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Report 
 
The rapid progress in modern machine learning (ML) techniques has important 
consequences for almost all fields of science including chemical sciences and closely 
related fields like materials science and condensed matter physics. Among the most 
rapidly evolving applications of ML methods is their use in computer simulations 
with the aim to understand complex chemical reactions and to quantitatively predict 
properties of new materials. For this purpose, substantial progress has been made in 
the development of a new generation of accurate, ab initio based atomistic ML 
potentials, which provide a direct relation between the atomic configuration and the 
potential energy.  
The workshop brought together leading researchers who develop and apply Machine 
Learning techniques with the common goal of determining the fundamental 
properties of "small" molecules, biomolecules, and materials. These properties 
include high-dimensional potential energy surfaces, atomic densities, and molecular 
properties, such as dipole moments and polarizabilities. Communities in the areas of 
materials, biomolecules, gas-phase molecules and complexes have formed over the 
past ten or so years and a major objective of the workshop was to bring these 
communities together to hear and learn from each other’s experience. There were 
19 invited talks and 31 poster contributions to the workshop. Talks were limited to 
30 minutes, followed by 15 minutes of discussion. This format was adhered to and 
the discussions were very lively and informative.  
The ML techniques that were described ranged from High-Dimensional Neural 
Networks (HDNN), Gaussian Process Regression (GPR), and Kernel Ridge Regression 
to Permutationally Invariant Polynomials (PIPs). HDNN and GPR approaches have 
been widely and successfully used in the area of materials, where atomic-based 
approaches are used to represent the potential energy surface and where density 
functional theory (DFT) is generally the electronic method of choice. DFT using ML 
and "DML" to determine functionals was the focus of the talk by Burke. High 
dimensional NNs were described in a variety of contexts, including the interface 
between ZnO and water by Hellström, applications of atom-centered GPR using DFT 
were described for Si by Bernstein. Several talks focused on photochemistry and 
electronically non-adiabatic effects. These ranged from highly complex exciton 
processes in aggregates by Burghardt to long-time molecular dynamics propagation 



by Marquetand and the challenges to fit the diabatic matrix, using PIP-NN, for a 
multiple electronic state application by Guo. Many-body ML strategies were also 
discussed and illustrated for materials using PIPS in talks by Dusson and Ortner and 
Kernel Ridge Regression by Rupp and for ion hydration by Paesani. ML using GPR for 
atomic densities, dipoles and polarizabilities was described by Wilkins. Several talks 
discussed force fields using ML, including a charge equilibration scheme, by 
Goedecker, and the ones by Meuwly, and Popelier focused on biomolecular force 
field. A direct approach using fast Tight Binding methods by described in the talk by 
Grimme. A talk focusing on aspects of fitting gradients and with DML to obtain highly 
accurate PESs especially for MD simulations was presented by Tkatchenko. The solid-
liquid phase transition in water showed the power of HDNN in a talk by Cheng. GPR 
for extrapolation was presented in a talk by Krems. Using ML and Bayesian methods 
to navigate high-dimensional PESs was the focus of the talk by Todorović.  
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Abstracts of the Talks 
 

I01 
Machine learning of density functionals 

 
Kieron Burke 

 
Departments of Chemistry and of Physics, UC Irvine 
 
E-mail: kieron@uci.edu 
 
I will discuss how to make new density functionals using kernel ridge regression. 
These functionals are currently limited to the systems they are trained on but, unlike 
standard semilocal approximations, have no difficulties with bond breaking or strong 
correlation. I will present our most recent results.  
 
References: 
[1] Finding Density Functionals with Machine Learning Snyder, John C., Rupp, 
Matthias, Hansen, Katja, Müller, Klaus-Robert and Burke, Kieron, Phys. Rev. Lett. 108, 
253002 (2012). 
[2] Understanding machine-learned density functionals Li, Li, Snyder, John C., 
Pelaschier, Isabelle M., Huang, Jessica, Niranjan, Uma-Naresh, Duncan, Paul, Rupp, 
Matthias, Müller, Klaus-Robert and Burke, Kieron, International Journal of Quantum 
Chemistry 16, 819–833 (2016). 
[3] Understanding kernel ridge regression: Common behaviors from simple functions 
to density functionals Vu, Kevin, Snyder, John C., Li, Li, Rupp, Matthias, Chen, 
Brandon F., Khelif, Tarek, Müller, Klaus-Robert and Burke, Kieron, International 
Journal of Quantum Chemistry 115, 1115–1128 (2015). 
[4] By-passing the Kohn-Sham equations with machine learning Brockherde, Felix, 
Vogt, Leslie, Li ,Li, Tuckerman, Mark E, Burke, Kieron and Muller, Klaus-Robert, 
Nature Communications 8, 872 (2017). 
[5] Pure density functional for strong correlation and the thermodynamic limit from 
machine learning Li, Li, Baker, Thomas E., White, Steven R. and Burke, Kieron, Phys. 
Rev. B 94, 245129 (2016). 
[6] Can exact conditions improve machine-learned density functionals? Jacob 
Hollingsworth, Li, Li, Thomas E. Baker and Kieron Burke, The Journal of Chemical 
Physics 148, 241743 (2018). 
 
