest chains. As we scan the picture from left to right the structure changes from Ba-IV to

Rb-IV

Iron: The Earth’s core is largely composed of iron. Other planets, including many of the

recently-discovered extrasolar planets (or exoplanets), are expected to possess iron-rich cores.

Pressures similar to those at the centre of the Earth have been achieved in static diamond

anvil cell experiments, but the multi-terapascal (TPa) pressures expected at the centres of

more massive planets can currently be achieved only in shock-wave experiments, which give
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very limited structural information. Indeed, there are no materials whose structures have been

determined experimentally at pressures of 1 TPa or more. At low pressures the electronic

configuration of the iron atoms can be described as 3d64s2, but the more extended 4s orbitals are

pushed up in energy with respect to the 3d orbitals under compression and the 4s charge slowly

drains into the 3d orbitals, leading to a 3d84s0 configuration at multi-TPa pressures. AIRSS

showed that only the standard close-packed phases are energetically competitive at multi-TPa

pressures [29], see Fig. 17. The bcc structure is stabilised at low pressures by its ferromagnetic

spin ordering, but it transforms to a hcp structure at pressures well below 100 GPa. We found

a transition from hcp to fcc and back to hcp at TPa pressures (see Fig. 17), although these

structures have similar enthalpies in the range 5–30 TPa. The most outstanding result was our

prediction that the bcc phase, and a small bct distortion of it, become much more stable than

hcp and fcc at extremely high pressures [29]. The reason for this is that the density of bct/bcc

is about 0.6 % higher than hcp at the phase transition, which amounts to a very large enthalpy

gain at pressures of around 30 TPa. We also studied harmonic phonon modes and the effects of

electronic excitations at finite temperatures, but the overall effect on the relative stabilities of

the phases is not large [29].

Figure 17: Variation with pressure of the enthalpies of various phases of iron with respect to

the hcp phase. The dashed lines indicate ferromagnetic (FM) phases and the solid lines indicate

non-magnetic phases

Defects in silicon: We have used AIRSS to study defect complexes in Si consisting of com-

binations of H, N, and O impurity atoms and Si self-interstitials and vacancies [80, 81]. Most
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of the searches were performed with 32-atom supercells, although we used larger cells for a few

searches. We embedded the most interesting defects in larger cells and relaxed them with a

higher energy cutoff and better k-point sampling. We found almost all of the previously-known

point defects containing these impurity atoms, and we also found a number of new lowest-energy

defects for some stoichiometries, such as {I,H} (an interstitial Si atom and a H atom) [80], and

{3O} (three interstitial O atoms) [81]. It is possible to automate the search procedure so that

one needs specify only the host crystal, the impurity atoms to be included and the size and loca-

tion of the “hole” in the host compound into which the impurity atoms are placed. The number

of different combinations of impurity atoms need not be excessive. For example, using three

different types of impurity atom and a total number of impurity atoms of ≤4 requires searching

over only 34 possible cell contents, and using five different types of impurity atom and a total

number of impurity atoms of ≤4 requires searching over only 125. We estimate that if we were

presented with the crystalline structure of a new material containing up to, say, three atomic

species and we took into account three possible impurity species (H, N, and O, for example), we

could determine the important point defects and their physical and electronic structures within

a few weeks. Of course we could also have predicted the structure of the host material.

7.7 Conclusions

The different searching methods which have been used in conjunction with DFT methods should

be judged by the results obtained. We believe that the AIRSS results presented here are im-

pressive and that they make a strong case for the method. Our approach is pragmatic, we start

from the most random method for generating structures that we can think of and introduce

biases based on chemical, experimental and/or symmetry grounds. The starting structures are

then relaxed while preserving the experimental and symmetry constraints. Sometimes we per-

form shaking and/or phonon calculations on the relaxed structures to look for energy lowering

distortions.

We like the simplicity of this approach, it is easy to understand what the various “knobs” of

the method do, which makes it easier to decide which knobs to turn and how far to turn them.

We concentrate our computational efforts on relaxing a very wide variety of initial structures,

which means that our stopping criterion of obtaining the same lowest-energy structure several

times gives a good chance of finding the global minimum of the PES.

Our searching strategy will work very well on the petascale computers which are becoming

available now and the exascale computers which will be available in a few years time. Such

computing resources will be able to generate enormous databases of structures which will be

useful for many purposes, such as fitting and testing empirical force fields, determining structures

from diffraction data and determining structures using data mining [82]. The efficient handling

and analysis of the huge amounts of data produced by structure searches will pose challenges

for the electronic structure community.

Searching for structures with first-principles electronic structure methods has already made an

impact in various branches of science and we imagine that it will become an integral part of

materials design and discovery. Indeed it is reasonable to suppose that it will become important

in all fields in which it is relevant to know the relative positions of atoms.
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A Summary of other computational searching methods

Although this article only deals with the AIRSS approach in detail, it is appropriate to men-

tion other techniques which have been used to predict structures described by empirical or

first-principles inter-atomic forces. There are many excellent reviews which describe structure

prediction methods for clusters and solids [24,83–87].

