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Abstract

The electron energy level quantization in a magnetic field leads to oscillations of
thermodynamical quatities for the degenerate electron Fermi gas and is the cause
of a periodical dependence of the magnetic susceptibility of the electron gas on
the magnetic field (de Haas — van Alphen effect). It is obvious that an analogous
oscillatory dependence for the degenerate Fermi gas of particles with discrete quan-
tum energy levels on parameters which determine the energy level positions appears
always when the quantization of energy levels takes place (for example, bounded

volume of the gas or external field with a spatially increasing potential).

It is known that the quantization of energy levels of electrons in a magnetic field leads to
oscillations of thermodynamic quantities for a degenerate electron Fermi gas and causes a
periodic dependence of magnetic susceptibility of the electron gas on the field strength (de
Haas-van Alphen effect) [1]. Obviously, an analogous effect of the oscillating dependence of
thermodynamic quantities for a degenerate Fermi gas of particles with quantized energy
levels on those parameters which determine the position of these levels will take place
always when the causes leading to the quantization of energy levels exist (e. g. finite

volume, external fields with an increasing potential, etc.).
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Below we calculate the oscillating terms in the thermodynamic potentials causing the
whole effect under quite general assumptions regarding the energy spectrum of the parti-
cles (or quasiparticles) forming the ideal degenerate Fermi gas.

1 Calculation of oscillating part of thermodynamic

potential ()

Let us suppose that the ”classical” problem of the particle motion is solved. Then the

energy &£ of the particle can be expressed by means of action variables I;:

525(11,12,]3) (1)

As the oscillations of thermodynamic quantities at low temperatures are determined by
the energy spectrum near the Fermi energy, we shall be interested only in the high energy
levels and therefore we can apply the quasiclassical approximation to the quantization of
the particle motion. The quasiclassical quantization of a system with several degrees of

freedom performing finite motion is given by [2]:
Ii = (ni +vi)hi ; 0<y <1, (2)

and the quantized energy levels E are obtained from (1) by substitution of (n; + v;)h for
IZ'I

E(n) =E [(n1 + ’Yl)h, (n2 + ’YQ)h, (n3 + ’)/3)h]
(here n means a vector with integer components ni, ng, ns).

The thermodynamic potential €2 relevant for the calculation of thermodynamic quantities
is given by
Q=—0) In{1+el-E@I0}

where # = kT, ( denotes the chemical potential and the sum extends over all possible

values of n.

To get the oscillating part of {2 we use a three-dimensional analogy of Poisson formula

where the sum over n is replaced by the integral:
Q — /f[g — E(n)]dn + 2Re ¥ Ly =
k
1
= — [ f1¢— E(, b, Iy)dLdldly + 2Re Y- L 3)
k

where

f(z) = —0In(1 + ew/a)
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The vector k denotes a triplet of integer indices ki, ko, k3 and the sum over k extends
over all non-negative ki, ko, k3 excluding k = 0. The symbol Ly stands for the following
integral:

Ly = /f([g — E(n)]e*™"dn.
The oscillating part of €2 is contained in the second term of the expression (3).

Before we calculate the integrals Ly entering Eq. (3) we note that the integration over n is
carried out only over the first octant (from n; = 0 to n; = 00). As a consequence and due
to the discontinuity of the integrand at the boundary of the region of integration, the result
will contain two-dimensional and one-dimensional integrals besides the three-dimensional

integrals L£y. Hence, the formula for the oscillating part of €2 reads:

QOSC = 2ReZ£k—|—Re{Z Pkl,k2+ Z Pkl,k;3+ Z sz,k3}+
k

k1,k2 k1,ks ka,k3
1 ’ ’ '
+ §Re Z le + Z ka + Z Qka 3 (4)
k1 k2 ks
where the two-dimensional integral Py, 4, is given by :

Pk1,k2 = //f[g _ E(’I’Ll, no, 0)]627rz(k1n1+k2n2)dn1dn2’

Py, 1, and Py, g, are given by analogy. The one-dimensional integrals Qg,, Qk,, Q, are

given by expressions of the form
O, = / FI¢ = E(ny,0,0)]e*™* ™ dn,

Primes at the sum symbols in Eq. (4) means that the term with k = 0 (ky = ko = k3 = 0)

is excluded.

