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1 Editorial

This last newsletter of 2009 is started with the updated information on the forthcoming Psi-

k Conference in 2010. This is followed by a number of workshop reports, workshop/school

announcements, and abstracts of newly submitted or recently published papers. After the

abstracts, in the section ”Presenting Other Initiatives” we have a short information on the first

official release of the Exciting Code.

A very impressive scientific highlight of this newsletter is by Raffaele Resta (Trieste) on ”Elec-

trical Polarization and Orbital Magnetization: The Modern Theories”.

For further details please check the table of content of this newsletter.

The Uniform Resource Locator (URL) for the Psi-k webpage is:

http://www.psi-k.org.uk/

Please submit all material for the next newsletters to the email address below

psik-coord@dl.ac.uk.

Since it is the last newsletter of this calendar year, we would like to wish all our readers

Merry Christmas and a very Happy New Year!

Dzidka Szotek, Martin Lüders and Walter Temmerman

e-mail: psik-coord@dl.ac.uk
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2 General News

2.1 Ψk Conference 2010

Henry Ford Building, Berlin, Germany

September 12 - 16, 2010

Conference Web Page:

http://www.fhi-berlin.mpg.de/th/Meetings/psik_2010/

Conference Chair: Matthias Scheffler

Co-Chair: Hardy Gross

Honorary Chair: Volker Heine

Program Committee

Matthias Scheffler - Chair (Berlin, Germany)

Peter Dederichs - Vice-Chair (Jlich, Germany)

Walter Temmerman - Vice-Chair (Daresbury, United Kingdom)

This is just to update you on the forthcoming Psi-k2010 Conference which will take place next

year in Berlin. Like the three previous Psi-k conferences (1996, 2000, 2005), the forthcoming

conference will cover theoretical and computational research on electronic structure and prop-

erties of matter, ranging from novel basic concepts and methods to applications for condensed

matter and real functional materials to systems of biological interest. All the up to date in-

formation on the Psi-k2010 conference can be found on the official conference web page given

above.

Most importantly, the five plenary talks of the conference will be given by

Stefano Baroni (Trieste)

Gerbrand Ceder (Boston)

Jens Norskov (Lyngby)

Mark Ratner (Evanston)

David Vanderbilt (Piscataway).

The conference will be run in four parallel sessions, with 21 symposia and about 110 invited

speakers. Among the speakers there are such well known names as Marvin Cohen (Berkeley),

John Perdew (Tulane), Michele Parrinello (Manno), Warren Pickett (Davis), Gustavo Scuseria

(Houston), David Singh (Oak Ridge), Jose Soler (Madrid), Alex Zunger (Golden), and many

others, as given at the above conference web page.

The themes of the symposia are:
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Climbing Jacob’s Ladder: from Local Functionals to Wavefunction based Methods

Electronic Excitations

Strong Correlation from First Principles

Recent Developments in Dynamical Mean-Field Theory

Quantum Monte Carlo

Superconductivity

Linear-Scaling and Large-Scale DFT

First-Principles based Multi-Scale Modeling

Multiferroics and Oxides

Magnetism and Spintronics

Crystalline, Amorphous, and Glassy Alloys

Earth and Planetary Materials and Matter at Extreme Conditions

Solid-Solid and Solid-Liquid Interfaces

Solar Energy Conversion and Harvesting

Organic Electronics

Nanoscale Structures and Phenomena

Surface Science, Catalysis and Energy Conversion

Ab Initio Modeling of Biological Systems

Transport

Quantum Dynamics

Exploiting Advanced Computing Architectures

Vibrational Coupling

The important dates are:

* Registration and abstract submission open: Dec 1, 2009

* Abstract submission deadline: May 1, 2010

* Deadline for support applications: May 1, 2010

* Early registration deadline: June 1, 2010

For further details please check the conference web page.
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3 Psi-k Activities

”Towards Atomistic Materials Design”

3.1 Reports on the Workshops supported by Psi-k

3.1.1 Report on International Workshop ”Quantum Monte Carlo in the Apuan

Alps V”

Saturday 25th July - Saturday 1st August 2009

The Apuan Alps Centre for Physics @ TTI, Vallico Sotto, Tuscany

www.vallico.net/tti/tti.html

Sponsors: Psi-k, CCP9

Organizer: Mike Towler

Conference web page: www.vallico.net/tti/qmcitaa 09/conference.html

The fifth Cambridge international workshop devoted to the Quantum Monte Carlo (QMC)

method took place in late July 2009. The event was organized and run by Mike Towler of

Cambridge University, and was held in the pleasant setting of his 15th century monastery in the

beautiful mountain village of Vallico Sotto in Tuscany. Workshops at this venue are generally

intended to gather together limited numbers of expert physicists to discuss subjects of topical

interest where there is an ongoing requirement for new insights. This workshop - like the previous

four - appeared to be succeed very well in its stated purpose, and all participants enjoyed a varied

programme of interesting lectures and discussions.

The quantum Monte Carlo method is an important and complementary alternative to density

functional theory when performing computational electronic structure calculations in which high

accuracy is required. The method has many attractive features for probing the electronic struc-

ture of real atoms, molecules and solids. In particular, it is a genuine many-body theory with

a natural and explicit description of electron correlation which gives consistent, highly-accurate

results while at the same time exhibiting favourable (cubic or better) scaling of computational

cost with system size. It is the only known highly-accurate method which remains tractable for

systems with more than a few tens of electrons; indeed, solid-state applications of more than

2000 electrons were reported during the workshop.

Here is a (by no means exhaustive) list of interesting themes presented and discussed at this

year’s event:

• Insights into QMC and other numerical simulations from trajectory-based interpretations

of quantum mechanics (specifically, de Broglie-Bohm pilot-wave theory)
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• Various new forms of many-particle wave function, including a new completely general

form of Jastrow correlation factor which allows the inclusion of arbitrary higher-order

terms.

• QMC calculation of weak interactions.

• The exploitation of new petascale parallel hardware to do quantum Monte Carlo calcula-

tions.

• Forces and the optimization of geometries in QMC.

• A completely new algorithm for doing QMC in a ‘Slater determinant space’.

• A very wide-range of applications of QMC to atoms, molecules, surfaces, solids and various

model systems.

As is usual with events at this venue, formal lectures were restricted to the mornings, and

participants were encouraged to spend the remainder of each day thinking about and discussing

the topics at hand. For those so inclined, a wide variety of activities were organized for each

afternoon, often involving mountain walks and cave exploration.

Programme

Sunday 26th July

----------------

8.30am : Mike Towler (5 minutes)

- "Welcome to Tuscany"

8.35am : Mike Towler (50 minutes)

- "Pilot waves, Feynman path integrals, and quantum Monte Carlo"

9.30am : Dario Alfe (50 minutes)

- "Water graphene binding energy curve from diffusion Monte Carlo"

10.30am : Pablo Lopez Rios (50 minutes)

- "The Jastrow factor"

11:30am : Richard Needs (50 minutes)

- "Applications of ab initio random structure searching"

Monday 27th July

----------------

8.30am : Michele Casula (50 minutes)

- "Hexatic and mesoscopic phases in the 2D quantum Coulomb system"

9.30am : Ken Esler (50 minutes)

- "Recent developments in QMC for periodic systems"

10:30am : Alston Misquitta (50 minutes)

- "The dispersion energy: an introduction and some surprises"

11.30 am: Martin Krupicka (25 minutes)
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- "Comparison of QMC and ab initio methods for eight constitutional

isomers of C4H6"

Tuesday 28th July

-----------------

8.30am : Lucas Wagner (50 minutes)

- "Using QMC to optimize geometries"

9.30am : Matthew Foulkes (50 minutes)

- "Point defects and diffusion in alumina"

10.30am : Roberto Dovesi (50 minutes)

- "State of the art in the ab initio treatment of crystalline solids

with a local basis set. The case of the CRYSTAL code, and its CRYSCOR son"

11.30am : Mariapia Marchi (25 minutes)

- "Resonating Valence Bond wave function with molecular orbitals:

application to diatomic molecules"

Wednesday 29th July

-------------------

8.30am : Shiwei Zhang (50 minutes)

- "Is the homogeneous electron gas homogeneous?"

9.30am : Neil Drummond (50 minutes)

- "Quasiparticle effective mass of the 2D homogeneous electron gas"

10.30am : Ching-Ming Wei (50 minutes)

- "QMC studies of (i) transition metal clusters, and (ii) surface adsorption".

11.30am : Robert Lee (25 minutes)

- "QMC and the 1d electron liquid"

Thursday 30th July

------------------

8.30am : Michel Caffarel (50 minutes)

- "A new type of trial wave function for electronic structure

calculations with QMC"

9.30am : Norbert Nemec (50 minutes)

- "Diffusion Monte Carlo: exponentially inefficient for large systems"

10.30am : George Booth (50 minutes)

- "Quantum Monte Carlo in a discrete space"

11.30am : Martin Korth (50 minutes)

- "’Mindless’ QMC benchmarking"

Fri 31st July

-------------

8.30am : John Trail (50 minutes)
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- "Optimum and efficient sampling for variational quantum Monte Carlo"

9.30am : Ryo Maezono (25 minutes)

- "DMC study of an atom immersed in a jellium sphere"

10am : Andrew Morris (50 minutes)

- "BEC-BCS crossover in ultracold atomic gasses within Quantum Monte Carlo"

11am : Priyanka Seth (25 minutes)

- "QMC studies of the first row atoms"

11.30am : Gareth Griffiths (25 minutes)

- "Post-cotunnite phase of TeO2 from random structure searching"

Poster presentation

-------------------

Raffaella Dimichelis

"Ab initio quantum mechanical simulation of systems with helical symmetry:

carbon and chrysotile nanotubes"

All presentations should be downloadable from the conference web site.

List of participants

There were 28 scientific participants in the meeting from 7 countries, accompanied by 12 family

members. Their names and affiliations were as follows:

Dario Alfè (UCL, London, U.K.)

George Booth (Cambridge University, U.K.)

Michel Caffarel (Université Pierre et Marie Curie, Paris, France)

Michele Casula (Ecole Polytechnique, Paris, France)

Raffaella Demichelis (University of Torino, Italy)

Roberto Dovesi (University of Torino, Italy)

Neil Drummond (Cambridge University, U.K.)

Ken Esler (University of Illinois, U.S.A.)

Matthew Foulkes (Imperial College, London, U.K.)

Gareth Griffiths (Cambridge University, U.K.)

Bohshiang Jong (Cambridge University, U.K.)

Martin Korth (University of Münster, Germany)

Martin Krupicka (Slovak Academy of Sciences, Bratislava, Slovakia)

Valentina Lacivita (University of Torino, Italy)

Robert Lee (Cambridge University, U.K.)

Pablo Lopez Rios (Cambridge University, U.K.)

Ryo Maezono (JAIST, Japan)

Mariapia Marchi (SISSA, Trieste, Italy)

Alston Misquitta (Cambridge University, U.K.)

Andrew Morris (Cambridge University, U.K.)
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Richard Needs (Cambridge University, U.K.)

Norbert Nemec (Cambridge University, U.K.)

Priyanka Seth (Cambridge University, U.K.)

John Trail (JAIST, Japan)

Mike Towler (Cambridge University, U.K.)

Lucas Wagner (University of California, Berkeley, U.S.A.)

Ching-Ming Wei (Academia Sinica, Taiwan)

Shiwei Zhang (William and Mary College, U.S.A.)
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3.1.2 Report on International Summer School ”Quantum Monte Carlo and the

CASINO program IV”

Sunday 2nd August - Sunday 9th August

The Apuan Alps Centre for Physics @ TTI, Vallico Sotto, Tuscany, Italy

www.vallico.net/tti/tti.html

Sponsors: Psi-k, CCP9

Organizer: Mike Towler

Conference web page: www.vallico.net/tti/qmcatcp 09/summer school.html

The fourth international Quantum Monte Carlo Summer School took place at the Apuan Alps

Centre for Physics in early August 2009 . The event was organized and run by Mike Towler,

who was ably assisted with the teaching by Neil Drummond and Pablo López Rı́os. All three

instructors are members of the TCM Group from Cambridge University’s Cavendish Laboratory.

The purpose of the school was to provide the student with a thorough working knowledge of the

quantum Monte Carlo electronic structure method as currently used in quantum chemistry and

condensed matter physics, and to show him or her how to use the latest version of the Cambridge-

developed QMC program CASINO for serious scientific research. The course consisted of around

20 hours of lectures and a series of practical exercises in using the CASINO program led by its

authors. No previous background other than a basic knowledge of quantum mechanics was

assumed, though it was stressed beforehand that a knowledge of density functional theory and

similar methods is normally thought to be useful. As is usual at this venue, formal lectures were

restricted to the mornings, and participants were given the freedom and space to think and to

contemplate and discuss the issues at hand. In addition to hands-on exercises, a programme

of healthy recreational activities such as mountain climbing was organized in the afternoons,

during which the students were encourage to discuss their own research and to look into potential

collaborations.

Quote from student: “The summer school is an excellent in my whole life and I have really got

inspired. I think every one who attends the QMC school will go back to home with great spirits.

My words fail to explain how much I have enjoyed the lectures and outing trips. Thanks a lot

for everything.. I will really miss you.”
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Programme

The following lectures were given during the school:

Mike Towler

• Quantum Monte Carlo: a practical solution to the correlation problem in electronic struc-

ture calculations (2.5 hours)

• The CASINO program: a basic introduction to functionality and input/output (1 hour)

• Three QMC scaling problems (2 hours)

• Forces and dynamics. Expectation values other than the energy (2 hours)

• Practical aspects when using pseudopotentials with CASINO (1 hour)

Pablo López Ŕıos

• Statistical analysis for QMC (1 hour)

• Wave functions and nodes in QMC (2 hours)

• Pseudopotentials for QMC (1 hour)

Neil Drummond

• Diffusion Monte Carlo (2 hours)

• Optimization of many-electron wave functions (2 hours)

• Ewald interactions and finite size errors (2 hours)

• Some recent applications of quantum Monte Carlo simulation (1.5 hours)

During the afternoons the students completed the following exercises:

• Distribution, setup and compilation of the CASINO program

• Basic use of the CASINO program - simple VMC, DMC calculations

• Wave function optimization with CASINO

• Trial wave function generation with other programs (CRYSTAL/PWSCF/CASTEP etc.)

• Advanced use of the CASINO program (over two days)

• General CASINO applications
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After the final lecture, a discussion session was held. Each student was asked to state their

particular interest in the quantum Monte Carlo method; in each case the instructors attempted

to give suitable advice for the chosen applications and to stimulate a short discussion.

The school was concluded with an exam in order to ascertain who had been paying attention.

Just for the record, the student with the highest mark was James Shepherd of Cambridge

University.

List of participants

Twenty-five students from sixteen countries took part, accompanied by three family members,

plus our nine staff. The names and institutions of the participants were:

Ariunbayasgalan Alyeksyei (Mongolian Academy of Sciences, Mongolia)

Mohaddeseh Abbasnejad (University of Tehran, Iran)

Grigor Aslanyan (University of California, San Diego, U.S.A.)