Simulated Annealing (SA) is a Monte Carlo technique devised by Kirkpatrick et al [88]. The

name derives from an analogy with annealing in metallurgy, in which heating and cooling is used

to remove defects from a metal. In this method the current approximate solution or state is

replaced by a randomly chosen nearby state. The probability of accepting the new state is 1 if it

is lower in energy than the initial state, and e−∆E/T if it is higher, where ∆E is the energy of the

final state minus the initial state. If the temperature T is chosen to be zero then only states of

lower energy than the current state are accessible and the algorithm normally becomes trapped

in a local minimum. To avoid this, the temperature T is gradually reduced during the simulation

and, if the cooling is slow enough, the system will eventually find the lowest energy state. SA

with T > 0 allows the system to jump out of local minima. However, the basic algorithm is

normally inefficient as it often gets stuck in local minima and many variants of it have been

devised and tested in the quest for higher efficiency. There is considerable freedom to alter

the proposed moves and the form of the acceptance probability, and to use more complicated

“annealing schedules” in which the temperature is sometimes raised during the run.

SA requires only the energies of different configurations of the system, energy derivatives (forces

and stresses) are not required. It is, however, straightforward to calculate energy derivatives

using empirical potentials and, with a little more effort, within first-principles methods. Energy

derivatives can be used to replace the Monte Carlo algorithm by classical molecular dynamics

(MD). The most widespread use of energy derivatives in structure searching is to relax a structure

to the minimum of its basin of attraction.

Methods have also been devised which evolve ensembles of structures rather than evolving a

single structure. The simplest such idea is to run entirely separate searches with different

starting points. Ensemble SA methods have been developed in which an adaptive annealing

schedule is controlled by ensemble averages of thermodynamic information [89]. Another idea is

to use parallel runs at different temperatures, such as in the parallel tempering algorithm which

derives from the work of Swendsen and Wang [90,91]. The particle swarm method was inspired

by the collective behaviour of a flock of birds [92]. In this MD-based method each member of

the ensemble or swarm is accelerated towards its own previous “best solution” and towards the

swarm’s previous “best solution”.

Locating the global minimum is difficult because the energy surface contains many basins which

may be separated by high barriers. One approach is to transform the energy surface to one which
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is easier to search. Perhaps the simplest such idea is to increase the range of the inter-atomic

potential [93] which has the effect of removing many local minima [94]. Such an unphysical

potential may of course have a significantly different global minimum. Consider instead a trans-

formed energy surface obtained by setting the energy throughout each basin of attraction to the

minimum energy of the basin. Obviously this transformation does not affect the relative energies

of the minima. We now have to search the transformed energy surface. A simple Monte Carlo

procedure known as “basin hopping” [22–24] is to start at a random position, relax to the basin

minimum, propose a random move and relax to the new minimum. The move is accepted if the

energy is lowered and accepted with probability e−∆E/T if the energy is raised. The simplest

version of the algorithm has two parameters, the length of the move which may be adjusted to

give a reasonable acceptance ratio, and the temperature T . The minima hopping method [95]

is related to basin hopping.

Evolutionary algorithms (EA) are optimisation techniques inspired by biological evolution, in-

volving concepts such as reproduction, mutation and recombination, fitness and selection [96].

Genetic algorithms (GAs) are a subset of EA in which a genetic representation of approximate

solutions (structures) is used, normally a bit array [97]. An ensemble or population of structures

is generated and each member is assigned a “fitness” which, for our purposes, is its energy or

enthalpy. A fraction of the population is selected for reproduction, with a bias towards the

fittest, and they are paired up for “recombination”, the splicing together of the parental genes.

A “mutation” step may also be performed. The new population is then subjected to selection

and the whole process is repeated. When using GAs for structure searching it is standard to

relax structures to the minimum of their basin of attraction before reproduction, so that the

inheritance might be described as Lamarckian rather than Darwinian. GAs have been applied

to many optimisation problems, and a review of the design and use of GAs for determining the

structures of atomic clusters described by empirical potentials is given by Johnston [83].

The set of algorithms for predicting structures described above is of course far from complete and

interesting alternatives have been pursued. For example, crystalline network structures, such

as zeolites and carbon polymorphs, have been enumerated systematically using graph theory

[98–100]. Faken et al [101] have sought high-dimensional barrier-less pathways between local

minima in the physical three-dimensional space, and methods using quantum delocalisation

have also been investigated [102–104]. Metadynamics is a powerful sampling technique for

reconstructing the free-energy surface as a function of a set of collective variables, and this

method can be used to study phase transitions at finite temperatures [105,106].

Some of the strategies described above can clearly be combined, and many additional refinements

have been suggested. There is often a substantial overlap between the various different methods,

and it can be difficult to determine where one method ends and the next begins. On reading

the description of our AIRSS approach in Section 7.3, the reader will recognise elements from

the searching methods described in this appendix.

Almost all of the methods described above were first used in searching for structures with

empirical potentials, although they have since been used with first-principles methods. Jones

and coworkers used molecular dynamics simulated annealing with first-principles DFT to study

the structures of numerous clusters from the late 1980s [107,108]. Deaven and Ho searched for
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cluster geometries using a GA and a tight-binding model [109], and this work was important in

bringing the possibilities of such methods to the attention of the “first-principles” community.

Predicting crystal structures with first-principles methods is growing in popularity. Schön,

Jansen and coworkers have used Hartree-Fock theory and DFT to search for stable structures

and study the PES of various crystals [87, 110]. Zunger and coworkers [111, 112] and Oganov

and coworkers [113,114] have used GAs to search for crystal structures with DFT methods.
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