Obviously, the integral £y can be transformed to

e?mkndQ
Le=[1C-B)8 [ ot
) VE@)
(n)=FE
n; >0
where df2, denotes an element of the constant energy surface
E(n) = E, (5)

in the direction n. The integration in the surface integral inside the braces is restricted

to that part of the constant energy surface (5) which lies in the first octant.

Employing the starting assumption regarding the large quantum numbers (kn > 1), an

asymptotic estimate of the integral £y can be obtained [3]:

2mikn, tor /4tew /4

Ekz/dEf(C_E);‘kH VE(n,) | /| K,(E) |;
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where n, = n, (k, F) denotes the radius vector in the space n of those points on the surface
(5) at which the direction of the surface normal is paralell to k; K,(F) is the Gaussian
curvature of the surface at these points. The sum extends over all such points in the first
octant. The phases 1w /4 enter the argument of the exponential with the same sign if the
point n,, is elliptical. They enter with minus sign if the convexity of the surface at a given
point is directed along k and they enter with plus sign if the convexity is directed in the
opposite direction. In case of a hyperbolic point the phases 7w /4 enter the exponent with

different signs.

Assuming 0n, /OFE # 0 and an obvious condition # < ¢ the main contribution to the
oscillating part of £, comes from integration over the neighbourhood of the sharp non-
stationarity of the Fermi distribution function df /dE, i. e. near E = (. Taking this into
account, we expand n,(k, F) in the argument of exponential into powers of E —  and
integrate:

1 N} ( /\k) p2mikny (k,¢)Eom /4ar /4

(Lx)osc ~ )
(2m)2\/k? + k3 + k3 EV: (k,0n,/0¢)* | VE(n,) | /] K. (C) |

W(A)=A/sinh X ; A = 2n%(k, On, /9C)0

The two-dimensional and one-dimensional integrals can be evaluated similarly. The final
results are:
1
T X
(2m)2(k? + k3)3
U (A g, ) 2T b1 hampz) o /4

" (e ne) (82 + (@) TRm@]

(P, k) 0SC R

X

on 1 on 2
-9 2 4 [ .
Akl,kz Yi§ 0 (]{31 8C —+ k‘g 8( ) 3

here n,;(¢) = n,i(k1, k2, () denotes the coordinates of those points on the plain curve
E(TL1,TL2,0) = C (6)

at which the direction of the curve normal is paralell to the two-dimensional vector
(k1, k2); K12,(C) stands for the curvature of the curve (6) at these points and the sum
extends over all such points in the first quadrant. The phase 17/4 enters the exponen-
tial with minus sign if the curvature of the curve (6) at the point (n,1,n,2) is directed
along (ki, k2) and it enters with plus sign if the curvature of the curve is in the opposite
direction. Further:

N M 2mikini(C).
(QkJosc ~ (2rk)20n. /oC ’

0
)\kl = 277'29(]4/'1 aigl),
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where n;(¢) denotes this value of n; for which E(n,0,0) = {. The formulas for Py, .,
Py, 1, and Qi,, Qk, have an analogous form. Employing the obtained asymptotic expres-
sions for Ly, P and @ in (4) we get the oscillating part of Q. It comes out that Qogc
containes several terms, each of them having its own period of oscillations. The periods
of oscillations in individual terms of Q2gsc can be determined from the knowledge of the
dependence of the arguments of the corresponding exponentials on the parameters deter-
mining the position of energy levels. It should be noted that if the ratio of periods of
different terms can be in general arbitrary, the oscillations can have a very complicated
form in case of several terms of the same order of magnitude in (4).

The solution of the ”classical” problem to find the energy of a particle in the form (1)
is connected in general with well-known difficulties and can be performed easily only for
separating variables.

We shall give the simplest examples in which it is possible to calculate the oscillating part
of the thermodynamic potentials to the very end and to obtain the periods of correspond-

ing oscillations.