Alexandre Carvalho (University of Oporto, Portugal)

David Dell’Angelo (University of Rennes, France)

Andrea Droghetti (Trinity College, Dublin, Ireland)

Tim Green (University of Cambridge, U.K.)

Santosh KC (Tribhuvan University, Kathmandu, Nepal)

Duck Young Kim (University of Uppsala, Sweden)

Peter Larsson (University of Uppsala, Sweden)

Pablo Maldonado (University of Cordoba, Spain)

José Mira McWilliams (Universidad Politécnica de Madrid, Spain)

Miroslawa Nedyalkova (University of Sofia, Bulgaria)

Johan Pohl (University of Darmstadt, Germany)

José Roberto dos Santos Politi (University of Brasilia, Brazil)

Hannah Price (University of Cambridge, U.K.)

Narendra Revanuri (University of Goa, India)

Sergio Santos (University of Aveiro, Portugal)

Priyanka Seth (University of Cambridge, U.K.)

Vinit Sharma (Agrawal College, Jaipur, India)

James Shepherd (University of Cambridge, U.K.)

Stefano Spezia (University of Palermo, Italy)

Maria Velinova (University of Sofia, Bulgaria)

Márton Vörös (Budapest University, Hungary)

Arkadius Wojs (University of Cambridge, U.K.)
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3.1.3 Report on the 14th ETSF Workshop on Electronic Excitations: Ab-initio

tools for the characterization of nanostructures

Evora, Portugal

September 14-19, 2009

Sponsors: Psi-k, CECAM, ESF-SimBioMa, Fundação para a Ciência e

Tecnologia

Fernando NOGUEIRA, Miguel Alexandre Lopes MARQUES, Ludger

WIRTZ (local organizers)

Francesco SOTTILE, Valerio OLEVANO, Gian-Marco RIGNANESE,

Patrick RINKE (program committee)

http://www.tddft.org/ETSF2009/index.html

Summary

The workshop has focused on the first-principles description of electronic excitations and spec-

troscopy of condensed matter, nanostructures, and bio-molecules. In particular three meth-

ods for excited states calculations were addressed: i) Time-dependent density-functional theory

(TDDFT), ii) Many-body perturbation theory (MBPT), i.e., the ”GW-approximation” and

the ”Bethe-Salpeter Equation”, iii) Quantum chemistry methods. We have discussed recent

advances in both conceptual developments as well as their application to real systems. 95 re-

searchers participated in the workshop. 5 keynote lectures, 8 invited talks, 26 contributed talks,

and 30 posters were presented.

Tuesday, 15/09:

The first session on optical properties gave an overview over the use of advanced excited states

methods (TDDFT, GW-approximation, Bethe-Salpeter Equation) in various systems. The open-

ing keynote lecture by Steven Louie (UC Berkeley) dealt with the optical properties of graphene

nanostructures and various possible device applications. Patrick Rinke (UC Santa Barbara) pre-

sented calculations of Auger recombination in nitrides, Hannes Hübener (Ecole Polytechnique,

Paris) presented calculations of the second harmonic generation in Silicon. The session ended

with two talks on novel materials for solar cells: Julien Vidal (Ecole Polytechnique, Paris) ex-

posed how calculations beyond-DFT can help to improve the understanding of solar cells. Nicola

Spallanzani (Modena) discussed photo-excitation in large organic molecules.

In the second keynote lecture, Gustavo Scuseria (Rice University) gave an overview over recent

developments in hybrid functionals and on the mixing of the Random-Phase-Approximation

with DFT.

In the session on bio-physics, different user projects of the ETSF were presented. Steen Nielsen
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(Aarhus) gave a keynote lecture on how to perform measurements of absorption spectra of

molecular ions in a storage ring experiment. Marius Wanko (San Sebastián) presented calcula-

tions in the QM/MM approach that accompany the experiment. Adriano Mosca Conte (Rome)

presented results on the photo-excitation of proteins in the retina of the human eye.

Wednesday, 16/09:

The morning session was mainly devoted to strongly correlated systems. In a keynote lecture,

Emily Carter (Princeton) introduced an approach to embed quantum-chemical wave-function

methods into periodic DFT. One of the applications of this approach was the ab-initio descrip-

tion of the Kondo effect for transition metal impurities in nonmagnetic metallic hosts. Federico

Iori and Matteo Guzzo (Ecole Polytechnique, Paris) reported on progress in the description of

strongly correlated systems like V2O3 and NiO with a self-consistent GW-approach. Martin

Stankovski (Louvain-la-Neuve) discussed the effects of self-consistency and semi-core states in

the GW-approximation for Zn and Sn oxides. Jim Greer (Tyndall National Institute, Cork) pre-

sented a configuration-interaction method where the contributing (singly and multiply excited)

configurations are chosen by a Monte Carlo approach. The session ended with a talk by Dietrich

Foerster and Peter Koval (Bordeaux) on the extension of the LCAO method to excited states.

Walter Temmermann (Daresbury) presented a keynote lecture on the self-interaction-corrected

local-spin-density (SIC-LSD) method for the calculation of rare earth and actinide compounds.

In the following discussion it became clear that more work on the comparison of the different

approaches for systems with strong localization and strong correlations should be tackled by the

community in the future: self-consistent GW, SIC-LSD, and dynamical mean-field approxima-

tion (DMFT) have lead to enormous advances on different systems, but a detailed comparison

of their performances is still missing.

The afternoon session was devoted to the random-phase approximation and functionals. Xinguo

Ren (Fritz Haber Institute) assessed the potential of the random-phase approximation for CO

adsorption and weakly bonded systems. Esa Räsänen (Jyväskylä, Finland) presented functionals

in low-dimensional systems. Ulf von Barth (Lund) derived a correlation-energy functional from

time-dependent exact-exchange theory.

Thursday, 17/09:

The first morning session dealt with the general theory for the description of quantum transport.

Hervé Ness (York) presented a talk on non equilibrium and many-body effects in quantum

transport through nanoscale devices. Hector Mera (CEA Grenoble) discussed the accuracy

of conductances obtained from Kohn-Sham wave-functions. Valerio Olevano (Institut Néel,

Grenoble) introduced a new quantum transport formalism based on a map of a real 3-dimensional

system (lead-junction-lead) onto an effective 1-dimensional system and applied this approach

to calculate the conductance through graphene nanoribbons. The second morning session was

devoted to the transport properties of carbon nanostructures obtained at Louvain-la-Neuve

(Belgium): Simon Dubois presented detailed calculations on the transport through graphene

nanoribbons. Zeila Zanolli discussed transport properties of carbon atomic wires and Aurelien

Lherbier showed the influence of dopants and defects on the transport in 2D graphene.

The afternoon session was devoted to recent developments of the GW-approximation. Juan

Maŕıa Garćıa Lastra (San Sebastián) demonstrated how to use the GW-approximation to cal-
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culate image potentials at solid-molecule interfaces. Andreas Gierlich (Jülich) presented all-

electron GW calculations for perovskite transition-metal oxides. Arjan Berger (Ecole Polytech-

nique, Paris) presented a scheme to calculate the GW self-energy without the use of unoccupied

states. Pina Romaniello (Ecole Polytechnique, Paris) discussed the self-screening error of GW

and the atomic limit of strong correlation within a two-site Hubbard model.

The subsequent poster session covered the whole range of electronic excitations from fundamental

development of theory to its application to specific nano- and bio-systems.

Friday, 18/09:

Alberto Castro (Freie Universität Berlin) showed how to use TDDFT and optimal control the-

ory to calculate the design of laser pulses that induce specific reactions in molecules (such as

dissociation or isomerization). Ilya Tokatly (San Sebastián) discussed the continuum mechanics

of quantum many-body systems in the linear response regime.

The following session dealt with optical properties of different materials: Andre Schleife (Jena)

presented an application of the BSE-GW approach to the calculation of the optical spectra of

MgO and ZnO in the presence of defects and doping. Marco Cazzaniga (Milano) showed RPA

calculations of the electron-energy loss function of ferromagnetic iron. Giancarlo Cappellini

presented a systematic TDDFT study of the optical spectra of polycyclic aromatic hydrocarbons.

The session ended with a talk by Giovanni Onida (Milano) on the spectroscopy of monoatomic

carbon wires.

In the afternoon, Pierluigi Cudazzo (San Sebastán) presented results towards an ab-initio de-

scription of high-temperature superconductivity in dense molecular hydrogen. Frank Fuchs

(Jena) discussed the geometry, STM images and band structure of atomic gold-wires on a

Ge(001) surface. Hans-Christian Weissker presented TDDFT calculations of the optical proper-

ties of silicon nanocrystals accompanied by molecular-dynamics simulations in order to elucidate

the effect of temperature on the spectra.

Program

Sunday, September 13

arrival day

20:30 Dinner (at the Hotel - Buffet)

Tuesday, September 15

9:00 Welcome address

9:20 Steven Louie Spectroscopic and Transport Properties of Graphene

and Graphene Nanostructures

10:20 Coffee break

10:50 Patrick Rinke Auger recombination rates in nitrides from first principles

11:10 Hannes Huebener Second Harmonic Generation in Bulk Silicon

11:30 Julien Vidal How can ab initio calculations help to improve solar cells?

12:10 Nicola Spallanzani Photo-excitation of light-harvesting supra-molecular triad: a TDDFT study

12:30 Lunch (at the Hotel)

14:30 Gustavo Scuseria New models for mixing wavefunctions with density functional theory

15:30 Coffee break
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16:00 Steen Nielsen Absorption spectra of chromophore ions obtained from storage ring experiments

17:00 Adriano Conte A theoretical investigation on the first step of the mechanism of vision

in living beings

17:20 Marius Wanko Multiscale Approaches for Protein Spectroscopy

17:40 Round Table — Interaction of ETSF with users

20:00 Dinner (at ”Jardim do Pao” restaurant)

Wednesday, September 16

9:00 Emily Carter Ab Initio Treatment of Excited States and Strongly Correlated Electrons

in Crystals

10:00 Federico Iori In strong correlation do we trust? The paradigm of V2O3

10:20 Coffee break

10:50 Matteo Guzzo Exchange and correlation effects in the electronic properties of transition-metal

oxides: The example of NiO

11:10 Martin Stankovski Oxidise this: A study of PAW+QPSCGW calculations on Zn and Sn oxides

11:30 Jim Greer Calculation of electron correlations and excitation spectra from a Monte Carlo

configuration generation technique

12:10 Dietrich Foerster∗ Extension of the LCAO method to excited states

12:30 Lunch (at the Hotel)

14:30 W. Temmermann Electronic and Magnetic Properties of Rare Earths and Actinide Compounds

15:30 Coffee break

16:00 Xinguo Ren Assessing the random phase approximation: CO adsorption and weakly

bonded systems

16:40 Esa Räsänen Functionals in low-dimensional systems

17:00 Ulf von Barth Correlation energy functional and potential from time-dependent

exact-exchange theory

18:00 Cheese and wine tasting at ”Rota dos Vinhos”

20:00 Dinner (at ”Adeguita do Farrobo” restaurant)

∗ with Peter Koval

Thursday, September 17

9:00 Hervé Ness Non equilibrium and many-body effects in quantum transport through

nanoscale devices

9:40 Hector Mera Are Kohn-Shamm conductances accurate?

10:00 Valerio Olevano Effective 1D theory and generalized Fisher-Lee formula for quantum

transport at nanocontacts

10:20 Coffee break

10:50 Simon Dubois Quantum Transport in Graphene Nanoribbons

11:30 Zeila Zanolli Transport properties of carbon atomic wires

11:50 Aurelien Lherbier Charge transport in 2D graphene including dopants/defects: ab initio and

tight-binding coupled approach

12:30 Lunch (at the Hotel)

14:30 Juan Garcia-Lastra Classical and Many-Body Theory of Image Potentials at Solid-Molecule Interfaces

15:10 Andreas Gierlich All-electron GW Calculations for Perovskite Transition-Metal Oxides

15:30 J.A. Berger GW without empty states

15:50 Pina Romaniello The self-energy beyond GW

16:10 Coffee break
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16:40 Poster Session

20:00 Dinner (at ”Jardim do Pao” restaurant)

Friday, September 18

9:00 Alberto Castro Quantum Optimal Control Theory with TDDFT

9:40 Ilya Tokatly Linear Continuum Mechanics for Quantum Many-Body Systems

10:00 Coffee break

10:30 Andre Schleife From Ideal Bulk to Reality - Interplay of Excitonic Effects with Defects

and Doping

11:10 Claudia Roedl Absorption Spectra of Magn. Insulators: Antiferromagn. Trans.-Metal

Oxides and Ferrogmagn. CrBr3

11:30 M. Cazzaniga Ab-initio long wavelength dielectric properties of bulk iron

11:50 Giancarlo Cappellini Optical absorption ... polycyclic aromatic hydrocarbons

12:10 Giovanni Onida Spectroscopy of Monoatomic Carbon wires connecting sp2 carbon fragments

12:30 Lunch (at the Hotel)

14:30 Pierluigi Cudazzo Ab Initio Description of High-Temperature Superconductivity in Dense

Molecular Hydrogen

14:50 Frank Fuchs Ab-initio study of atomic gold-wires on Ge(001)

15:10 Hansi Weissker Temperature effects on the electronic and optical properties of silicon clusters

15:30 Final remarks

15:40 Coffee break

16:00 ETSF Members’ meeting

20:00 Dinner (Banquet at the Hotel)

Saturday, September 19

departure

List of Posters:

Irene Aguilera First-Principles Design of Complex Intermediate-Band Photovoltaic Materials.

Magdalena Birowska Ab initio study of functionalized carbon nanotubes

Björn Oetzel Ab-Initio Studies of Electronic and Transport Properties of Graphene Nanoribbons

Michel Bockstedte The merits of DFT-LDA and going beyond it towards excited states: a perspective

from defects in SiC

Duanjun Cai Accurate color tuning of firefly chromophore by modulation of local polarization

electrostatic fields

Fabiana Da Pieve Magnetic circular dichroism and spin polarization in resonant photoemission

Louise Dash Non-equilibrium inelastic electronic transport: beyond the self-consistent Born

approximation for the electron-phonon interaction

Luiz Claudio de Carvalho First-Principles Study of the Structural and Electronic Properties of the

(Al,Ga,In)N Compounds

Xavier Declerck Electronic and transport properties of boron nitride nanoribbons

Christoph Friedrich EXX within the full-potential augmented-planewave (FLAPW) method

Pablo Garcia Gonzalez GW calculations in exactly solvable model systems: The problem of the

self-interaction errors

Matteo Gatti Excitonic effects in the absorption spectrum of sodium at high pressure

Paola Gori Electronic and optical properties of group IV two-dimensional systems

Jim Greer The ABC’s of Many-Electron Correlated Scattering
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Ralf Hambach First-Principles Approach for Spatially-Resolved Electron Energy-Loss Spectroscopy

Yann Pouillon Structural and optical transitions of biliverdin

Fabrizio Puletti Large prebiotic molecules in space: photo-physics of acetic acid and its isomers

Yuchen Ma excited states of the chromophores within many-body perturbation theory

Anna Miglio Transparent Conducting Oxides (TCO): tin oxides as a case study

Bruce Milne Time-Dependent DFT for Elucidation of Stereochemistry: Dermacozine E, a Natural

Product from the Mariana Trench

Bruce Milne FMO-TDDFT Studies of Luciferase from the Japanese Firefly Luciola cruciata

Manolo Ramirez López Many carrier effects in semiconductor nanostructures

Manolo Ramirez López Photoluminescence spectroscopy of InGaAs/GaAs quantum wells

Tonatiuh RANGEL Transport properties of molecular junctions from Many-Body Perturbation Theory

Arno Schindlmayr Do we know the band gap of lithium niobate?