  



I02 
Condensed-phase simulations using high-dimensional 

neural network potentials 
 

Matti Hellström1  
 
1 Software for Chemistry & Materials BV, Amsterdam, The Netherlands 
 
E-mail: hellstrom@scm.com 
 
High-dimensional neural network potentials (HDNNPs) can be parameterized to 
accurately reproduce potential energy surfaces from electronic structure 
calculations. From dispersion-corrected DFT data, we parameterized HDNNPs for the 
full room-temperature solubility range of NaOH in water [1], and for the interface 
between ZnO and liquid water [2], and applied them to large-scale molecular 
dynamics simulations in which we characterized the rates and mechanisms of 
different proton transfer reactions [1,2], finding unexpected similarities between the 
two systems. Moreover, we explored the role of nuclear quantum effects in NaOH 
solutions [3] and how the ZnO surface structure influences the long-range Grotthuss-
like proton transport at the ZnO/water interface [4]. 
 
This talk also discusses the challenging case of modeling metal oxides, for which the 
electronic band structure strongly influences defect formation energies [5] and even 
the coverage-dependence of adsorption energies on surfaces [6].  
 
References: 
[1] M. Hellström, J. Behler. J. Phys. Chem. Lett. 7 (2016) 3302 
[2] V. Quaranta, M. Hellström, J. Behler. J. Phys. Chem. Lett. 8 (2017) 1476 
[3] M. Hellström, M. Ceriotti, J. Behler. J. Phys. Chem. B 122 (2018) 10158 
[4] M. Hellström, V. Quaranta, J. Behler. Chem. Sci. 10 (2019) 1232 
[5] C. Freysoldt et al.  Rev. Mod. Phys. 86 (2014) 253 
[6] M. Hellström, J. Behler. Phys. Chem. Chem. Phys. 19 (2017) 28731 
 
  



I03 
Ab initio based construction of molecular aggregate 

Hamiltonians for exciton dynamics 
 

Irene Burghardt1 and Robert Binder1 
 
1 Department of Physical and Theoretical Chemistry, Goethe University Frankfurt, 
Germany 
 
E-mail: burghardt@chemie.uni-frankfurt.de 
 
This talk addresses recent efforts towards the ab initio based construction of 
parametrized model Hamiltonians describing energy and charge transfer in 
molecular aggregates coupled to intra- and intermolecular vibrations. While the use 
of such Hamiltonians, including the Frenkel-Holstein Hamiltonian for exciton 
transport and related charge-transport Hamiltonians of Su-Schrieffer-Heeger (SSH) 
type, is well established, the direct parametrization of such models based on 
electronic structure data is attempted less frequently. Here, we report on two types 
of approaches that are capable to provide an accurate translation of electronic 
structure information to potential surfaces adapted to the relevant model 
Hamiltonians: (i) First, a mapping procedure which was developed for J-type and H-
type homo-aggregate systems [1] as well as combined HJ-aggregates [2]; this 
procedure is based upon the analytic solution of an inverse eigenvalue problem for 
an effective Frenkel Hamiltonian with nearest-neighbor couplings. (ii) Second, the 
use of vibronic coupling models which are parametrized by diabatization procedures 
in conjunction with the determination of linear or higher-order vibronic coupling 
parameters [3]. Several examples will be given of quantum dynamical treatments of 
ultrafast exciton transfer [4] and exciton dissociation [3,5] based upon these ab initio 
parametrized model Hamiltonians, and a perspective is given on further 
developments.  
 
References: 
[1] R. Binder, S. Römer, J. Wahl, I. Burghardt, J. Chem. Phys. 141 (2014) 014101. 
[2] R. Binder, M. Polkehn, T. Ma, I. Burghardt, Chem. Phys. 482 (2017) 16. 
[3] M. Polkehn, P. Eisenbrandt, H. Tamura, I. Burghardt, Int. J. Quant. Chem. 118 
(2018) e25502. 
[4] R. Binder, D. Lauvergnat, I. Burghardt, Phys. Rev. Lett. 120 (2018) 227401. 
[5] M. Polkehn, H. Tamura, I. Burghardt, J. Phys. B: At. Mol. Opt. Phys. 51 (2018) 
014003. 
 