2 Electron gas in three-dimensional potential well

Let us consider the electron gas with an arbitrary law of dispersion:

&= 5(101,102,103) (7)

in an infinitely high rectangular potential well with sizes Ly, Ly and L3 along the respective
axes. As it is well-known, the formula (2) in this case reads

2p;L; = n;h,

and therefore, the quantized energy levels have the form:

. 711}l 712}l 713]1
ey = e (o, 22t 2t 8

Performing the calculation according to the formulas of section 1 using (8) it is possible
to get all terms of the oscillating part of the thermodynamic potential © (because of
the two possibleelectron spin orientations, the right-hand side of the formula for 2 must
be additionally multiplied by 2). It turns out that if we exclude the anomalously high
anisotropy of the boundary surface £(p) = ¢ then for Ly ~ Ly & L3 = L we can write

Ly P _ L/2

P @ - (h828/6p2)1/2
OE/Op

ho2E | Op®
oE |dp

where the quantity is equal to the de Broglie wavelenght of an electron \p.
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Considering L > Ap we can leave in the expression for (4) only the terms containing Qosc

Then
Qosc = 1 + Qs + Q. 9)

Here

1 s U(Ay) cos(2mkin,, /4 +x/4
O = LiLLy—53 Y 8(k) (i) cos(@rhan,, £r/a £ /1)
m v k=1 | D(k1,0,0) |

+ zi...+zi...}.

v ko=1 v ks=1

The dots in the last two sums stand for expressions analogous to that one in the first
sum; n, (k) is the radius vector of a point of the boundary surface E(n) = ¢, at which
the surface normal is paralell to the vector (£, 0,0). The vectors n(ky) and n(k3) and are

defined in analogy.

1 s W(\)cos(2mkin, + konyo +m/4 £ /4
D = LiloLy—13> > #(k) (M) cos(2mhkamn + konye /4 7/4)
U kb= | D(k1, k2, 0) |

u' kiks=1 w' koks=1

where n,,(ky, k2) is the radius vector of a point at which the normal to the boundary surface
E(n) = ( is paralell to the vector (ki, k2,0). The vectors n, (ki, k3) and n,»(ks, ks) are
defined in analogy.

O — L L L 1 3 i ﬂQ(k)\Il(?))\k) cos(2rkn, £ /4 £ 7/4)
3= Lalolsy——
(37T)2 P kikaksz=1 \/| D(kla k?a k3) |

where n,(ky, k2, k3) is the radius vector of a point at which the normal to the boundary
surface is paralell to the vector k:
(27)20
)\k = T oA
h3 (k)
825/619% a25/81015202 a25/81015203 KL
825/8])18]92 825/8}73 825/8])28]33 ICQLQ
0*E /Opips 0% /Opa0ps  O*E/Op3  k3Ls
k1L, koLo ksLs 0

D(kla k?a k3) =

The values of A\, and D(ky, ks, k3) are taken at the corresponding points on the boundary

surface.
The symbol (k) was used to denote the expressions

85/8])1 . 85/8]72 . 85/81)3
lel - kQLQ B k3L3

(k) (10)
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taken at the same points. Assuming L3 > L; &~ Lo the formula (9) for Qosc can be
simplified. In the case of infinitely large Ls, it follows from Eq. (10) that k3 = 0 and
hence €3 in (9) vanishes and in the formulas for ©; and €25 only the terms with sums over

k, and ko survive.

Finally, assuming L, ~ L3 > L, i. e. in case of an electron gas confined between two

infinitely high walls we get

Qosc = O =
I L oE ap 2\ 4m2kL16
= 25 ZZ( /om) (h‘”/apll) cos(2mkny, £ —+£2)  (11)
Vk182£628_(62£)22 4 4
dp3 p; dp20p3

The formulas given above for the oscillating part of €2 take the simplest form in case of

an electron gas with a quadratic dispersion law

e P _Ptp

2 2m

placed in a cubic potential well
(L1 = L2 = L3 = L)

In this case the terms entering (9) have the form

0 = Ek3w<2\f Zk\é_\fL)sin (4ka@);