Martin Stankovski Oxidise this: A study of PAW + QPSCGW calculations on Zn and Sn oxides

Z. Szotek Structural phase transitions and fundamental band gaps of MgxZn1−xO alloys from

principles

F. Trani Ab Initio simulation of photovoltaic materials

José Guilherme Vilhena Density gradients for the exchange energy of electrons in two dimensions

Ludger Wirtz The phonon dispersion relations of lead chalcogenides (PbS, PbSe, PbTe)

List of participants

1. Steen Broendsted Nielsen

2. Andres R. Botello-Mendez

3. Alejandro Soba

4. Edgar Bea

5. Hector Mera

6. Marc Torrent

7. Davide Sangalli

8. Nicola Spallanzani

9. Fabrizio Puletti

10. Christoph Friedrich

11. Frank Fuchs

12. Luiz Claudio De Carvalho

13. Xinguo Ren

14. Andreas Gierlich

15. Ludger Wirtz

16. Roberto D’Agosta

17. Peter Koval

18. André Schleife

19. Björn Oetzel

20. Valerio Olevano

21. Paola Gori

22. Fabio Trani

23. Micael Oliveira

24. Miguel Marques

25. Arjan Berger
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26. Christine Giorgetti

27. Eleonora Luppi

28. Federico Iori

29. Francesco Sottile

30. Gaelle Bruant

31. Hannes Huebener

32. Hans-Christian Weissker

33. Julien Vidal

34. Lucia Reining

35. Matteo Guzzo

36. Pina Romaniello

37. Ralf Hambach

38. Silvana Botti

39. Valerie Veniard

40. Ulf von Barth

41. Anna Miglio

42. Anne Matsuura

43. Aurélien Lherbier

44. Bruno Bertrand

45. Fabiana Da Pieve

46. Gian-Marco Rignanese

47. Jean-Cristophe Charlier

48. Martin Stankovski

49. Simon Dubois

50. Tonatiuh Rangel Gordillo

51. Xavier Declerck

52. Xavier Gonze

53. Zeila Zanolli

54. Emily A. Carter

55. Gustavo Scuseria

56. Dzidka Szotek

57. Walter Temmerman

58. Jim Greer

59. Carolina Roman

60. Ilya Tokatly

61. Juan Maŕıa Garćıa Lastra

62. Marius Wanko

63. Matteo Gatti

64. Pierluigi Cudazzo

65. Xavier Andrade

66. Yann Pouillon

67. Pablo Garcia-Gonzalez

68. Irene Aguilera

21



69. Giovanni Onida

70. Marco Cazzaniga

71. Alberto Castro

72. Michel Bockstedte

73. Arno Schindlmayr

74. José Albuquerque D’orey

75. Dietrich Foerster

76. Giancarlo Cappellini

77. Patrick Rinke

78. Steven G. Louie

79. Bruce Milne

80. Claudia Cardoso

81. Duan-Jun Cai

82. Fernando Nogueira

83. Myrta Grüning

84. Tiago Cerqueira

85. Esa Räsänen

86. Yuchen Ma

87. Adriano Mosca Conte

88. Olivia Pulci

89. Karolina Milowska

90. Magdalena Birowska

91. Hervé Ness

92. James Ramsden

93. Louise Dash

94. Rex Godby

95. Tony Patman
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3.1.4 Report on Workshop Computer Simulation of Oxides: Dopants, Defects

and Surfaces

Trinity College Dublin

9th - 11th September 2009

Science Foundation Ireland, Atlantic Centre for Atomistic Modelling, Psi-k

Network and CECAM

Charles H. Patterson, School of Physics, Trinity College

Graeme Watson, School of Chemistry, Trinity College

Simon Elliott, Tyndall National Institute, Cork

Michael Nolan, Tyndall National Institute, Cork

www.tyndall.ie/research/theory-and-modelling/oxides-workshop/

www.cecam.org/workshop-347.html

WORKSHOP SUMMARY

Computer simulation of oxides is a broad topic. This workshop had invited contributions on

the role of oxides in catalysis, methods for electronic and atomic structures of oxides, defects

and dopants in oxides and complex oxides such as cuprates. It consisted of 6 sessions under

the headings: Surfaces and Catalysis, Electronic Structure Methods, Structure, Surfaces and

Defects, Oxides and Dopants and Complex Oxides. It brought together around 70 researchers.

There were ten invited speakers, 16 participants gave contributed talks and 24 posters were

presented.

In the session on Surfaces and Catalysis, Horia Metiu (Santa Barbara) spoke on mechanisms

of catalysed oxidation reactions investigated using density functional methods. Jörg Libuda

(Erlangen) spoke on experimental spectroscopic studies of oxide storage catalysts aimed at

improving the selectivity and activity of heterogeneous catalysts.

In the session on Electronic Structure Methods, Georg Kresse (Wien) spoke on application of

hybrid functionals in the VASP code to oxygen vacancies in ZnO and formation of polarons in K

doped BaBiO3. He emphasised that these functionals predict lattice polarons in materials such

as BaBiO3, which conventional functionals do not. Hong Jiang (Beijing) spoke on application

application of the GW approximation to lanthanide oxides beginning from an LDA+U state

rather than a more conventional LDA state. In particular, he showed that GW calculations

beginning from the LDA+U states give quantitative agreement with experimental band gaps of

the series Ln2O3.
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In the session on Structure, Alan Chadwick (Kent) gave an overview of application of X-ray

absorption spectroscopy as a probe of structure of oxides, using microscopy and XAS to identify

the surface morphology of oxide nanoparticles.

In the session on Surfaces and Defects, Richard Catlow (London) gave an overview of properties

of ZnO predicted using DFT methods, including structure and properties of ZnO nano-particles,

reactions catalysed at ZnO surfaces, and the structures of defects in ZnO. David Look (Ohio)

gave an overview of optical spectroscopies of defects in ZnO formed by electron irradiation.

In the session on Oxides and Dopants, Su-Huai Wei (Colorado) covered properties of a wide

range of oxides and their properties, including ZnO, In2O3, and TiO2. Chris van de Walle

(Santa Barbara) described recent work on calculating formation energies of defects in oxides. He

described calculations of defect transition levels using conventional and hybrid density functional

methods.

In the session on Complex Oxides, Francesc Illas (Barcelona) made a comparison between the

electronic structures and exchange coupling constants in cuprate and pnictide superconductors

and showed that the pnictides have a strongly frustrated interwoven network of exchange cou-

plings between Fe ions.

One of the trends that has emerged in computer simulation of oxides is that hybrid density

functionals such as the HSE functional give significantly improved predictions of oxide properties

compared to density functionals which do not include Hartree-Fock exchange. These functionals

are available in several codes and are now being fairly widely adopted for oxide simulation.

WORKSHOP PROGRAMME

9th September

12:00 - 14:00 Registration

14:00 - 14:10 Welcome

Surfaces and Catalysis

14:10 15:00 H. Metiu Catalysis by Atomic Sized Centres

15:00 15:20 J. Graciani Cu, Au and Ce Nanoparticles Supported on TiO2(110)

15:20 15:40 G. Novell-Leruth Selectivity in Oxidation Processes on RuO2(110)

15:40 16:10 Break

16:10 17:00 J. Libuda Modelling Oxide Based Storage Catalysts

17:00 17:20 R. Bennett Non-Stoichiometric Titanium Dioxide: Experimental Insights and

Challenges in Charge Transfer and Surface Reactions

17:20 17:40 D. Costa Realistic Ab Initio Model of the Passive Film Formed on Stainless Steels
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17:40 18:00 U. Wdowik Lattice Dynamics of Co-Deficient and Fe-Doped CoO

18:00 20:00 Poster Session and Reception

10th September

Electronic Structure Methods

09:00 - 09:50 G. Kresse Hybrid Functionals and GW Applied to Simple and Complex Oxides

09:50 10:40 H. Jiang Localised and Itinerant States in d and f Electron Oxides united by

GW@LDA+ U

10:40 11:00 H. Dixit Quasiparticle Band Gap of IIB-VI Transparent Oxides within the GW

Approximation

11:00 11:20 Break

Structure

11:20 12:10 A. Chadwick X-ray Absorption Spectroscopy: a Probe of Local Structure and

Oxidation State

12:10 12:30 K. P. McKenna Electronic Properties of Defects in Polycrystalline Dielectric

Materials

12:30 12:50 R. Tétot Multi Scale Modelling of Low Index Rutile TiO2 Surfaces

12:50 15:00 Lunch

Surfaces and Defects

15:00 15:50 R. Catlow Modelling of Defects, Surface Properties and Nano Clusters of Zinc

Oxide

15:50 16:10 P. A. Mulheran The Reduced Rutile (110) Surface: Energetics and Diffusion of

Ti Point Defects in the Selvedge

16:10 16:30 M. M. Islam Electronic Properties of Oxygen Deficient and Metal Doped TiO2

16:30 16:50 Break

16:50 17:40 D. Look Electrical and Optical Activity of Point Defects in ZnO

17:40 18:00 S. Datta Photoelectrolysis of Water for Hydrogen Production
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19:30 Dinner

11th September

Oxides and Dopants

09:00 09:50 S.-H. Wei First-Principles Investigation of Unusual Materials Properties of Oxides

09:50 10:10 A. Droghetti Defect-Induced Magnetism in Oxides

10:10 10:30 D. Scanlon Intrinsic Ferromagnetism in CeO2: Dispelling the Myth of Vacancy-

Site-Localisation Mediated Superexchange

10:30 11:10 Break

11:10 12:00 C. Van de Walle Sources of Conductivity in Transparent Oxides

12:00 12:20 A. Walsh Band Alignment and Defect Physics of Functional Oxides

12:20 14:30 Lunch

Complex Oxides

14:30 15:20 F. Illas Similarities and Differences between Pnictides and Cuprate Superconduct-

ing Parent Compounds

15:20 15:40 V. Fiorentini Electronic Structure of Doped Cuprates by Self-Interaction-Corrected

DFT

15:40 16:00 P. Alippi Role of Native Defects in the Dielectric and Conductivity Behaviour of

CaCu3Ti4O12

16:00 Close

LIST OF POSTER TITLES AND FIRST AUTHORS

Titanocene Adsorption Studies on TiO2(110) Rutile Surface Using Ab-Initio and Molecular Dy-

namics Approaches, S. Agrawal

Density Functional Theory of Doping in Both Bulk and Surface State Titania, Classical Simu-

lation of TiO2-Water Interface, N. J. English

Ab-Initio and Atomistic Simulation of Cu Doping in the Lead-Free Ferroelectric, R. S. Ka-

vathekar

Perovskite Potassium Sodium Niobate, S. Koerbel

Small Polarons in Nb- and Ta-Doped Rutile and Anatase TiO2, B. J. Morgan

Ferromagnetism in ZnO Induced by Complex Defects, A. Chakrabarty
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Reconstruction of the Polar ZnO(0001) Surface, H. Meskine

Simulation of the Oxygen K edge Resonant X-ray Emission Spectroscopy of Rutile Titanium

Dioxide, C. McGuinness

Energetics of Al Doping and Intrinsic Defects in Monoclinic and Cubic Zirconia: First Principles

Calculations, C. Århammar

Self-Consistent First-Principles Method for Complex Disordered Materials, A. Marmodoro

Water Gas Shift Reaction on a Highly Active Inverse CeOx/Cu(111) Catalyst: Unique Role of

Ceria Nanoparticles, J. Graciani

Transparent Conducting Oxides (TCO): Tin Oxides as a Case Study, A. Miglio

Origin of Ferromagnetism in Molybdenum Dioxide (MoO2) from Ab-Initio Calculation, J. Nisar

Simultaneous Multi-Parameter Scanning Probe Microscopy of TiO2(110)-(1x1), S. J. OBrien

Competing Mechanisms in Atomic Layer Deposition of La2O3 versus Er2O3 from Cyclopenta-

dienyl Precursors, M. Nolan

Role of the Substrate Surface on the Atomic Layer Deposition of Alumina on Silicon Nitride,

M. E. Grillo

Correlation Effects in p-Electron Magnets: the case of RbO2, R. Kovacik

Electronic Structure of Striped Phase of Ca1.875Na0.125CuO2Cl2, C. H. Patterson

Atomic Scale Modelling of Deposition Processes for High-k Dielectrics, M. Shirazi and S.

Klejna

TCOs in the UV: a First-Principles Investigation of InOOH, In(OH)3, ZnO2, Zn(OH)2, CdO2,

Cd(OH)2, M. P. Jigato

Defects and Diffusion in Cr2O3: a DFT+U Study, F. Lebreau

Electronic Structure of Amorphous Silica using Extrapolar Method and PAW Formalism, D.