 
  



I04 
Permutation Invariant Polynomial-Neural Network 

(PIP-NN) Approach to Nonadiabatic Potential Energy 
Surfaces Beyond the Born-Oppenheimer 

Approximation 
 

Hua Guo1 and Changjian Xie1 
 
1 Department of Chemistry and Chemical Biology, University of New Mexico, USA 
 
E-mail: hguo@unm.edu 
 
It is well established that the Born-Oppenheimer adiabatic potential energy surface 
(PES) is invariant under permutation of identical nuclei in a molecule. The 
enforcement of the permutation invariance is not only essential to correctly 
characterize spectra and dynamics, but also numerically beneficial. One approach to 
enforce permutation symmetry is to use the atomistic neural network (NN) method 
of Behler, in which each atom type is associated with a NN.[1] This can also be 
achieved using permutation invariant polynomials (PIPs) either as the interpolating 
basis[2] or as the first layer of a global NN.[3] The latter is the so-called PIP-NN 
approach, and it has been demonstrated to be accurate and efficient for few-atom 
systems. In this talk, I will discuss the extension of the PIP-NN method to 
constructing diabatic potential energy matrices (PEMs), particularly when conical 
intersections are involved. It is shown that the elements of the diabatic PEM are not 
always permutationally invariant, and system-dependent symmetry considerations 
are needed to ensure the permutation symmetry in the corresponding adiabatic 
PESs.[4] Dynamics on the PIP-NN PEMs confirm the accuracy of this approach. 
 
 
References: 
[1] J. Behler, Int. J. Quant. Chem. 2015, 115, 1032-1050. 
[2] B. J. Braams, J. M. Bowman, Int. Rev. Phys. Chem. 2009, 28, 577–606. 
[3] B. Jiang, J. Li, H. Guo, Int. Rev. Phys. Chem. 2016, 35, 479-506. 
[4] C. Xie, X. Zhu, D. R. Yarkony, H. Guo, J. Chem. Phys. 2018, 149, 144107. 
 
  



I05 
Insights into Chemical Reactivity from Empirical and 

Neural 
Network-Learned Reactive Force Fields 

 
Markus Meuwly1 

 
1 Department of Chemistry, University of Basel, Switzerland 
 
E-mail: m.meuwly@unibas.ch 
 
Following and characterizing the dynamics accompanying chemical reactions in gas 
phase and in solution is one of the essential aims of chemistry. Although ab initio and 
mixed quantum/classical molecular dynamics simulations are in principle viable 
approaches they are typically too slow to comprehensively sample configurational 
space for converging reaction probabilities or free energies of reaction. In this talk I 
will present recent efforts to use empirical and neural network-based force fields to 
investigate the energetics of chemical reactions in gas phase and in solution. A 
particular emphasis is on comparing with experimental data and providing 
molecular-level insight beyond what analysis of state-of-the art experiments can 
obtain. 
 
  



I06 
Simulation of ground and excited-state molecular 

dynamics with machine learning 
 

Philipp Marquetand1 
 
1 Instiute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, 
Austria 
 
E-mail: philipp.marquetand@univie.ac.at 
 
Different applications and developments of machine learning potentials will be 
presented, aiming at fast and accurate molecular dynamics simulations. As a first 
example, the simulation of infrared spectra computed including anharmonic effects 
is chosen [1,2]. Here, high-dimensional neural networks exploit chemical locality 
[3,4] and predict accurate potentials from only a few training points chosen with an 
adaptive sampling scheme [1,5]. Emphasis is put on the intrinsic charge model 
derived from molecular dipole moments [1,2]. Furthermore, weighted atom-
centered symmetry functions (wACSFs) are discussed as descriptors [6]. Finally, 
machine learning potentials are used to carry out excited-state molecular dynamics 
and open up the possibility to reach time scales in the nanosecond regime [7]. 
 
 

 
 
 
References: 
[1]  M. Gastegger, J. Behler, P. Marquetand, Chem. Sci., 8 (2017) 6924-6935. 
[2]  M. Gastegger, P. Marquetand, arXiv:1812.07676 [physics.chem-ph] (2018). 
[3]  J. Behler, M. Parrinello, Phys. Rev. Lett., 98 (2007) 146401. 
[4]  M. Gastegger, C. Kauffmann, J. Behler, P. Marquetand, J. Chem. Phys., 144 

(2016) 194110. 
[5]  J. Behler, J. Phys.: Condens. Matter, 26 (2014) 183001. 
[6]  M. Gastegger, L. Schwiedrzik, M. Bittermann, F. Berzsenyi, P. Marquetand, J. 