6 & 5 2\/_0L
% = Gy > (k2+k23/2 (4\/_7r vk + k3 >><

k1,k2=1

X sin <4m/k% +k%l)7'2hm<> ;
0 = 2% f: (6\/§2|k|‘/_0L>

(3m)% k Kos—1 [k[? k ‘3 hv¢
2
><s1n<47r\k|L ’:ng)

If the temperature of the gas is very low or if the size of the potential well is very small,
so that M\, = 2\/§7r2‘hﬁm—\% < 1, the function ¥()k) can be replaced by unity. If the size

of the potential well is large and A\, > 1, then W()\y) ~ 2\e™* and in formula (9) only
the first term of the sum for 2; survives.

Qosc ~ 240L - Q}ch exp{ —2V/2r 2\2_\/— }sin (47rL Q}an) .

It can be seen from the last expression that the variation of the linear size of the potential

well leads to the oscillations of the thermodynamic potential {2 with the period

h

AL =
24/2m(
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which does not depend on L. Note that this period is identical with the half length of
de Broglie wave for electrons at the boundary surface. As the number of the de Broglie
halfwaves, h/2+v/2m(, which can be placed between the potential walls determines the
index of a boundary stationary state, each ”vibration” of {2 is connected with a unit

change of the number of levels lying below the boundary energy.

3 Electron gas in potential well in magnetic field

Consider the electron gas with an arbitrary dispersion law (7) in the same potential well
as in section 2 placed in a homogenous magnetic field H applied along the x3 axis. If we
choose the vector potential in the form A; = —Hxzy, Ay = A3 = 0, two of the conditions

(2) are reduced to obvious relations:
2p1L1 = nlh, 2p3L3 = ngh.

The third condition can be written in the form [4]:

nih nsh ehH
E— — H| = e 12
S( ,2L1’2L3, ) (n2+7) c ) ( )

where S(E, p., p,; H) is the area of the intersection of the constant energy surface

|€|H L2

HL
€| <P1<pw+?—

_ _ =2
5(P1aP2aP3)_E7 Pz c 9 2

by the plane P; = p, = const.

The energy levels E are given by expression following from (12):

E = E(ny,ng,ng; H).

If Ly is small, one can suppose that the mean diameter of the classical electron orbit in
the magnetic field is grater than L,. In such case, E is determined by different analytical
expressions according to the relations between the diameter of the curve £(Py, Py, p,) = E,

nah nih eH
uh  eflp,|.

P =53 = const. and the quantity

Employing (12) and performing the calculations according to the formulas of section 1
(taking into account the electron spin) we obtain all terms of the oscillating part of the
thermodynamic potential {2. A comparison of terms containing Ly, P and () shows that

for L; ~ L3 = L their ratio is equal to :

Le P oL
P T Q" (ch/eH)\/?

where the quantity (ch/eH)'/? has a simple physical meaning: it is identical to the radius

of the classical electron orbit in the magnetic field ro(H) corresponding to the lowest
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energy level (ny = 0). Really, as for small p one can always use the quadratic expansion

of the expression (7), the lowest energy levels of the electron motion in the magnetic field

are of the form: E,, = (n2 + %) chH where m* is an effective mass, and therefore

m*c

eV 2m*Ey ch 1/2
T'Q(H) = 7@}[ = e—H .

Assuming L > ro(H), we can leave as in 2 only those terms of Qogc which contain Ly:

Qosc = QN + 0@ 4 06

here
el 2mk2cSm (H) s T _
QW = L, L, (gyiz 2 \II()\kz)cos[ oy == == 27rk27]
C 2 ™ kol kgq)(é-,nm) )

where n,,(H) is the radius vector of a point at which S((, p., p,; H) has an extremal value

Sm(H) at constant ( : 6375; = gTi = 0; the normal to the surface
E(n17n2an3;H) :C (13)

at this point is paralel to axis no;