Waroquiers

Defect States in Titanium Dioxide, J. Stausholm-Möller

Electronic Structure Calculations on the Oxygen Conductivity in Ba0.5Sr0.5Co0.8Fe0.2O3, M.-

W. Lumey

largeList of Participants

Ms Saurabh Agrawal, University College Dublin, Ireland

saurabh.agarwal@ucdconnect.ie

Mr Jeremy Allen, Trinity College Dublin, Ireland

allenje@tcd.ie

Ms Paola Alippi, CNR-ISM, Italy

paola.alippi@ism.cnr.it

Dr Emilie Amzallag, CNRS-Univ. Paris Sud 11, France

emilie.amzallag@u-psud.fr

Ms Cecilia Århammar, RIT, Stockholm, Sweden

arhammar@kth.se

Dr Corrine Arrouvel, University of Bath, UK

C.Arrouvel@bath.ac.uk
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Dr Roger Bennett, University of Reading, UK

r.a.bennett@reading.ac.uk

Mr Mario Burbano, Trinity College Dublin, Ireland

burbanom@tcd.ie

Mr Aurab Chakrabarty, Trinity College Dublin, Ireland

chakraa@tcd.ie

Prof. Richard Catlow, University College London, UK

c.r.a.catlow@ucl.ac.uk

Prof. Alan Chadwick, University of Kent, UK

A.V.Chadwick@kent.ac.uk

Mr Declan Cockburn, Trinity College Dublin, Ireland

cockburd@tcd.ie

Ms Dominique Costa, LPCS Chimie Paris Tech, France

dominique-costa@enscp.fr

Dr Soumendu Datta, Technical University of Denmark

sdatta@fysik.dtu.dk

Ms Hemant Dixit, University of Antwerp, Belgium

hemant.dixit@student.ua.ac.be

Mr Andrea Droghetti¡ Trinity College Dublin, Ireland

drogheta@tcd.ie

Dr Claude Ederer, Trinity College Dublin, Ireland

edererc@tcd.ie

Dr Simon Elliott, Tyndall National Institute, Ireland

simon.elliott@tyndall.ie

Dr Niall English, University College Dublin, Ireland

Niall.English@ucd.ie

Prof Vincenzo Fiorentini, Universita’ di Cagliari, Italy

vincenzo.fiorentini@dsf.unica.it

Dr Daniel Fritsch, Trinity College Dublin, Ireland

fritschd@tcd.ie

Ms Natasha Galea, Trinity College Dublin, Ireland

galean@tcd.ie

Dr Jose RB Gomes, University of Aveiro, Portugal

jrgomes@ua.pt

Dr Jesus Graciani, University of Seville, Spain

graciani@us.es
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Ms Maria-Elena Grillo, Tyndall National Institute, Ireland

Maria.grillo@tyndall.ie

Mr Morad El-Hendawy, University College Dublin, Ireland

Morad.elhendawy@ucd.ie

Dr Mohammad Mazharul Islam, Université P. et M. Curie, France

rana-islam@enscp.fr

Prof. Francesc Illas, University of Barcelona, Spain

francesc.illas@ub.edu

Dr Satoshi Itoh, Toshiba R and D Center, Japan

satoshi.itoh@toshiba.co.jp

Prof. Hong Jiang, Peking University, China

h.jiang@pku.edu.cn

Dr Maneul Perez Jigato, KU Leuven, Belgium

manuel.perezjigato@fys.kuleuven.be

Mr Ritwik Kavathekar, University College Dublin, Ireland

ritwik.kavathekar@ucdconnect.ie

Mr Patrick Keating, Trinity College Dublin, Ireland

keatinpr@tcd.ie

Mr Brian Kennedy, Trinity College Dublin, Ireland

bkennedy@tcd.ie

Ms Sylwia Klejna, Tyndall National Institute, Ireland

sylwia.klejna@gmail.com

Ms Sabine Koerbel, Fraunhofer IWM, Germany

sabine.koerbel@iwm.fraunhofer.de

Ms Kalle Korpela, Trinity College Dublin, Ireland

korpelak@tcd.ie

Dr Roman Kovacik, Trinity College Dublin, Ireland

kovacikr@tcd.ie

Prof. Georg Kresse

University of Vienna, Austria

Georg.kresse@univie.ac.at

Prof Joerg Libuda, University of Erlangen, Germany

Joerg.libuda@chemie.uni-relangen.de

Mr Francois Lebreau, ENSCP, France

francois-lebreau@enscp.fr

Prof. David Look, Wright State University, USA

David.Look@WPAFB.AF.MIL

29



Dr Marck Lumey, RWTH Aachen University, Germany

marck.lumey@ac.rwth-aachen.de

Mr Alberto Marmodoro University of Warwick, UK

a.marmodoro@warwick.ac.uk

Dr Cormac McGuinness, Trinity College Dublin, Ireland

Cormac.McGuinness@tcd.ie

Dr Keith McKenna, University College London, UK

k.mckenna@ucl.ac.uk

Dr Hakim Meskine, University of Strathclyde, UK

hakim.meskine@strath.ac.uk

Prof. Horia Metiu, Univ. California Santa Barbara, USA

metiu@chem.ucsb.edu

Ms Anna Miglio, Univ. Catholique de Louvain, Belgium

anna.miglio@uclouvain.be

Dr Benjamin Morgan, Trinity College Dublin, Ireland

benmorgan2@gmail.com

Dr Paul Mulheran, University of Strathclyde, UK

paul.mulheran@strath.ac.uk

Ms Jawad Nisar, Uppsala University, Sweden

jawad.nisar@fysik.uu.se

Dr Michael Nolan, Tyndall National Institute, Ireland

michael.nolan@tyndall.ie

Dr Gerard Novell-Leruth, Inst. Chem. Res. Catalonia, Spain

gnovell@iciq.es

Dr Simon O’Brien, Trinity College Dublin, Ireland

sjobrien@tcd.ie

Ms Marita O’Sullivan, Trinity College Dublin, Ireland

osullim6@tcd.ie

Dr Charles Patterson, Trinity College Dublin, Ireland

Charles.Patterson@tcd.ie

Dr Chaitanya Das Pemmaraju, Trinity College Dublin, Ireland

pemmaras@tcd.ie

Prof Stefano Sanvito, Trinity College Dublin, Ireland

sanvitos@tcd.ie

Mr David Scanlon, Trinity College Dublin, Ireland

scanloda@tcd.ie

Mr Mahdi Shirazi, Tyndall National Institute, Ireland

mahdi.shirazi@tyndall.ie
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Mr Jess Stausholm-Møller, Aarhus University, Denmark

jsm@phys.au.dk

Dr Robert Tétot, CNRS-Univ. Paris Sud 11, France

robert.tetot@u-psud.fr

Prof. Chris van de Walle, Univ. California Santa Barbara, USA

vandewalle@mrl.ucsb.edu

Dr Aron Walsh, University College London, UK

aronjwalsh@gmail.com

Mr David Waroquiers, Univ. Catholique de Louvain, Belgium

david.waroquiers@uclouvain.be

Prof. Graeme Watson, Trinity College Dublin, Ireland

watsong@tcd.ie

Dr Urszula D. Wdowik, Pedagogical University, Cracow, Poland

sfwdowik@cyf-kr.edu.pl

Dr. Su-Huai Wei, NREL, USA

Suhuai.Wei@nrel.gov
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3.1.5 Report on the CECAM workshop“Which electronic structure method for

the study of defects?”

EPF Lausanne, Switzerland, 8-10 June 2009

Description

The CECAM workshop “Which electronic structure method for the study of defects?” took

place at CECAM headquarters in EPF Lausanne, Switzerland, 8-10 June 2009.

In terms of participation the workshop was one of the largest CECAM workshops in 2009, with

almost 60 participants: besides 4 organizers (Prof. Jörg Neugebauer from MPIE Düsseldorf,

Prof. Chris G. Van de Walle from University of California at Santa Barbara, Prof. Alfredo

Pasquarello and Dr. Audrius Alkauskas from EPF Lausanne), there were 23 invited speakers, 27

people presenting posters, as well as 4 participants without a presentation. In terms of geography,

13 countries were covered: Austria, Belgium, Finland, France, Germany, Hungary, Ireland, Italy,

Poland, Sweden, Switzerland, the UK, and the USA. Germany and the USA had the largest

number of participants. The topic of the workshop was the theoretical study of point defects

in solids. Recent decades have witnessed significant progress in electronic structure calculations

based on density functional theory (DFT). When applied to defects, standard approximations to

DFT largely fail because they suffer from the infamous band-gap problem. The latter consists of

the severe underestimation of calculated bulk band gaps of semiconductors and insulators with

respect to experiment. The band-gap problem hinders the direct comparison of calculated and

measured defect formation energies and charge-transition levels, as well as the study of doping,

etc. Furthermore, standard approximations also fail in cases where localization phenomena

are important, such as in the description of polaronic effects or pseudo Jahn-Teller distortions.

In recent years there has been an important development of methods which go beyond those

standard approximations. These include the LDA+U method, hybrid functionals, the GW

approximation, and others. These methods substantially relieve the band-gap problem, as well

as the localization problem of standard density functionals.

The purpose of the workshop was to bring together scientists working in the development and

application of these new methodologies. Since this is a fast-developing field, it was important

to organize a workshop to see “what’s what in the theory of defects”. To give an example:

different advanced methods can yield the experimental band gap but they nevertheless provide

an incompatible description of defects. A possible reason is that one of the methods yields the

correct band gap, but an erroneous band structure. Another possible reason is the incorrect

description of the defect state in one of the competing theories. All of these factors eventually

influence the reliability of achieved results. Equally significant, convergence studies of supercell

calculations are extremely important and the presentation of not converged results is quite

frequent in the field. This was also discussed in the workshop. More particularly, the topics

of the workshop included: hybrid functionals (screened and bare) applied to defects, the GW
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method and beyond, the LDA+U method, supercell corrections, excited states of defects (the

Bethe-Salpeter equation), quantum Monte-Carlo techniques, technical issues related to the use of

hybrid functionals, calculations of systems with a large number of atoms, etc. There was a good

combination of talks addressing specific issues and more general overview talks. Professor C. G.

Van de Walle gave an introductory talk about the problem of first-principles defect calculations.

Professor G. Scuseria reviewed the development in the field of hybrid functionals. It is clear

that these will become more and more important with time. Professor W. R. L. Lambrecht

provided a historical overview of the band-gap problem related to defect calculations. Professor

J. Neugebauer presented his work on the calculation of the free energy of defects. The latter is

often neglected in practical calculations but was shown to be important. Thus, in addition to

its main focus which was on electronic structure theories and computational methodologies for

the study of defects, the workshop turned out to be quite balanced, including a good mixture

of theory, applications, insights, and overview.

The significance of theoretical calculations of defects is only going to grow in the future. To

answer humanity’s needs, such as those of energy, newer and more complex materials will be

employed in technological applications. The performance of a certain material will be eventually

determined not only by its electronic structure, but also by the control over its defects that will

be achieved. As a result, experimental work will need more and more support from theory and

simulations. We are thus confident that there will be more workshops and conferences devoted

to this theme, and the present CECAM workshop was a very important contribution. The

workshop was financially supported by CECAM and psi-k through MPIE Düsseldorf. More

detailed information about the workshop, including abstracts of oral presentations and posters,

can be found at http://www.cecam.org/workshop-291.html.
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James Chelikowsky (University of Texas at Austin, USA)
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Shengbai Zhang (Ransselaer Polytechnic Institute, USA)
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Programme

Day 1 - Monday - June 8, 2009

Morning session

* 08:45 to 09:00 - Registration

* 09:00 to 09:40 - Chris G. Van de Walle

Advances in Electronic Structure Methods for Defects and Impurities

* 09:40 to 10:20 - James Chelikowsky

Quantum algorithms for modeling the properties of defects in nanocrystals and nanowires

* 10:50 to 11:30 - Georg Kresse

Hybrid functionals and GW applied to complex materials

* 11:30 to 12:10 - Anderson Janotti

LDA+U and hybrid functionals applied to the study of defects in oxide and nitride semi-

conductors

* 12:10 to 12:50 - Gianfranco Pacchioni

Reduced and doped TiO2: what is the nature of the defect states?

Afternoon session

* 14:20 to 15:00 - Gustavo Scuseria

Progress on screened, multi- and local-range separated hybrids in DFT

* 15:00 to 15:40 - Peter Deák

Accurate defect levels in Group IV semiconductors by the HSE06 functional in supercells

* 16:10 to 16:50 - Audrius Alkauskas

“Band-gap problem” vs.“band-edge problem” in theoretical calculations of defect energy

levels

* 16:50 to 17:30 - Patrick Briddon

Modelling thousands of atoms using Kohn-Sham density functional theory

* 17:30 to 19:30 - Poster Session

Day 2 - Tuesday - June 9, 2009

Morning session

* 09:00 to 09:40 - John Robertson

Defect calculations using the screened exchange hybrid functional

* 09:40 to 10:20 - Shengbai Zhang

Hybrid Functional Calculations of Jahn-Teller Defects

* 10:50 to 11:30 - Peter Broqvist

Hybrid functional calculations of defects in high-k dielectrics and at semiconductor-oxide

interfaces

* 11:30 to 12:10 - Steven Erwin

Understanding doping in semiconductor nanocrystals

* 12:10 to 12:50 - Su-Huai Wei

Overcoming the doping asymmetry problem in wide gap semiconductors

Afternoon session

* 14:20 to 15:00 - Christoph Freysoldt
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Fully ab initio supercell corrections for charged defects

* 15:00 to 15:40 - Stephan Lany

Predicting p-orbital hole-polarons in DFT supercell calculations

* 15:40 to 16:10 - Alfredo Pasquarello

Hybrid-functional calculations with plane-wave basis sets: The effect of the integrable di-

vergence on total energies, energy eigenvalues, and defect energy levels

* 16:40 to 17:20 - Michael Rohlfing

Excited states of defects in solids

* 17:20 to 18:00 - Walter R. L. Lambrecht

Unsolved problems with point defect calculations

Day 3 - Wedesday - June 9, 2009

Morning session

* 09:00 to 09:40 - Jörg Neugebauer

Computing free energy contributions of point defects

* 09:40 to 10:20 - Richard Hennig

Quantum Monte Carlo calculations for point defects in silicon

GW session

* 10:50 to 11:30 - Michel Bockstedte

The merits of DFT-LDA and beyond it towards excited states: a perspective from defects

in SiC

* 11:30 to 12:10 - Patrick Rinke

Defect Formation Energies without the Band Gap Problem: Combining DFT and GW

* 13:40 to 14:20 - Gian-Marco Rignanese

A Many-Body Perturbation Theory perspective to defects in microelectronic devices and

materials

* 14:20 to 15:00 - Paolo Umari

GW quasi-particle spectra from occupied states only

* 15:00 to 15:40 - Layla Martin-Samos

SiO2 DFT and beyond

* 15:40 to 16:20 - Ricardo Gomez Abal

The f-electron challenge: localized and itinerant states in lanthanide oxides united by

GW@LDA+U
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4 General Workshop/Conference Announcements

4.1 International Workshop on Quantum Monte Carlo in the Apuan Alps

VI

Apuan Alps Centre for Physics @ TTI

Vallico Sotto, Tuscany, Italy

Sat 24th - Sat 31st July 2010

www.vallico.net/tti/tti.html

A4 POSTER:

www.tcm.phy.cam.ac.uk/∼mdt26/poster2.png

Continuing the series of alternative and very informal meetings at this venue, the Cambridge

University Theory of Condensed Matter group is organizing a sixth International Workshop to

discuss the development and application of the continuum quantum Monte Carlo method in

condensed matter physics and quantum chemistry. The conference will take place in our 16th

Century monastery in the mediaeval high mountain village of Vallico Sotto (in the Tuscan Apuan

Alps near the beautiful Italian city of Lucca).

The normal format for these events involves formal presentations being restricted to the morn-

ings, with the afternoons left free for relaxed discussion and participation in activities. For the

young and vigorous, we organize mountain walks, caving and other healthy outdoor exercise,

whilst the unfit and elderly might enjoy artistic tours, city visits, and gentle country strolls, with

all participants reuniting in the evening for excellent Tuscan dinners in local restaurants. The

monastery is a unique venue where the community spirit and magnificent location have inspired

memorable meetings in the past.