Chem. Phys., 148 (2018) 241709. 
[7]  J. Westermayr, M. Gastegger, M. Menger, S. Mai, L. González, P. Marquetand, 

arXiv:1811.09112 [physics.chem-ph] (2018). 
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I07 
A force field based on a charge equilibration scheme 

steered by a neural network 
 

Stefan Goedecker1  
 
1 Department of Physics, University of Basel,  Switzerland 
 
E-mail: Stefan.Goedecker@unibas.ch 
 
Most existing atomic environment descriptors are short range, in the sense that they 
probe only a limited number of neighboring atoms within a finite sphere around the 
central atom whose environment has to be characterized. While in many cases 
chemical properties  depend only on local properties, this is not true anymore  if long 
range charge transfer is important in the system. I will present a machine learning 
force field, that is based on a charge equilibration scheme and that can therefore 
describe long range charge transfer or even ionized systems. I will describe some 
structure prediction results based on this force field. I will also discuss the resolution 
power of various atomic fingerprints when they are used to distinguish different 
atomic environments. 
 
References: 
Ghasemi, S. Alireza and Hofstetter, Albert and Saha, Santanu and Goedecker, Stefan: 
Interatomic potentials for ionic systems with density functional accuracy based on 
charge densities obtained by a neural network, Phys. Rev. 92 045131 (2015) 
 
  



I08 
Towards Exact Molecular Dynamics Simulations with 

Quantum Chemistry and Machine Learning 
 

Alexandre Tkatchenko1 
 
1 Physics and Materials (PhyMS) Research Unit, University of Luxembourg, 
Luxembourg 
 
Email: alexandre.tkatchenko@uni.lu 
 
I will discuss an efficient symmetric gradient-domain machine learning (sGDML) 
approach for constructing next-generation CCSD(T)-quality interatomic force fields 
for molecules. The sGDML implementation is able to reproduce global potential-
energy surfaces of intermediate-sized molecules with an accuracy of 0.1 kcal/mol 
using only few hundred molecular conformations for training. We demonstrate this 
accuracy for ab initio molecular dynamics (AIMD) trajectories of molecules, including 
toluene, naphthalene, ethanol, uracil, and aspirin. The GDML approach enables 
quantitative molecular dynamics simulations with quantum electrons and nuclei for 
molecules at a fraction of cost of explicit AIMD calculations, thereby allowing to 
achieve unprecedented insights into (thermo)dynamics of molecules [1,2]. 
 
References: 
[1] S. Chmiela, A. Tkatchenko, H.E. Sauceda, I. Poltavsky, K.T. Schütt, and K.-R. Müller, 
Machine Learning of Accurate Energy-Conserving Molecular Force Fields. Science 
Adv. 3, 1603015 (2017). 
[2] S. Chmiela, H. E. Sauceda, K. R. Mueller, and A. Tkatchenko, Towards exact 
molecular dynamics simulations with machine-learned force fields. Nature Commun. 
9, 3887 (2018). 
  



I09 
Machine learning an interatomic potential 

without blood, sweat, and tears 
 

Noam Bernstein,1 Gábor Csányi,2 and Volker L. Deringer2 
 
1 Center for Materials Physics and Technology, U. S. Naval Research Laboratory, USA 
2 Department of Engineering, University of Cambridge, UK 
 
E-mail: noam.bernstein@nrl.navy.mil 
 
Defining interatomic potentials using ideas from machine learning that treat the 
problem as a high-dimensional fit of the reference (usually density functional theory) 
potential energy surface is an exciting new approach for developing accurate 
potentials. However, because of their variational freedom, 
such potentials require large fitting datasets, with large amounts of manual selection 
and tuning of configurations by the researcher [1].  We present an iterative method, 
where a preliminary potential is used to carry out a number of random-structure 
searches, and selected configurations from the searches are used to fit the next 
iteration's potential.  We test the method on a number of elements with different 
bonding types, including an insulator, a semiconductor, and a metal. We show how 
the process converges in a few iterations, and how the resulting potentials 
reproduce the reference DFT values on a number of bulk and defect properties. 
 
References: 
 
[1] “Machine Learning a General-Purpose Interatomic Potential for Silicon,” A. P. 
Bartók et al., Phys. Rev. X 8 (2018) 041048. 
  