2 0 o W(2)\k,)cos |2m(kinyy + konye) =5 £ %
0~ () g § 4§ YOl s+ 1
& B ke=1 ks ki=1 o [Ca nu(kl, k2)]
. i 1 i W(2\,) cos [27r(k3nw3 + konys) £ T+ %] .
Woka=1 k% ka=1 (0] [g, nu:(kg,, l{fg)] ’

where n,(ky, ko, H) is the radius vector of a point at which the normal to the surface (13)
is paralell to the vector (ki, ks, 0) and n, (ks, k2, H) is defined analogously;

H\?%2/ 2\?2 © 1 = WU(3\,)cos |2nkn,(k) £+ T £ T
(B (25§ Mg
¢ 3/ T ke e ® ¢, n,(k)]
where n,(k, H) is the radius vector of a point at which the normal to the surface (13) is

paralell to the vector k;

g (0S oS
)‘k2 = 27T2k266 <_> ) (I)(C,Il) = ‘a_c

1/2

0*S#*S [ &S 2
OpZ Op? Op0p,

The values )\, and ®((,n) are taken at the corresponding points.

It should be noted that if some of the enumerated points lies in the coordination plane of
the n-space, the corresponding term must be multiplied by %; if this point lies in one of

the coordination axes, it is necessary to multiply the corresponding term by i.
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The formula for Qogc simplifies in two limiting cases: If Ay, < 1 then the function U(\,)
can be replaced by unity; if the Ay, > 1, then WU()\;,) ~ 2X\z,e 2 and therefore only
the first terms remain in the sums over k. The last case corresponds to a strengthened

cd ([0S
6h—H <8_<> >1 (14)

which has a simple physical meaning. As follows from (12), the mean distance between

inequality

neighbouring energy levels with quantum numbers ny and ny+1 near the boundary energy

is given by
ehH

AE,, = 55
¢

and therefore the inequality (14) corresponds to

(>0>AE,,

If this inequality is fulfilled, 2pgsc consists of terms of the form

QOSC ~ B(Ll,LQ,Lg;H, C) COS [27?77,([/1, LQ, L3;H, g) + 7T/4 + 7T/4]

The amplitude of the oscillations B and their phases 2n have for QU) (j = 1,2,3) the

following forms:

e exp —j27r2509 25 .
B(Ly, Loy Ly H,() = LyLy'0eto (95) oo{=ir'din) (=1,2,3)
= Ci’?’h—?—wa for j =1,

n
n = nui (L, Ly, L3; H, () + nyo(Ly, Lo, Ls; H, €) for j = 2,
n np1 (L1, L, Ly; H, Q)+
+npo(L1, L1, Ls; H, ¢) + np3(Ly, Ly, Ly; H, () for j = 3.
The dependence of the phase 27n on the intensity of the magnetic field H and on the sizes
of the potential well Ly, Ly, L3 determine the periods of oscillations of Q2osc With changes
of these parameters.

It is easy to prove that the oscillation periods of the terms of {2gsc with the changes of

H are given by the following formulas:

_ eh/c
1) for QO A#) = oo s am
1 . eh/c
2) for Q@ A (ﬁ) =  2/S(n,,H)—HOS, oH]’
1 _ eh/c
3) for Q® A (ﬁ) =  3/S(n,,H)—HOS,/0H]|"

In a similar way, it is possible to obtain the periods of oscillations with the changes of
Lla L?a L3'

Supposing that L3 > L, then k3 = 0 and the following formula is valid for Qggc:
eH\? 1 © 1 X

Qosc = i+ Lily (—) —22 > = > T(2)N,) X
€ T k=1 B2 g1
cos [27T(]€1nu1 + kony) £ 5 £ ﬂ

O[C, (ko )]
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Finally, assuming that L, Ly > L2, the formula for (g consists only of the first term
(Ql)i

2
Qosc = W =LL3 (7) — X
0o W(\g,)cos [2CSmH) 4 x4 1 rkyy

P> H6C ) 19

which coincides with the formula derived by the present authors for the case of a one-

dimensional infinitely deep potential well [4] in a slightly different way! .

It is not difficult to verify that in the limiting case H — 0 the formula (15) transforms in

(11).
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