This year’s workshop will involve up to 35 people, all accommodated on site. Many speakers

will be specifically invited, but anyone who feels that they have something to contribute and

who wishes to attend the event is most welcome to contact the organizers (Mike Towler: mdt26

at cam.ac.uk) for further details. There is no charge either for attendance at the conference or

accommodation.

FURTHER DETAILS/PHOTOGRAPHS/MATERIAL FROM PREVIOUS WORKSHOPS AC-

CESSIBLE ON TTI WEB PAGE - CLICK THE ‘PUBLIC EVENTS’ LINK.

TTI CURRENTLY TAKING BOOKINGS FOR THE HOSTING OF CONFERENCES, SCHOOLS

AND GROUP MEETINGS IN EASTER/SUMMER 2010. Enquiries to mdt26 at cam.ac.uk .
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4.2 Summer School on Quantum Monte Carlo and the CASINO program V

Apuan Alps Centre for Physics @ TTI

Vallico Sotto, Tuscany, Italy

Sun 1st - Sun 8th August 2010

www.vallico.net/tti/tti.html

A4 POSTER:

www.tcm.phy.cam.ac.uk/∼mdt26/poster.png

The fifth international summer school in the series Quantum Monte Carlo and the CASINO

program will take place during August 2010 at the TTI monastery in the Tuscan Apuan Alps in

Italy, organized and hosted by members of Cambridge University physics department’s Theory

of Condensed Matter Group. The aim of the school is to give students a thorough introduction

to quantum Monte Carlo as a method for performing high-quality calculations of the electronic

structure of atoms, molecules, and materials. The course is designed for young quantum chemists

or theoretical physicists who have no previous experience with this technique, though anyone

interested is welcome to take part.

The monastery is a unique venue where the community spirit and magnificent location have

inspired memorable workshops in the past. It is a delightful 16th century building incorporating

an ancient church, and is situated in the isolated but spectacular setting of the Tuscan mountain

village of Vallico Sotto. The church is fully equipped with relevant presentation and computer

technology, and all accommodation is on-site. As with all events at the Institute, formal lectures

are restricted to the mornings, and participants are given the freedom and space to think and

to contemplate and discuss the issues at hand. In addition to hands-on exercises, a programme

of healthy recreational activities will be organized in the afternoons, and it is hoped that by

following this strict regime, together with breathing clean mountain air and by preparing and

sampling fine Tuscan cuisine, the participant will be able to return home mentally and physically

refreshed as well as better informed.

Describing the complex behaviour of materials at the atomic level requires a sophisticated de-

scription of the correlated motion of the electrons. Quantum Monte Carlo (QMC) is an in-

creasingly popular and explicitly many-body method with the unusual capability of yielding

highly accurate results whilst also exhibiting a very favourable scaling of computational cost

with system size. Over the last eighteen years, the Cambridge group have been researching

QMC methods and we have created a powerful, general computer program - CASINO - to carry

out the calculations. The school will focus both on the basic theory of QMC and on more ad-

vanced practical techniques, and will include a thorough introduction to the CASINO program.
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A background in density functional theory or similar - though not essential - is normally thought

to be useful.

Instructors will include the main authors of the CASINO program (Dr. Mike Towler, Dr. Neil

Drummond and Dr. Pablo Lopez Rios) and possibly others.

Participants would normally need to book a flight to Pisa airport from where onward trans-

portation will be arranged (though other destinations are possible). Details of previous schools

- including photographs - are available under the PUBLIC EVENTS link on the TTI web site.

Interested students should email Mike Towler (mdt26 at cam.ac.uk) for registration and further

details.
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5 Abstracts

Ferromagnetism in Nitrogen-doped MgO: density-functional

calculations

Phivos Mavropoulos, Marjana Ležaić, and Stefan Blügel

Institut für Festkörperforschung (IFF)

and Institute for Advanced Simulation (IAS)

Forschungszentrum Jülich, D-52425 Jülich, Germany

Abstract

The magnetic state of Nitrogen-doped MgO, with N substituting O at concentrations

between 1% and the concentrated limit, is calculated with density-functional methods. The

N atoms are found to be spin-polarized with a moment of 1 µB per Nitrogen atom and

to interact ferromagnetically via the double exchange mechanism in the full concentration

range. The long-range magnetic order is established above a finite concentration of about

1.5% when the percolation threshold is reached. The disorder is described within the co-

herent potential approximation, with the exchange interactions harvested by the method

of infinitesimal rotations. The Curie temperature TC, calculated within the random phase

approximation, increases linearly with the concentration, and is found to be about 30 K

for 10% concentration. Besides the substitution of single Nitrogen atoms, also interstitial

Nitrogen atoms, dimers and trimers and their structural relaxations are discussed with re-

spect to the magnetic state. Possible scenarios of engineering a higher Curie temperature

are analyzed, with the conclusion that an increase of TC is difficult to achieve, requiring a

particular attention to the choice of chemistry.

Accepted for publication in Phys. Rev. B.

Preprint: arXiv:0908.0934 [cond-mat.mtrl-sci]
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Quasiperiodic layers of free-electron metals studied using

electron diffraction.

D’ Souzaa, Sanjay Singha, D. Wub, T. A. Lograssob, M. Krajč́ıc,d,

J. Hafnerd, K. Horne, and S. R. Barmana

a UGC-DAE Consortium for Scientific Research,

Khandwa Road, Indore 452001, India
b Ames Laboratory, U.S. DOE, Iowa State University, Ames, IA 50011, USA

c Institute of Physics, Slovak Academy of Sciences,

Dúbravská cesta 9, SK-84511 Bratislava, Slovak Republic
d Institut für Materialphysik

and Center for Computational Materials Science, Universität Wien,

Sensengasse 8/12, A-1090 Wien, Austria
e Fritz-Haber-Institut der Max-Planck-Gesellschaft, D-14195 Berlin, Germany

Abstract

Using electron diffraction, we show that free-electron metals, such as sodium and potas-

sium, form a highly regular quasiperiodic monolayer on the fivefold surface of icosahedral

Al-Pd-Mn and that the quasiperiodicity propagates up to the second layer in sodium. Our

photoelectron spectroscopy results show that the quasicrystalline alkali-metal adlayer does

not exhibit a pseudogap near the Fermi level thought to be characteristic for the electronic

structure of quasicrystalline materials. Calculations based on density functional theory pro-

vide a model structure for the quasicrystalline alkali-metal monolayer and confirm the ab-

sence of a pseudogap.

(Submitted to Phys. Rev. B 79 134206 (2009) )

Contact person: fyzikraj@savba.sk
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Initial Pb adsorption on the five-fold Al-Pd-Mn quasicrystal

surface

J. Ledieua, M. Krajč́ıb,c, J. Hafnerb, L. Leungd, L.H. Wearingd, R. McGrathd,

T.A. Lograssoe, D. Wue, V. Fournéea

aLSG2M, CNRS UMR 7584, Ecole des Mines,

Parc de Saurupt, 54042 Nancy Cedex, France
bInstitut für Materialphysik and Center for Computational Materials Science,

Universität Wien , Sensengasse 8/12, A-1090 Wien, Austria
cInstitute of Physics, Slovak Academy of Sciences,

Dúbravská cesta 9, SK-84511 Bratislava, Slovak Republic
dSurface Science Research Centre and Department of Physics,

The University of Liverpool, Liverpool L69 3BX, UK
eAmes Laboratory, Iowa State University, Ames, IA 50011, USA

Abstract

The initial adsorption of Pb on the five-fold Al-Pd-Mn quasicrystal surface has been

investigated using scanning tunneling microscopy (STM) and ab initio calculations based on

the density functional theory (DFT). In the sub-monolayer regime, Pb adsorbates are highly

mobile and adsorb preferentially within the equatorially truncated pseudo-Mackay clusters

present at the surface. The decoration of these unique adsorption sites leads to the formation

of five-fold islands dubbed “starfish” and eventually to a quasiperiodic Pb monolayer. From

the comparison of measured and calculated STM images it was concluded that most starfish

clusters on all terraces are composed of ten Pb ad-atoms. The model of the structure of the

starfish cluster has been proposed. The total energy calculations confirmed its stability. The

experimentally observed characteristic features of the STM profile of the starfish cluster are

also reproduced by the DFT calculations.

(Submitted to Phys. Rev. B 79 165430 (2009) )

Contact person: fyzikraj@savba.sk
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Signatures of nonadiabatic O2 dissociation at Al(111):

First-principles fewest-switches study

Christian Carbogno1, Jörg Behler2, Karsten Reuter3, Axel Groß1

1Institut für Theoretische Chemie,

Universität Ulm, 89069 Ulm, Germany
2Lehrstuhl für Theoretische Chemie,

Ruhr-Universität Bochum, 44780 Bochum, Germany
3Fritz-Haber-Institut der Max-Planck-Gesellschaft,

Faradayweg 4–6, 14195 Berlin, Germany

Abstract

Recently, spin selection rules have been invoked to explain the discrepancy between mea-

sured and calculated adsorption probabilities of molecular oxygen reacting with Al(111). In

this work, we inspect the impact of nonadiabatic spin transitions on the dynamics of this

system from first principles. For this purpose the motion on two distinct potential-energy

surfaces associated to different spin configurations and possible transitions between them are

inspected by means of the Fewest Switches algorithm. Within this framework we especially

focus on the influence of such spin transitions on observables accessible to molecular beam

experiments. On this basis we suggest experimental setups that can validate the occurrence

of such transitions and discuss their feasibility.

(submitted to: Phys. Rev. B)

Contact person: Karsten Reuter (reuter@fhi-berlin.mpg.de)
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Doping of C60-induced electronic states in BN nanopeapods

Vladimir Timoshevskii

Department of Physics, McGill University, Montréal, Québec, Canada

Michel Côté

Département de physique et Regroupement Québécois sur les Matériaux de Pointe

(RQMP),Université de Montréal, Montréal, Québec, Canada

Abstract

We report the results of ab initio simulations of the electronic properties of a chain of

C60 molecules encapsulated in a boron nitride nanotube - so called BN-nanopeapod. It is

demonstrated that this structure can be effectively doped by depositing potassium atoms

on the external wall of the BN-nanotube. The resulting material becomes a true metallic

one-dimensional crystal, where the conduction states are formed solely by the fullerene chain.

At the doping rate of one K atom per C60 molecule, the system shows the density of states

at the Fermi level considerably higher than in any of the fullerene crystals presently made.

This makes the doped BN-peapod structure an interesting candidate to study a possible

superconducting state.

(Accepted for publication in Physical Review B, arXiv: 0911.0212)

Contact person: Michel Côté (Michel.Cote@umontreal.ca)
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Magnetically Hindered Chain Formation in Transition-Metal

Break Junctions

Alexander Thiess, Yuriy Mokrousov, Stefan Heinze and Stefan Blügel

Institut für Festkörperforschung and Institute for Advanced Simulation,

Forschungszentrum Jülich, D-52425 Jülich, Germany

and Institut für Theoretische Physik und Astrophysik,

Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany

Abstract

Based on first-principles calculations, we demonstrate that magnetism impedes the for-

mation of long chains in break junctions. We find a distinct softening of the binding energy

of atomic chains due to the creation of magnetic moments that crucially reduces the proba-

bility of successful chain formation. Thereby, we are able to explain the long standing puzzle

why most of the transition metals do not assemble as long chains in break junctions and thus

provide indirect evidence that in general suspended atomic chains in transition-metal break

junctions are magnetic.

(Submitted to Physical Review Letters 103, 217201 (2009))

Contact person: a.thiess@fz-juelich.de

Orientation Dependence of the Intrinsic Anomalous Hall Effect

in hcp Co

Eric Roman, Yuriy Mokrousov and Ivo Souza

Department of Physics, University of California, Berkeley, California 94720, USA

Abstract

We carry out first-principles calculations of the dependence of the intrinsic anomalous

Hall conductivity of hcp Co on the spin magnetization direction. The Hall conductivity

drops from 481 to 116 S/cm as the magnetization is tilted from the easy axis (c axis) to

the ab plane. These values agree reasonably well with measurements on single crystals,

while the angular average of 226 S/cm is in excellent agreement with the value of 205 S/cm

measured in polycrystalline films. The strong intrinsic anisotropy is shown to arise from

quasidegeneracies near the Fermi level.

(Submitted to Physical Review Letters 103, 097203 (2009))

Contact person: y.mokrousov@fz-juelich.de
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Structurally driven magnetic state transition of biatomic Fe

chains on Ir(001)

Yuriy Mokrousov, Alexander Thiess and Stefan Heinze

Institut für Festkörperforschung and Institute for Advanced Simulation,

Forschungszentrum Jülich, D-52425 Jülich, Germany

and Institut für Theoretische Physik und Astrophysik,

Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany

and Institute of Applied Physics, University of Hamburg, D-20355 Hamburg, Germany

Abstract

Using first-principles calculations, we demonstrate that the magnetic exchange interac-

tion and the magnetocrystalline anisotropy of biatomic Fe chains grown in the trenches of

the (51) reconstructed Ir(001) surface depend sensitively on the atomic arrangement of the

Fe atoms. Two structural configurations have been considered which are suggested from

recent experiments. They differ by the local symmetry and the spacing between the two

strands of the biatomic Fe chain. Since both configurations are very close in total energy

they may coexist in experiment. We have investigated collinear ferro- and antiferromagnetic

solutions as well as a collinear state with two moments in one direction and one in the oppo-

site direction (up-down-up-state). For the structure with a small interchain spacing, there

is a strong exchange interaction between the strands and the ferromagnetic state is ener-

getically favorable. In the structure with larger spacing, the two strands are magnetically

nearly decoupled and exhibit antiferromagnetic order along the chain. In both cases, due to

hybridization with the Ir substrate the exchange interaction along the chain axis is relatively

small compared to free-standing biatomic iron chains. The easy magnetization axis of the Fe

chains also switches with the structural configuration and is out-of-plane for the ferromag-

netic chains with small spacing and along the chain axis for the antiferromagnetic chains with

large spacing between the two strands. Calculated scanning tunneling microscopy images

and spectra suggest the possibility to experimentally distinguish between the two structural

and magnetic configurations.

(Submitted to Physical Review B 80, 195420 (2009))

Contact person: y.mokrousov@fz-juelich.de
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Self-interaction corrected local spin density calculations of

actinides

L. Petit1,2, A. Svane2, Z. Szotek1, W.M. Temmerman1, and G.M. Stocks3

Daresbury Laboratory, Daresbury, Warrington WA4 4AD, United Kingdom

Department of Physics and Astronomy, Aarhus University,

DK-8000 Aarhus C, Denmark

Materials Science and Technology Division and Center for Defect Physics,

Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

Abstract

We use the self-interaction corrected local spin-density approximation in order to describe

localization-delocalization phenomena in the strongly correlated actinide materials. Based on

total energy considerations, the methodology enables us to predict the ground-state valency

configuration of the actinide ions in these compounds from first principles. Here we review

a number of applications, ranging from electronic structure calculations of actinide metals,

nitrides and carbides to the behaviour under pressure of intermetallics, and O vacancies in

PuO2.