I10 
New Tight-binding Quantum Chemistry Methods 

 
Stefan Grimme1 

 
1 Mulliken Center for Theoretical Chemistry, University Bonn, Germany 
 
E-mail: grimme@thch.uni-bonn.de 
 
The GFN-xTB family of semi-empirical tight-binding methods, which are variants of 
the well-known DFTB approaches, is introduced. The methods follow a global and 
element-specific parameters only strategy and are consistently parameterized for all 
elements through radon. Their original purpose and main target for the parameter 
optimization has been the computation of molecular geometries, vibrational 
frequencies, and non-covalent interactions. Very recently, the original GFN-xTB has 
been extended by including multipole electrostatic as well as one-center exchange-
correlation terms leading to higher accuracy (at lower empiricism) specifically for 
non-covalent interactions and conformational energies[1]. A new, much faster 
(speedup of 3-5) first-order form employing classical electrostatics is briefly 
described (GFN0-xTB) The most sophisticated GFN2-xTB approach which 
furthermore employs density dependent D4 dispersion, is effectively used in the 
framework of meta-dynamics (MTD) to globally explore chemical compound, 
conformer, and reaction space[2]. The biasing potential given as a sum of Gaussian 
functions is expressed with the RMSD in Cartesian space as a metric for the collective 
variables. For typical conformational search problems of drug-like organic molecules, 
the new MTD(RMSD) algorithm yields lower energy structures and more complete 
conformer ensembles at reduced computational effort. Because TB methods (when 
combined with the Fermi-smearing technique) can also describe difficult electronic 
situations at least qualitatively correct, chemical reaction space exploration in a 
virtual nanoreactor also for transition metal containing systems is routinely possible. 
 
References: 
[1] C. Bannwarth, S. Ehlert, S. Grimme J. Chem. Theory Comput. DOI: 
10.1021/acs.jctc.8b01176 
[2] S. Grimme, DOI: 10.26434/chemrxiv.7660532.v1 
 

 
 
  



I11 
Symmetry-Adapted Machine Learning: from Tensors to 

Charge Densities 
 

Andrea Grisafi,1 David M. Wilkins,1 and Michele Ceriotti1 
 
1 Department of Materials Science, École Polytechnique Fédérale de Lausanne, 
Switzerland 
 
E-mail: david.wilkins@epfl.ch 
 
A full description of a physical system requires the knowledge not only of scalar 
properties that are invariant under transformations such as translations and 
rotations, but also of properties that transform in specified ways when these 
operations are applied. Examples include response tensors and scalar fields, which 
are rotated when a rigid-body rotation is applied to the system. In order to learn 
these properties, we require a method that takes into account these 
transformations. 
 
I describe a formalism that extends standard Gaussian process methods to learn 
tensor properties, giving predictions that rotate covariantly with the reference frame 
[1]. This framework requires kernels that are adapted to this symmetry, realized as a 
generalization of the smooth overlap of atomic positions (SOAP) kernels. This 
method, called symmetry-adapted Gaussian process regression (SA-GPR), is able to 
learn tensors of arbitrary rank for systems of arbitrary complexity. 
 
In particular, I describe two recent applications of SA-GPR: the first of these is the 
prediction of molecular polarizabilities α, using a model trained on a dataset of small 
molecules [2]: this model is able to predict the coupled-cluster polarizability of a 
molecule with an accuracy better than density functional theory, even when 
extrapolated to larger and more complex molecules; the prediction of the molecular 
α opens the way to the design of polarizable forcefields and the simulation of 
spectroscopic experiments. 
 
A further application is the prediction of the electronic charge density of a molecule 
without the need for electronic structure calculations, learning this scalar field as a 
decomposition into atom-centred spherical harmonic components. Once again, a 
model trained on smaller molecules can be extrapolated to give good predictions of 
the electron density of larger molecules, showing the versatility and power of the SA-
GPR method. I will also describe the outlook for this framework and its future 
applications. 
 
References: 
[1] A. Grisafi, D. M. Wilkins, G. Csányi, M. Ceriotti, Phys. Rev. Lett. 120 (2018) 036002. 
[2] D. M. Wilkins, A. Grisafi, Y. Yang, K.-U. Lao, R. A. DiStasio, M. Ceriotti, Proc. Natl. 
Acad. Sci. 116 (2019) 3401. 
[3] A. Grisafi, A. Fabrizio, B. Meyer, D. M. Wilkins, C. Corminboeuf, M. Ceriotti, ACS 
Cent. Sci. 5 (2019) 57. 
  



I12 
Ab initio thermodynamics with the help of machine 

learning 
 

Bingqing Cheng,1 Michele Ceriotti2 
 
1 Department of Physics, University of Cambridge, UK 
2 Department of Materials Science and Engineering, EPFL, Switzerland 
 
E-mail: tonicbq@gmail.com 
 
A central goal of computational physics and chemistry is to predict material 
properties using first principles methods based on the fundamental laws of quantum 
mechanics. However, the high computational costs of these methods typically 
prevent rigorous predictions of macroscopic quantities at finite temperatures, such 
as heat capacity, density, and chemical potential. 
In this talk, I will discuss how to enable such predictions by combining advanced free 
energy methods with data-driven machine learning interatomic potentials. I will 
show that, for the omnipresent and technologically essential system of water, a first-
principles thermodynamic description not only leads to excellent agreement with 
experiments, but also reveals the crucial role of nuclear quantum fluctuations in 
modulating the thermodynamic stabilities of different phases of water. 
 