(To appear in the IOP Conference Series on Materials Science and Engineering )

Manuscript available from: leon.petit@stfc.ac.uk
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6 Presenting Other Initiatives

6.1 First Official Release of the Exciting Code

We would like to draw your attention to exciting hydrogen, the first official release of the

exciting code. It is a full-potential all-electron density-functional-theory (DFT) package based

on the linearized augmented planewave (LAPW) method. It can be applied to all kinds of

materials, irrespective of the atomic species involved, and also allows for the investigation of the

core region.

We particularly focus on excited state properties, within the framework of time-dependent DFT

(TDDFT) as well as within many-body perturbation theory (MBPT).

exciting is developer-friendly through a clean and fully documented programming style, a

modern source-code management, a dynamical build system, and automated tests. At the same

time it is user-friendly, comprising various tools to create and validate input files and to analyze

results.

Powerful packages are nourished from world-wide collaborations. Hence we are aiming at an

open, transparent development process and encourage contributions from outside. Contact us

if you want to join the developers team.

The code is available at http://exciting-code.org.

exciting has been recently introduced at the Graduate School in Bristol (Sept. 20 – 26, 2009).

The hands-on tutorial HoW excitingwill be held in November 2010 at the CECAM headquarter

in Lausanne.
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7 SCIENTIFIC HIGHLIGHT OF THE MONTH: ”Electrical

Polarization and Orbital Magnetization: The Modern

Theories”

Electrical Polarization and Orbital Magnetization:
The Modern Theories

Raffaele Resta

Dipartimento di Fisica, Università di Trieste, Strada Costiera 11, I-34014 Trieste, Italy

and CNR-INFM DEMOCRITOS National Simulation Center, Trieste, Italy

Abstract

Macroscopic polarization P and magnetization M are the most fundamental concepts in

any phenomenological description of condensed media. They are intensive vector quantities

that intuitively carry the meaning of dipole per unit volume. But for many years both P and

the orbital term in M evaded even a precise microscopic definition, and severely challenged

quantum mechanical calculations. If one reasons in terms of a finite sample, the electric (mag-

netic) dipole is affected in an extensive way by charges (currents) at the sample boundary,

due to the presence of the unbounded position operator in the dipole definitions. Therefore

P and the orbital term in M—phenomenologically known as a bulk properties—apparently

behave as surface properties; only spin magnetization is problemless. The field has under-

gone a genuine revolution since the early 1990s. Contrary to a widespread incorrect belief, P

has nothing to do with the periodic charge distribution of the polarized crystal: the former is

essentially a property of the phase of the electronic wavefunction, while the latter is a prop-

erty of its modulus. Analogously, the orbital term in M has nothing to do with the periodic

current distribution in the magnetized crystal. The modern theory of polarization, based

on a Berry phase, started in the early 1990s and is now implemented in most first-principle

electronic structure codes. The analogous theory for orbital magnetization started in 2005

and is partly work in progress. In the electrical case calculations have concerned various

phenomena (ferroelectricity, piezoelectricity, and lattice dynamics) in several materials, and

are in spectacular agreement with experiments; they have provided thorough understanding

of the behavior of ferroelectric and piezoelectric materials. In the magnetic case the very

first calculations are appearing at the time of writing (2009). Here I review both theories on

an uniform ground in a DFT framework, pointing out analogies and differences. Both theo-

ries are deeply rooted in geometrical concepts, elucidated in this work. The main formulas

for crystalline systems express P and M in terms of Brillouin-zone integrals, discretized for

numerical implementation. I also provide the corresponding formulas for disordered systems

in a single k-point supercell framework. In the case of P the single point formula has been

widely used in the Car-Parrinello community to evaluate IR spectra.
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1 Introduction

Polarization P and magnetization M are fundamental concepts that all undergraduates learn

about in elementary courses [1, 2]. In view of this, it is truly extraordinary that until rather

recently there was no generally accepted formula for both electrical polarization and orbital

magnetization in condensed matter, even as a matter of principles. Computations of both P and

M for real materials were therefore impossible. It is important to stress that we are addressing

here “polarization itself” and “magnetization itself”, while instead linear-response theory has

satisfactorily provided P derivatives over the years and, more recently, even M derivatives.

In the case of P, a genuine change of paradigm was initiated by a couple of important papers [3,4],

after which the major development was introduced by King-Smith and Vanderbilt in 1992 (paper

published in 1993 [5]). Other important advances continued during the 1990s [6, 7] and the so-

called “modern theory of polarization” is at a mature stage since about a decade. Among other

things, the modern theory shed new light on previous linear-response formulations. Several

reviews have appeared in the literature: the very first one is Ref. [8] and the most recent ones

are Refs. [9, 10].

In the case of M (or, more precisely, of the orbital contribution to M) a similar breakthrough

only occurred in 2005 [11, 12], and the “modern theory of magnetization” is partly work in

progress.

Aiming at the Ψk community, it is worth emphasizing that most ab-initio electronic-structure

codes on the market, for dealing with either crystalline or noncrystalline materials, implement

the modern theory of polarization as a standard option. A nonexaustive list includes abinit [13],

cpmd [14] crystal [15], quantum-espresso [16], siesta [17], and vasp [18]. Implementations

of the modern theory have been instrumental since more than a decade in the study of ferroelec-

tric and piezoelectric materials [19–21]. The basic concepts of the modern theory of polarization

also start reaching a few textbooks, though very slowly; most of them are still plagued with

erroneous concepts and statements.

At variance with the electrical case, the modern theory of magnetization is still in its infancy. Key

developments are in progress [22–26], and first-principle calculations just start appearing [27,28].

A CECAM workshop centered on the latest developments, and partly supported by Ψk, was

organized in June 2009 [29].

Macroscopic polarization may only occur in absence of inversion symmetry, while macroscopic

magnetization requires absence of time-reversal symmetry. Another key difference is that polar-

ization (as a bulk material property) only makes sense in insulating materials, while macroscopic

magnetization exists both in insulators and metals. A material is insulating, in principle, only

at T = 0, hence the modern theory of polarization is intrinsically a T = 0 theory. At variance

with this, the modern theory of magnetization can be extended to T 6= 0 [23,24].

Macroscopic polarization is the sum of two contributions: electronic and nuclear. Only the first

term requires quantum-mechanical treatment, but it is mandatory to consider the two terms

altogether, since overall charge neutrality is essential.

Macroscopic magnetization is a purely electronic phenomenon, but it is the sum of two con-
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tributions as well: spin magnetization and orbital magnetization. The latter occurs whenever

time-reversal symmetry is broken in the spatial wavefunction. For instance, in a ferromagnet the

spin-orbit interaction transmits the symmetry breaking from the spin degrees of freedom to the

spatial (orbital) ones; the two contributions to the total magnetization can be resolved experi-

mentally. Other examples include systems in applied magnetic fields. Whenever the unperturbed

system is nonmagnetic and insulating, the induced magnetization is 100% of the orbital kind.

The modern theory of magnetization also allows the computation of NMR shielding tensors in

condensed matter [27], in an alternative way with respect to the linear-response approach (in

the long-wavelength limit) currently used since more than a decade by Mauri and coworkers [30].

2 Macroscopics

2.1 Fundamentals

The basic microscopic quantities inside a material are the local microscopic fields E(micro)(r)

and B(micro)(r), which fluctuate at the atomic scale. By definition, the macroscopic fields E

and B are obtained by averaging them over a macroscopic length scale [2]. In a macroscopically

homogeneous system the macroscopic fields E and B are constant, and in crystalline materials

they coincide with the cell average of E(micro)(r) and B(micro)(r).

The constituent equations of electrostatics and magnetostatics in continuous media are, to linear

order in the fields [1]

D = E + 4πP; B = H + 4πM, (1)

where P and M are the macroscopic polarization and magnetization, respectively. All macro-

scopic quantities entering Eq. (1) may have a spatial dependence only at inhomogenous regions,

where a net electrical charge density ρ(r) and/or a dissipationless current density j(r) pile up

according to

∇ ·P(r) = −ρ(r); ∇×M(r) =
1

c
j(r). (2)

At an interface between two different homogeneous media P and M are in general discontinuous.

In the simple case of the surface of an homogenously polarized and/or magnetized medium, P

and M vanish on the vacuum side. Eq. (2) implies the occurrence of a surface charge and/or a

surface current

σsurface = P · n, Ksurface = cM× n, (3)

where n is the normal to the surface. Notice that M is a well defined quantity for either

insulating or metallic materials; instead P is a nontrivial, material dependent, property only in

insulating materials. In the metallic case σsurface completely screens any electrical perturbation

(Faraday-cage effect), hence P is trivial and universal.

We transform Eq. (1) using the dielectric and magnetic permeability tensors

↔
ε=

∂D

∂E
;

↔
µ=

∂B

∂H
, (4)

P = P0 +

↔
ε −1

4π
E; M = M0 +

↔
µ −1

4π
H. (5)
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Because of symmetry reasons, the polarization P0 in a null E field can be nonzero only if the

unperturbed medium breaks inversion symmetry; analogously, the magnetization M0 in a null

B field can be nonzero only if the unperturbed medium breaks time-reversal symmetry.

The modern theory of polarization, at least in its original form, only addresses P0, the polariza-

tion in a null field, also known (for reasons explained below) as the “transverse” polarization.

Quite analogously the modern theory of orbital magnetization, at the present stage of develop-

ment, only addresses M0, the magnetization in a null field.

In condensed matter theory one addresses bulk quantities, with no reference to real finite samples

with boundaries. The microscopic fields E(micro)(r) and B(micro)(r) are ideally measurable inside

the materal, with no reference to what happens outside a finite sample. Their macroscopic

averages E and B, i.e. the internal (or screened) macroscopic fields, are therefore the variables

of choice for a first-principle description. It must be realized that, insofar as we address an

infinite system with no boundaries, the macroscopic field (either E or B) is just an arbitrary

boundary condition. To realize this, it is enough to focus on the electrical case for a crystalline

material. The microscopic charge density is neutral in average and lattice periodical; the value

of E is just an arbitrary boundary condition for the integration of Poisson’s equation. The

usual choice (performed within all electronic-structure codes) is to impose a lattice-periodical

Coulomb potential, i.e. E = 0. Imposing a given nonzero value of E is equally legitimate (in

insulators), although technically more difficult [31,32]).

In order to study the bulk material properties of a macroscopically homogeneous system it is

quite convenient to address the infinite system with no boundaries. The above formulation of

electrostatics and magnetostatics is sufficient and ideally suited for electronic structure theory:

there is no need of addressing external (or unscreened) fields, as there is no need of addressing

the auxiliary and unphysical fields D and H.

For instance, the dielectric tensor
↔
ε defined by Eq. (4) is best addressed within electronic

structure theory as
↔
ε= 1 + 4π

∂P

∂E
, (6)

where only “internal” quantities (well defined in the bulk of the sample), and no “external” ones,

appear. Obviously, for a homogeneous material,
↔
ε is a bulk material property, independent of

the sample shape.

There are actually two different dielectric tensors: the genuinely static one, called
↔
ε 0, and the

so-called “static high frequency”, called
↔
ε∞. The latter accounts for the electronic polarization

only, and is also called “clamped-ion” dielectric tensor. Both are experimentally measurable [33].

2.2 Finite samples and shape issues

Even if there is no need of addressing finite samples and external vs internal fields from a

theoretician’s viewpoint, such a digression can be quite instructive given that experiments are

performed over finite samples, often in external fields.

We start with the electrical case. Suppose a finite macroscopic sample is inserted in a constant

external field E(ext): the microscopic field E(micro)(r) coincides with E(ext) far away from the
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sample, while it is different inside because of screening effects. If we choose an homogeneous

sample of ellipsoidal shape, then the macroscopic average of E(micro)(r), i.e. the macroscopic

screened field E, is constant in the bulk of the sample.

The shape effects are embedded in the depolarization coefficients nα, defined in Ref. [1], with
∑

α nα = 1; Greek subscripts indicate Cartesian coordinates throughout. Special cases are the

sphere (nx = ny = nz = 1/3), the extremely prolate ellipsoid, i.e. a cylinder along z (nx = ny =

1/2, nz = 0), and the extremely oblate one, i.e. a slab normal to z (nx = ny = 0, nz = 1).

The main relationship between E, E(ext), and P is [1]:

Eα = E(ext)
α − 4πnαPα. (7)

When we consider a free-standing finite system, with no external field, Eq. (7) provides by

definition the depolarizing field. In the simple case of a slab geometry the depolarizing field is

E = −4πP when P is normal to the slab, and E = 0 when P is parallel to the slab: this is

sketched in Fig. 1.

Quite generally, a vector field is called “longitudinal” when it is curl-free, and “transverse” when

it is divergence-free: we analyze P(r) and M(r) as functions of a macroscopic coordinate across

the slab in this respect. The external fields are set to zero.

When P(r) it is normal to the slab we have Pz = Pz(z) (indipendent of xy): hence at the

slab boundary ∇ · P 6= 0, ∇ × P = 0: the normal polarization is longitudinal. When P(r) is

parallel to the slab we have Px = Px(z) (independent of xy): hence at the boundary ∇ ·P = 0,

∇×P 6= 0: the parallel polarization is transverse (see Fig. 1). Looking at Eq. (5), it is clear that

the transverse polarization coincides with P0, while (for isotropic permittivity) the longitudinal

one is P = P0/ε. These are the extreme values; for an arbitrary ellipsoidal shape P will be

intermediate between them.

A subtle issue is: which ε is to be used? ε0 or ε∞? The answer is always ε0, with the only

notable exception of lattice dynamics. If P0 is the polarization of a given “frozen phonon” at

zero field (i.e. transverse), the corresponding longitudinal polarization (for the same displace-

ments pattern) is P = P0/ε∞. This follows immediately e.g. from Huang’s phenomenological

theory [34,35].

Next, we switch to the magnetic case. Again, by definition, the magnetization normal to the

x

z

+ + + + + +

− − − − − −

Figure 1: Electrical macroscopic polarization P in a slab normal to z, for a vanishing external

field E(ext). Left: When P is normal to the slab, a depolarizing field E = −4πP is present inside

the slab, and charges at its surface, with areal density σsurface = P ·n Right: When P is parallel

to the slab, no depolarizing field and no surface charge is present.
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slab is longitudinal and the parallel one is transverse. According to Ref. [1], one has to replace

P with M, E with H, and E(ext) with H(ext) = B(ext). The analogue of Eq. (7) is then

Hα = B(ext)
α − 4πnαMα. (8)

We eliminate H by means of Eq. (1); then for a uniformly magnetized ellipsoid in zero external

field B(ext) the demagnetizing field is

Bα = 4π(1 − nα)Mα. (9)

We consider once more the slab geometry, in which case B = 4πM when M is parallel to the

slab, and B = 0 when M is normal to the slab: this is sketched in Fig. 2. In the case of isotropic

permeability Eqs. (4) and (5) lead to

M = M0 +
µ− 1

4πµ
B, (10)

It follows immediately that M = M0 when the magnetization is normal to the slab (longitudi-

nal), while it is easily verified that M = µM0 when the magnetization is parallel (transverse).