 
References: 
[1] B. Cheng, J. Behler, M. Ceriotti, Journal of Physical Chemistry Letters 7 (2016) 
2210-2215. 
[2] B. Cheng, M. Ceriotti, Physical Review B 97 (2018) 054102. 
[3] B. Cheng, E. A. Engel, J. Behler, C. Dellago, M. Ceriotti, Proceedings of the National 
Academy of Sciences 116 (2019) 1110-1115. 
 
  



I13 
Interatomic Potentials from Linear Fits 

 
Christoph Ortner 

 
Mathematics Institute, Zeeman Building, University of Warwick, Coventry CV4 7AL, 
UK 
 
E-mail: C.Ortner@warwick.ac.uk 
 
I will discuss different approaches to constructing Interatomic Potentials from linear 
fits, including the roles of descriptors, basis sets, regression methods and in 
particular regularisation. Potentials in this category include GAP (Bartok, Csanyi, …), 
MTPs (Shapeev), PIPs (Bownman, Braams), SNAP (Thompson, ...), and others. I will 
also explore the connection between RMSE and errors in quantities of interest (e.g. 
defect formation energy). 
 
  



I14 
Atomic Permutation-Invariant Potential  

 
Gábor Csányi1, Geneviève Dusson2, Christoph Ortner2 and Cas Van der 

Ord1 

 
1 Department of Engineering, University of Cambridge, United Kingdom 
2 Department of Mathematics, University of Warwick, United Kingdom 
 
E-mail: g.dusson@warwick.ac.uk 
 
In this talk, I will present a potential targeted for materials simulations combining a 
physically motivated functional form: an atomic body-order expansion, with a data-
driven linear fitting procedure. On top of being systematically improvable, this 
potential is constructed to satisfy the rotation and permutation invariance of the 
problem.  
I will report our first experience with a practical implementation, demonstrating a 
competitive accuracy vs cost ratio, as well as some additional useful properties, such 
as the possibility of regularising the functional, leading to an accurate prediction of 
some physical properties. 
 
  



I15 
Navigating High-Dimensional Energy Landscapes 

 
Milica Todorović 1 

 
1 Department of Applied Physics, Aalto University, Finland 
 
E-mail: milica.todorovic@aalto.fi 
 
Atomistic structure search at organic/inorganic interfaces is made complex by the 
many degrees of freedom and the need for accurate but costly density-functional 
theory (DFT) simulations. To accelerate and simplify structure determination in such 
heterogenous functional materials, we developed the Bayesian Optimization 
Structure Search (BOSS). 
 
Bayesian optimization was employed to build N-
dimensional surrogate models for the energy 
landscapes [1] and infer global minima. The 
models were iteratively improved by 
sequentially sampling DFT data points that are 
promising and/or have high information 
content. We represented heterogenous 
materials with chemical ‘building blocks’, which 
reduced dimensionality and allowed us to 
search the configurational phase space, instead 
of the chemical phase space.  
 
We applied this active learning scheme to 
molecular surface adsorption, as illustrated in 
Figure 1. Global minima were identified with 
reasonable computational efficiency [2]. BOSS 
produced chemically-intuitive adsorption energy 
landscapes. These could be parsed for local 
minima and the minimum energy paths 
between them, allowing us to extract energy 
barriers and the corresponding atomistic 
pathways in N-dimensions. 
 
References: 
[1] M.U. Gutmann and J. Corander, J. Mach. Learn. Res. 17 (2016) 1. 
[2] M. Todorović, M.U. Gutmann, J. Corander and P. Rinke, npj Comput. Mater. 5 
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Figure 1. BOSS inference of coronene 
adsorption on Cu(110)-O c(6x2). A) DFT 
model; b) adsorption energy landscape with 
local minima; c) minimum energy paths. 
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This talk will discuss three different but related problems [1-4]. First, I will discuss the 
advantages and limitations of fitting multi-dimensional potential energy surfaces 
(PES) by Gaussian Process (GP) regression. In particular, I will argue that GPs can be 
used to construct accurate PES with a small number of ab initio points [2] and 
automate the construction of multi-dimensional PES. The latter can be used to 
implement Bayesian optimization for the inverse scattering problem [3]. I will 
illustrate an algorithm where Bayesian optimization is trained to modify the PES in 
response to feedback from scattering calculations, with the goal of producing a PES 
yielding an agreement with desired quantum dynamics results.  Second, I will discuss 
the role of sampling the configuration space for the construction of accurate PES by 
means of GP regression. I will use Bayesian optimization to determine the optimal 
sampling distributions for a variety of polyatomic systems and compare the results 
with those obtained using random sampling. Finally, I will discuss the feasibility of 
using GP regression for extrapolation rather than interpolation.  In order to build GP 
models capable of extrapolation, it is necessary to construct complex kernels 
capturing the physical evolution of the properties of interest. Such kernels can be 
constructed by an iterative procedure combining simple kernels into linear 
combinations of products [4] and using the Bayesian information criterion for kernel 
selection [5]. I will show that GP models thus built are capable of extrapolating the 
properties of complex quantum systems across quantum phase transitions [6].    
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Two of the most challenging problems at the intersection of electronic structure 
theory and molecular dynamics simulations are the accurate representation of 
intermolecular interactions and the development of reduced-scaling algorithms 
applicable to large systems. To some extent, these two problems are antithetical, 
since the accurate calculation of non-covalent interactions typically requires 
correlated, post-Hartree-Fock methods whose computational scaling with respect to 
system size precludes the application of these methods to large systems. I will 
describe our many-body molecular dynamics (MB-MD) methodology1 for aqueous 
systems that overcomes these limitations and enables computer simulations from 
the gas to the condensed phase, with chemical and spectroscopic accuracy. MB-MD 
is a unified molecular dynamics framework that combines many-body 
representations for potential energy, dipole moment, and polarizability surfaces that 
are derived entirely from correlated electronic structure data-driven approaches,2 
with quantum dynamics methods that explicitly account for nuclear quantum 
effects.3-7 I will discuss the accuracy and predictive ability of the MB-MD 
methodology in the context of molecular modeling of complex aqueous systems, 
from gas-phase clusters to bulk solutions and interfaces, with a particular focus on 
the relationships between structural and dynamical properties and vibrational 
spectra.8-15 
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     FFLUX1, 2 is a force field under development that ventures beyond next-generation 
force fields, such as AMOEBA or SIBFA. FFLUX breaks with the tradition of 
perturbation theory in force field design. Instead, FFLUX invokes Quantum Chemical 
Topology (QCT)3, 4 to define both intra- and interatomic properties and uses Gaussian 
Process regression (aka kriging) to capture how these properties change with the 
nuclear coordinates of the atom’s environment. A minimal, consistent and fully 
integrated framework lies at the heart of FFLUX, covering polarization (e.g.5), 
multipolar electrostatics6, dynamic correlation energy7-9 (i.e. dispersion but also 
within a molecule), exchange energy (i.e. bonding and conjugation effects) and steric 
repulsion10.  
      After successful tests with geometry optimisation11, 12 liquid water simulations 
are being carried out (which will leading to a novel solvation model), adaptive 
sampling is being explored and oligopeptides will be investigated soon.  
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Computational study of molecules and materials from first principles is a cornerstone 
of physics, chemistry and materials science, but limited by the cost of accurate 
quantum-mechanical simulations. In settings involving many simulations, machine 
learning can reduce these costs significantly by rapidly and accurately interpolating 
between reference simulations. This requires a single Hilbert space, or 
representation, that accommodates any molecule or material and supports 
interpolation.  
 
We review, discuss and benchmark state-of-the-art representations and relations 
between them, [1] including smooth overlap of atomic positions, many-body tensor 
representation and symmetry functions. [2] For this, we use a unified mathematical 
framework [3] based on many-body functions, group averaging and tensor products, 
and empirically compare predictive accuracy in controlled numerical experiments on 
datasets of organic molecules and binary alloys. In our benchmark, we control for (i) 
data distribution by multivariate stratification, and (ii) regression method by 
employing the same machine learning approach for all representations, including (iii) 
hyperparameter optimization. For the latter we use a consistent and fully automated 
procedure to optimize both numerical and architectural free parameters based on 
sequential model-based optimization with tree-structured Parzen estimators. [4] Our 
findings hint at current state-of-the-art representations implementing, based on the 
same principles, different trade-offs between computational complexity and 
modeled interaction orders. 
 
References: 
[1] M. Langer, A. Goeßmann, M. Rupp, in preparation (2019). 
[2] a) A.P. Bartók, R. Kondor, G. Csányi, Phys Rev B 87 (2013) 184115; b) H. Huo, M. 
Rupp, arXiv (2017) 1704.06439v3; c) J. Behler, J Chem Phys 134 (2011) 074106. 
[3] M.J. Willatt, F. Musil, M. Ceriotti, arXiv (2018) 1807.00408. 
[4] a) J.S. Bergstra et al., NIPS 24 (2011) 2546. b) J.S. Bergstra et al., ICML 30 (2013) I-
115. 
 