In analogy to the electrical case, these are the extreme values; for an arbitrary ellipsoidal shape

M will be intermediate between them.

It is customary to write µ = 1 + 4πχ, where χ is the magnetic susceptibility. This can be

positive or negative, but is fairly small with the notable exception of ferromagnetic materials in

a neighborhood of the phase transition [1]. In most cases we can expand Eq. (10) as

Mα ≃M0,α + χBα = M0,α + 4πχ(1 − nα)Mα. (11)

For a spherical sample (nα = 1/3) the leading-order shape correction is

M ≃

(

1 +
8π

3
χ

)

M0. (12)

Finally, we summarize the slab results end we emphasize the key difference when the slab is in

zero external fields. In the electrical case the transverse (i.e. parallel to the slab) polarization

P = P0 occurs in zero E (internal) field, while in the magnetic case it is the longitudinal (i.e.

normal to the slab) magnetization M = M0 which occurs in zero B (internal) field. This is

confirmed by absence of surface charges and surface currents in these geometries (see Figs. 1

and 2).

x

z

Figure 2: Macroscopic magnetization M in a slab normal to z, for a vanishing external field

B(ext). Left: When M is normal to the slab, no depolarizing field and no surface current is

present. Right: When M is parallel to the slab, a demagnetizing field B = 4πM is present

inside the slab, and dissipationless currents Ksurface = cM× n flow at the surfaces.
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3 Microscopics

Intuitively, the macroscopic polarization P and magnetization M should be intensive vector

properties carrying the meaning of electric/magnetic dipole per unit volume. Most texbooks at-

tempt at a microscopic definition of P in a crystal in terms of the dipole moment per cell [33,36],

but such approaches are deeply flawed because there is no unique choice for the cell bound-

aries [37].

In the magnetic case there is an outstanding difference between spin and orbital contributions

to M. The two contributions are unambiguously defined in nonrelativistic (and semirelativistic)

quantum mechanics, and can be experimentally resolved in several cases. The spin contribution

is very simple: the microscopic spin density is a well defined quantity, and can be interpreted

as a “dipolar density”. In the crystalline case, the spin contribution to M is then proportional

to the cell-averaged spin density. At variance with this, the orbital contribution to M suffers

of the same problems as P. In the following, we are not going to address spin magnetization

anymore, and we are using the symbol M to indicate the orbital term only.

Given the intuitive meaning of P and M, it is tempting to define them as the dipole moment of

a sample, divided by the volume V :

P =
d

V
=

1

V

∫

dr rρ(micro)(r), M =
m

V
=

1

2cV

∫

dr r× j(micro)(r), , (13)

where ρ(micro)(r) and j(micro)(r) are the microscopic charge and current densities. Notice that

there is no such thing as a “dipolar density”: the basic microscopic quantities are ρ(micro)(r) and

j(micro)(r). If the sample is uniformly polarized/magnetized, then the microscopic charge/current

averages to zero in the bulk of the sample, while at the sample boundary a net charge piles up

and/or a dissipationless current flows, in agreement with the macroscopic Eq. (3). Phenomeno-

logically P and M are bulk material properties, while from the above considerations they appar-

ently are surface properties. One may wonder, for instance, whether altering the surface (and

only the surface) may result in a change of P and/or of M. This very fundamental problem was

unsolved until the early 1990s for the electrical case, and until 2005 for the magnetic case.

Condensed matter theory universally adopts periodic (a.k.a. Born-von Kármán) boundary con-

ditions (PBCs); in the special case of crystalline materials, PBCs lead to the Bloch theorem.

One of the virtues of PBCs is that the system has no surface by construction. Therefore what-

ever one defines or computes within PBCs is by definition “bulk”: any surface effect is ruled

out. But PBCs do not solve our problem, since the (unbounded) position operator r entering

Eq. (13) is a “forbidden” operator, incompatible with PBCs. The issue is then how to define and

compute P and M within PBCs by means of formulas quite different from Eq. (13); therein, in

fact, ρ(micro)(r) and j(micro)(r) are assumed to vanish exponentially outside the finite sample.

In the crystalline case, the basic ingredient of such formulas must be the Bloch orbitals of the

occupied bands, while the forbidden r operator must not appear.

One important tenet of the modern theory is worth stressing: the macroscopic polarization

(magnetization) of a uniformly polarized (magnetized) crystal has nothing to do with the lattice-

periodical charge (current) distribution—despite contrary statements in several textbooks, Ac-

tually, this tenet stems already from classical physics, as emphasized e.g. in the reference work
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of Hirst [38].

4 DFT, pseudopotentials, and more

The present work reviews the formulations which provide macroscopic electrical polarization and

orbital magnetization in condensed matter in terms of single-particle orbitals, which assume the

Bloch form in the crystalline case. The formulas are exact for noninteracting electrons, but the

obvious aim is to implement them with Kohn-Sham (KS) orbitals, in a given DFT first-principle

framework.

Since in this work we need to distinguish between insulators and metals, we stress that we mean

“KS insulator” and “KS metal” throughout: that is, we discriminate whether the KS spectrum

is gapped or gapless. In the class of “simple” (i.e. computationally friendly) materials a genuine

insulator (metal) is also a KS insulator (metal), although pathological cases (computationally

unfriendly) do exist.

Having specified this, the key issue is then: Does the KS polarization/magnetization coincide

with the physical many-body one? The answer is subtle, and is different whether one chooses

either “open” boundary conditions (OBC), as appropriate for molecules and clusters, or PBCs

(Born-von Kármán), as appropriate for condensed systems—either crystalline or disordered.

Within OBC the KS orbitals vanish at infinity. For a system of N electrons with N/2 doubly

occupied orbitals ϕj(r) the dipoles (electrical and magnetical) of the fictitious noninteracting

KS system are then, in agreement with Eq. (13)

d = dnuclear − 2e

N/2
∑

j=1

〈ϕj |r|ϕj〉, m = −
e

2c

N/2
∑

j=1

〈ϕj |r × v|ϕj〉, (14)

where v = i[H, r], and H is the KS Hamiltonian, Atomic Hartree units (e = ~ = me = 1) are

adopted in most of the following (c ≃ 137). The basic tenet of DFT is that the microscopic

density of the fictitious noninteracting KS system coincides with the density of the interacting

system: hence Eq. (14) provides the exact many-body d for molecules and clusters. However,

when considering a large system in the thermodynamic limit, the density in the surface region

contributes extensively to the dipole. The magnetic case is different: the microscopic current in

the noninteracting KS system needs not to be equal to the one in the interacting physical one.

The drawback is in principle cured by the Vignale-Rasolt current DFT [39], although a simple,

universal, and reliable functional to be applied in actual computations has still to appear [40–42].

The modern theory, as formulated below, provides formulas for P and M which are exact within

PBCs for noninteracting electrons. However, within PBCs the macroscopic polarization P is

not a function of the microscopic density, hence the value of P obtained from the KS orbitals,

in general, is not the correct many-body P. This was first shown in 1995 by Gonze, Ghosez,

and Godby [43], and later discussed by several authors. A complete account of the issue can be

found in Ref. [10]. Needless to say, the situation for M is no better.

Therefore, neither P nor M can be exactly expressed—even in principle—within standard DFT;

but the exact DFT functional is obviously inaccessible, and even sometimes pathological. The
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practical issue for the Ψk community is whether the current popular flavors of DFT provide an

accurate approximation to the experimental values of P and M in a large class of materials.

In the electrical case a vast first-principle literature accumulated over the years—by either

linear-response theory or the modern theory—typically shows errors of the order of 10-20% on

permittivity, and much less on most other properties (infrared spectra, piezoelectricity, ferro-

electricity) for many different materials. It is unclear which part of the error is to be attributed

to DFT per se, and which part is to be attributed to the approximations to DFT. The above

mentioned error refers to 3d systems (crystalline, amorphous, and liquid); the state of the art is

much worse for quasi 1d systems (polymers) where the polarizabilities and hyperpolarizabilities

can be off by orders of magnitude [44]. For such case studies the drawback is shown by compu-

tations within OBC, where DFT is in principle exact: hence the culprit is in the approximate

functional.

In the magnetic case the experience is much more limited, and accumulated only by linear-

response theory in the work of Mauri and coworkers [30,45–48]. For the case studies addressed

so far the error seems fairly small.

Next, we switch discussing an issue related to the use of pseudopotentials, where a key difference

between the electrical and magnetic case exists. In the former case, the pseudo-wavefunctions

contain all of the information (to a very good approximation), and the formalism can be applied

as it stands; in fact, it is implemented as such within the pseudopotential codes [13, 14, 16–

18]. Quite on the contrary, in the latter case the orbital currents associated to the pseudo-

wavefunctions miss very important physical contributions. While all-electron implementations

have not yet appeared, the state-of-the art calculations [27, 28] combine the pseudopotential

approach with a a Blöchl-like PAW reconstruction for all elements beyond the first row, much

in the same way as first shown by Pickard and Mauri in the framework of linear-response

theory [46,48].

5 Linear response

As stated in the very first paragraph of this work, we are mostly addressing the modern theory

of polarization P and the modern theory of (orbital) magnetization M. Before the development

of the modern theories, derivatives of P and M where accessible at the first-principle level via

linear-response theory. Some (though not all) experimental observables related to P and M

are by definition derivatives with respect to suitable perturbations. Several observables in this

class have been computed over the years for many materials by means of specialized codes (see

below).

The spontaneous polarization of a ferroelectric material and, analogously, the spontaneous or-

bital magnetization of a ferromagnetic material cannot be accessed via linear-response theory.

Therefore such observables were ill defined from an electronic-structure viewpoint until the ad-

vent of the modern theories. Actually, the first computation ever of the spontaneous polarization

of a ferroelectric was published in 1993 [49]. As for orbital magnetization, all computations on

the market rely on the uncontrolled muffin-tin approximation; the first implementation of the

modern theory (where such approximation is not needed) is appearing nowadays [28].
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Even in the cases where the physical observable is by definition a derivative, it proves often

convenient to evaluate such derivative as a finite difference by means of the modern theory. This

does not require a specialized code, in that it only needs a couple of ground-state calculations.

The approach is particularly appealing when studying complex materials and/or using complex

forms of exchange-correlation functionals. For instance, infrared spectra of liquids are routinely

accessed via the modern theory of polarization [50–52].

5.1 Linear-response tensors

We indicate as F (E,H, λ) the free energy per unit volume, where λ is the short-hand scalar

notation for a macroscopic perturbation which is actually tensorial as well (e.g. zone-center

phonon, macroscopic strain, &C.). We define λ such as λ = 0 is the equilibrium unperturbed

value. We exclude from F the free energy of the free fields, which exists even in absence of the

material. At any λ value the polarization and the magnetization are the derivatives

P = −
dF

∂E
, M = −

dF

∂H
, (15)

evaluated at E = 0 and H = 0. In this work we tacitly refer to the orbital term only in M.

The linear-response tensors are second derivatives of F . In particular ∂P/∂E = −∂2F/∂E∂E

is the electrical susceptibility and ∂M/∂H = −∂2F/∂H∂H is the magnetic susceptibility. The

common symbol
↔
χ is customarily used for both tensors. It must be emphasized that the electrical

↔
χ is definite positive and of the order one, while the magnetic

↔
χ can have either sign and is

fairly small, of the order (1/137)2, except near a ferromagnetic transition or in superconducting

materials. For this reason H can be safely replaced with B in many circumstances.

The evaluation of susceptibilities is performed since several years by means of specialized linear-

response codes, and is without reach of the modern theories of polarization and magnetization,

at least in their original version. An extension of the theory [31,32], not discussed in this work,

removes such limitation in the electrical case. The magnetic case is universally dealt with the

long-wavelength linear-response approach of Mauri et al. [30].

The mixed derivative
↔
α= −∂2F/∂E∂H = ∂M/∂E = ∂P/∂H, named the magnetoelectric po-

larizability, is much in fashion nowadays given the current high interest in multiferroics (see

the April 2009 Ψk “Scientific Highlight of the Month” [53]) . It has been discovered very re-

cently (2009) that the orbital magnetoelectric polarizabilty has some very nontrivial topological

features [54]. Obviously, no first-principle computation exists.

The remaining linear-response tensors are the mixed second derivatives ∂P/∂λ = −∂2F/∂λ∂E

and ∂M/∂λ = −∂2F/∂λ∂H , evaluated at equilibrium (λ = 0). Specialized linear-response

codes [13,16] allow the computation of some of these tensors from first principles; by exploiting

the symmetry of the mixed derivatives (Schwarz’s theorem) there are usually two different paths,

in principle equivalent but computationally very different in their implementation.

The use of a specialized code can be avoided (as said above) by evaluating the P and M deriva-

tives as finite differences by means of the modern theories of polarization and magnetization.
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5.2 Electrical case: pyroelectricity, piezoelectricity, and IR charges

The pyroelectric coefficient is defined as

Πα =
dPα

dT
, (16)

the piezoelectric tensor as [55]

γαβδ =
∂Pα

∂ǫβδ
, (17)

and the dimensionless Born (or “dynamical” or “infrared”) charge as

Z∗
s,αβ =

Vc

e

∂Pα

∂us,β
, (18)

that is as derivatives of P with respect to temperature T , strain ǫβδ, and displacement us

of sublattice s, respectively, where Vc is the primitive cell volume. In the above formulas,

derivatives are to be taken at zero electric field and zero strain when these variables are not

explicitly involved.

By interpreting the second mixed derivatives of F the other way around, we can define Π via the

specific heat change linearly induced by a field at constant temperature, γ via the macroscopic

stress linearly induced by a field at zero strain, and Z∗ via the forces linearly induced by a field

at the equilibrium geometry. This can be exploited in practice in linear-response calculations.

To the best of author’s knowledge, pyroelectricity has never been investigated at the first-

principle level in any material, although it is possibly within reach of finite-T Car-Parrinello

simulations [56]. The other three tensor properties have been extensively studied in the liter-

ature, for many classes of materials, via linear-response theory. The first DFT computation

ever of permittivity (for Si) appeared in 1986 [57] and of piezoelectric tensors (for the III-Vs) in

1989 [58]. Nowadays, most state-of-the-art linear-response calculations are based on the so-called

“density-functional perturbation theory”, as described e.g. in the comprehensive Refs. [59, 60],

and implemented in the public-domain codes quantum-espresso [16] and abinit [13].

Linear-response methods, also called—in quantum-chemistry jargon—“analytical derivative”

methods, are not the unique tool to compute some of the above derivative properties: numerical

differentiation in conjunction with the modern theory can be used as well. Since piezoelectric

and infrared tensors are by definition zero-field properties, first-principle studies have widely and

successfully used the modern theory within finite-difference schemes, particularly for complex

materials, complex basis sets, and nonstandard functionals [61,62].