  



List of Participants 
 
Allen, Alice; University of Cambridge, United Kingdom 
Batzner, Simon Lutz; Harvard University Cambridge, Massachusetts, USA 
Behler, Jörg; Georg-August-Universität Göttingen, Germany 
Bernstein, Noam; Naval Research Lab, Washington, D.C., USA 
Bertaina, Gianluca, University of Milano, Italy 
Beseda, Martin; Ostrava University, Czech Republic 
Bowman, Joel; Emory University, Georgia, USA 
Braams, Bastiaan; Centrum Wiskunde & Informatica (CWI) Amsterdam, Netherlands 
Burghardt, Irene; Universität Frankfurt, Germany 
Burke, Kieron; University of California Irvine, California, USA 
Caro, Miguel A.; Aalto University, Finland 
Cheng, Bingqing; University of Cambridge, United Kingdom 
Christiansen, Mads-Peter Verner; Aarhus University, Denmark 
Csányi, Gábor¸ University of Cambridge, United Kingdom 
Daelman, Nathan; Barcelona Institute of Science and Technology, Spain 
Deringer, Volker; University of Cambridge, United Kingdom 
Dusson, Geneviève; University of Warwick, United Kingdom 
Eckhoff, Marco; Georg-August-Universität Göttingen, Germany 
Egan, Colin; University of California San Diego, California, USA 
Ehlert, Sebastian; Universität Bonn, Germany 
Fekete, Adam; University of Cambridge, United Kingdom 
Galindo, Valentin Vassilev; University of Luxembourg, Luxembourg 
Glensk, Albert; EPFL Lausanne, Switzerland 
Goedecker, Stefan; University of Basel, Switzerland 
Grimme, Stefan; Universität Bonn, Germany 
Guo, Hua; University of New Mexico, USA 
Hellström, Matti; SCM Amsterdam, Netherlands 
Herbold; Marius; Georg-August-Universität Göttingen, Germany 
Järvi, Jari; Aalto University, Finland 
Kandratsenka, Alexander, MPI Biophysikalische Chemie Göttingen, Germany  
Kermode, James; University of Warwick, United Kingdom 
Knoll; Alexander; Georg-August-Universität Göttingen, Germany 
Ko, Tsz Wai; Georg-August-Universität Göttingen, Germany 
Koch, Werner; Universität Frankfurt, Germany 
Krems, Roman; University of British Columbia, Canada 
Langer, Marcel; Fritz-Haber-Institut Berlin, Germany 
Li, Jun; MPI Biophysikalische Chemie Göttingen, Germany 
Liebetrau, Martin; Georg-August-Universität Göttingen, Germany 
Long, Teng; Technische Universität Darmstadt, Germany 
Marquetand, Philipp; University of Vienna, Austria 
Mata, Ricardo; Georg-August-Universität Göttingen, Germany 
Meuwly, Markus; University of Basel, Switzerland 
Musil, Felix; EPFL Lausanne, Switzerland 
Nandi, Apurba; Emory University, Georgia, USA 
Oren, Eyal; Negev University, Israel 
Ortner, Christoph; University of Warwick, United Kingdom 
Oswald, Rainer; Georg-August-Universität Göttingen, Germany 
Paesani, Francesco; University of California San Diego, California, USA 
Paleico, Martin; Georg-August-Universität Göttingen, Germany 
Parsaeifard, Behnam; University of Basel, Switzerland 
Popelier, Paul; University of Manchester, United Kingdom 
Qu, Chen; NIST Gaithersburg, Maryland, USA 



Riera, Marc; University of California San Diego, California, USA  
Rupp, Matthias; Fritz-Haber-Institut Berlin, Germany 
Shanavas Rasheeda, Dilshana; Georg-August-Universität Göttingen, Germany 
Szekely, Eszter; University of Cambridge, United Kingdom 
Tkatchenko Alexandre; University of Luxembourg, Luxembourg 
Todorovic, Milica; Aalto University, Finland 
van der Oord, Cas; University of Cambridge, United Kingdom 
Weinreich, Jan; Georg-August-Universität Göttingen, Germany 
Wilkins, David; EPFL Lausanne, Switzerland  
Wille, Sebastian; MPI Biophysikalische Chemie Göttingen, Germany 
 
 
 

Acknowledgements 
 
We gratefully acknowledge support by 
 
Psi-K  
ICASEC 
Georg-August-Universität Göttingen 
Max-Planck-Institut für biophysikalische Chemie 
Fonds der Chemischen Industrie e.V. 
The Journal of Chemical Physics 
 
 

 
 
 
  