Implementations of the modern theory have been been instrumental in the study e.g. of piezo-

electric and infrared properties of ferroelectric perovskites [21], as well as of the infrared spectra

of liquid and amorphous materials [51,52].

5.3 A closer look at IR charges (Born effective charge tensors)

The Born (or IR) effective charge tensor, Eq. (18), can equivalently be defined (as already

observed) as the force fs linearly induced on a given nucleus s by a macroscopic E field of unit
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magnitude. This force can obviously be expressed as the microscopic Es field at site s, times

the bare nuclear charge eZs:

fs,α = eZ∗
s,βαEβ = eZsEs,α. (19)

Notice that the Cartesian tensor
↔

Z∗
s is in general nonsymmetric. It follows that the local micro-

scopic field at site s is related to the macroscopic one as

∂Es,α

∂Eβ
= Z∗

s,βα/Zs. (20)

In order to proceed further, we adopt in the following of this section an all-electron view (no

pseudopotentials): therefore the perturbation induced by the displacement of nucleus s and its

periodic replicas by an infinitesimal amount us is identical to introducing in the unperturbed

crystal an extra point dipole of magnitude ds = eZsus (and its periodic replicas), where Zs is

the bare nuclear charge. The original definition of Eq. (18) can thus be recast as

Z∗
s,αβ/Zs = Vc

∂Pα

∂ds,β
. (21)

The above manipulations are useful to show that the NMR shielding tensor
↔
σ s, introduced next,

is the perfect magnetic analogue of
↔

Z∗
s /Zs.

5.4 Magnetic case: NMR shielding tensor

In non magnetic materials, the magnetic susceptibility is of purely orbital nature. Since the

pioneering work of Mauri and Louie [30], this property has been successfully computed in many

materials via linear response in the long wavelength limit.

Other properties, like the EPR g tensor for paramagnetic defects in solids, are also computed

by suitable linear-response techniques which generalize the Mauri et a. approach [63].

NMR spectroscopy [64] has been recognized since 1938 [65] to be a powerful experimental probe

of local chemical environments, including structural and functional information on molecules,

liquids, and increasingly, on solid-state systems.

The NMR nuclear shielding tensors
↔
σ s by definition linearly relates the local microscopic mag-

netic field at a given nucleus Bs to the external macroscopic field B(ext) applied to the finite

sample:

σs,αβ = δαβ −
∂Bs,α

∂B
(ext)
β

. (22)

It obviously depends on the sample shape (see Sec. 2.2); it is expedient to start with a sample in

the form of a slab, with B(ext) normal to the slab, as in the left sketch of Fig. 2. For other shapes

a correction is easily computed as a simple function of
↔
χ. The chosen shape has the virtue that

the macroscopic screened field B inside the sample is equal to the external field B(ext), hence

σs,αβ = δαβ −
∂Bs,α

∂Bβ
, (23)

whose electrical analogue is Eq. (20) with the obvious identification

Z∗
s,βα/Zs ←→ δαβ − σs,αβ. (24)
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The linear-response approach of Mauri et al. [45]—called in the following the “direct” approach–

exploits Eq. (23) by computing the microscopic orbital currents linearly induced by a long-

wavelength B field. Many improvements and applications have appeared in the literature since

more than a decade from the original paper [46,48]. An alternative approach, based on Wannier

functions in a supercell, has also been proposed in 2001 by Sebastiani and Parrinello [66].

Very recently it has been demonstrated how to compute NMR shielding tensor
↔
σ s via a “con-

verse” approach, by exploiting Schwarz’s theorem and the modern theory of magnetization [27].

The logics can be easily explained having in mind the electrical analogue, Sec. 5.3, and Schwarz’s

theorem. Eqs. (21) and (24) immediately yield

δαβ − σs,αβ = Vc
∂Mβ

∂mα
, (25)

where it is understood that the derivative is taken at zero B field. In order to implement Eq. (25)

in a first-principle calculation one applies an infinite array of point-like magnetic dipoles ms to all

equivalent sites and calculates the change in macroscopic orbital magnetization M by means of

the modern theory. The vector potential corresponding to such perturbation is lattice-periodical

(since B is zero), and is easily inserted in the crystalline kinetic energy.

The very first test cases studied by this converse approach were some representative molecules in

a supercell, crystalline diamond, and liquid water [27]. The induced M proves to be linear and

stable over nine orders of magnitude, where ms varies between 10−6 to 103 Bohr magnetons.

The results compare very favorably with previous results from the direct approach for the same

systems [45,67,68].

In the converse approach one needs to perform three calculations for each site, but convergence

of the perturbed Hamiltonian (starting from the unperturbed one) is quite fast and one can deal

with a cell with hundreds of atoms. The main advantage, however, is that the converse method

avoids a linear-response implementation (requiring substantial extra coding) and, furthermore,

is implementable with any complex form of exchange-correlation functional, including DFT+U.

6 Modern theory of polarization

The modern theory of polarization is at a very mature stage. Several review papers have

appeared in the literature. The very first one, Ref. [8], is still an highly cited classic (for

crystalline systems); the most recent ones are Refs. [9,10]. Here we summarize the basic concepts

and the basic formulas, mostly aiming at comparing them with the modern theory of orbital

magnetization, discussed below.

Most textbooks [33, 36] provide a flawed definition of P, not implementable in practical com-

putations [37]. A change of paradigm emerged in the early 1990s [3, 4]; the modern theory,

based on a Berry phase, was founded by King-Smith and Vanderbilt soon afterwards [5]. At its

foundation, the modern theory was limited to a crystalline system in an independent-electron—

either KS or Hartree-Fock—framework. Later, the theory was extended to correlated and/or

disordered systems [6, 7]. Here we are going to present some of the main formulas in reverse

historical order.
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Figure 3: Left: Tetragonal KNbO3. Solid, shaded, and empty circles represent K, Nb, and O

atoms, respectively. The internal displacements (magnified by a factor 4) are indicated by arrows

for two (A and B) enantiomorphous ferroelectric structures. An applied field switches between

the two and reverses the polarization. Right: The polarization difference is typically measured

via an hysteresis loop. The magnitude of the spontaneous polarization is also shown (vertical

dashed segment); notice that spontaneous polarization is a zero-field property

The change of paradigm started with realizing that only differences of P are experimentally ob-

servable as bulk material properties. This is obvious for the derivative properties listed above;

but even the “spontaneous” P is not accessible as an equilibrium property [3, 4]. In ferro-

electric materials one exploits the switchability of P: the quantity actually measured is the

finite difference ∆P between two different structures of the same material. An experimental

determination of the spontaneous polarization is normally extracted from a measurement of the

transient current flowing through the sample during an hysteresis cycle (Fig. 3).

The modern theory—in agreement with the experiment—avoids addressing the “absolute” po-

larization of a given equilibrium state, quite in agreement with the experiments, which invariably

measure polarization differences. Instead, it addresses differences in polarization between two

states of the material that can be connected by an adiabatic switching process. The time-

dependent Hamiltonian is assumed to remain insulating at all times, and the polarization differ-

ence is then equal to the time-integrated transient macroscopic current that flows through the

insulating sample during the switching process:

∆P = P(∆t)−P(0) =

∫ ∆t

0
dt j(t). (26)

In the adiabatic limit ∆t→∞ and j(t)→ 0, while ∆P stays finite. Addressing currents (instead

of charges) explains the occurrence of phases of the wavefunctions (instead of square moduli) in

the modern theory. Eventually the time integration in Eq. (26) will be eliminated, leading to a

two-point formula involving only the initial and final states.

6.1 Single k-point formula for supercell calculations

For the sake of simplicity we deal with N electrons in a cubic supercell of size L. We choose

the boundary condition that the microscopic field E(micro)(r) averages to zero over the supercell

(see the discussion in Sec. 2.1), hence the KS potential is supercell-periodic. Notice that such

choice corresponds to a vanishing macroscopic field E only insofar as the sample is homogeneous;
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otherwise (e.g. when simulating surfaces, interfaces, and polar molecules) the macroscopic field

is in general nonzero in different supercell regions.

Suppose that ϕj(r) are the occupied adiabatic eigenstates of the KS instantaneous Hamiltonian

at time t, normalized to one in the supercell, and obeying PBCs therein; in other words they

are obtained from diagonalizing the Hamiltonian at the Γ point at time t. We define the the

N/2×N/2 connection matrix

Sα,jj′ = 〈ϕj |e
i 2πrα

L |ϕj′〉., (27)

which is an implicit function of the adiabatic time; notice that the operator in Eq. (27) is

supercell-periodic. The single-point Berry phase is defined as [7, 69,70]

γα = Im ln det Sα; (28)

this phase is gauge-invariant, meaning that it is invariant for unitary transformations of the

occupied orbitals between themselves.

Suppose that the nuclei are at sites Rm with charges Zm; when they are adiabatically displaced

the transient macroscopic electrical current (nuclear plus electronic) entering Eq. (26) is, in

Hartree units,

j(t) =
1

L3

∑

m

Zm
dRm

dt
+ j(el)(t). (29)

Notice that the overall charge neutrality of the system (N =
∑

m Zm) is essential for dealing with

dipolar properties. It can be shown, by means of linear-response theory, that the α-component

of the electronic transient current is

j(el)α (t) = −
1

πL2

dγα(t)

dt
, (30)

where γα is the instantaneous Berry phase of Eq. (28). This equation is correct to leading order

in 1/L and for double occupancy [7,69,70]. Replacing it into Eqs. (26) and (29) we get, in the

large-L limit

∆Pα =
1

L3

∑

m

Zm∆Rm,α −
1

πL2
[γα(∆t)− γα(0)]. (31)

This is the two-point formula universally used, e.g. in Car-Parrinello [56] simulations, whenever

polarization features are addressed [51,52]; the generalization to noncubic supercells is trivial.

It is worth noticing that the nuclear and electronic terms contributing to ∆P in Eq. (31) are

not separately invariant for translation of the origin in the supercell. The key point is that their

sum is indeed invariant, modulo the “quantum” discussed below, Sec. 6.4.

6.2 Many k-point formula for crystalline calculations

Let us assume, for the sake of simplicity, a simple cubic lattice of lattice constant a. Then

the Born-von-Kàrmàn period L is an integer multiple of the lattice constant: L = Ma, where

M → ∞ in the large-system limit. The most general crystal structure can be considered by

means of a simple coordinate transformation [8]. The KS potential is lattice-periodical, meaning

that the macroscopic field E (i.e. the cell average of the microscopic one) vanishes.

63



The allowed Bloch vectors are discrete

ks1,s2,s3
=

2π

Ma
(s1, s2, s3), sα = 0, 1, . . . M − 1,

and the corresponding Bloch orbitals are ψnks1,s2,s3
(r) = eiks1,s2,s3

·runks1,s2,s3
(r). The overlap

matrix of Eq. (27) becomes then

Sα,jj′ →
1

M3

∫ L

0
dx

∫ L

0
dy

∫ L

0
dz ψ∗

nk(r)ei 2πrα
Ma ψn′k′(r)

=

∫ a

0
dx

∫ a

0
dy

∫ a

0
dz u∗nk

(r)ei(k′−k+ 2πrα
Ma

)un′k′(r), (32)

where k and k′ must be chosen within the discrete set. The 1/M3 factor owes to the fact that

the ϕj(r) orbitals entering Eq. (27) are normalized in the cube of volume L3, while the Bloch

orbitals ψn and un are normalized in the crystal cell of volume a3. For given k and k′ the size

of the matrix on the rhs of Eq. (32) is nb (the number of double-occupied bands), while the

k and k′ arguments run over M3 discrete values. In fact, the total number of electrons in the

Born-von-Kàrmàn box is N = 2nbM
3.

The key difference between the noncrystalline case and the crystalline one is that the connection

matrix, Eq. (32), becomes very sparse in the latter case. Focussing, without loss of generality,

on the x-component (α = 1), and writing explicitly k = ks1,s2,s3
and k′ = ks′

1
,s′

2
,s′

3
, its only

nonzero elements are those with s1 = s′1 + 1, s2 = s′2, and s3 = s′3. With the usual definition of

the scalar product between un orbitals

〈unk|un′k′〉 =

∫

cell
dr u∗nk(r)un′k′(r),

these nonzero elements can be rewritten as

Snn′(ks1+1,s2,s3
,ks1,s2,s3

) = 〈unks1+1,s2,s3
|un′ks1,s2,s3

〉 .

Owing to such sparseness, the determinant of the large matrix Sx (of size N/2 = nbM
3) in

Eq. (27) factorizes into the product of M3 determinants of the small matrices S(k,k′) (of size

nb each). The Berry phase defined in Eq. (28) becomes then

γx = Im ln

M−1
∏

s1,s2,s3=0

det S(ks1+1,s2,s3
,ks1,s2,s3

)

= −

M−1
∑

s2,s3=0

Im ln

M−1
∏

s1=0

det S(ks1,s2,s3
,ks1+1,s2,s3

). (33)

If we use the symbol τ ℓ for the nuclear positions in the unit cell, the main polarization formula,

Eq. (31), becomes

∆Px =
1

a3

∑

ℓ

Zℓ∆τℓ,x −
1

πM2a2
[γx(∆t)− γx(0)], (34)

and analogously for the other Cartesian components. This is the key formula implemented in

most electronic-struture codes for crystalline calculations [13,15,16,18]..

We notice that the unk orbitals entering S, Eq. (32), can be chosen with arbitrary phase factors

(choice of the “gauge”), but these factors cancel out in Eq. (33), leaving no arbitrariness. Even

more, Eq. (33) is invariant by unitary transformations of the occupied orbitals at a given k.

Therefore the discrete Berry phase in Eq. (33) is a global property of the occupied manifold as a

whole; this is useful when the band numbering is nonunique (e.g in the case of band crossings).
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6.3 King-Smith & Vanderbilt formula

In order to make contact with the original continuum formulation by King-Smith and Vanderbilt

it is expedient to define γ
(crys)
α = γα/M

2, and rewite Eq. (34) as

∆Px =
1

a3

∑

ℓ

Zℓ∆τℓ,x −
1

πa2
[γ(crys)

x (∆t)− γ(crys)
x (0)], (35)

In the M → ∞ limit the k-point mesh becomes dense. If the gauge is chosen in such a way

that the overlap matrix Snn′(k,k′) = 〈unk|un′k′〉 is a differentiable function of its arguments,

the electronic term in Eq. (35) converges to a reciprocal-cell integral. In fact it can be shown

that, in the M →∞ limit [5, 8, 70]

γ(crys)
x = − lim

1

M2

M−1
∑

s2,s3=0

Im ln

M−1
∏

s1=0

det S(ks1,s2,s3
,ks1+1,s2,s3

) (36)

→
ia2

(2π)2

∫

dk
∂

∂k′x

nb
∑

n=1

Snn(k,k′)

∣

∣

∣

∣

∣

k′=k

=
ia2

(2π)2

∫

dk

nb
∑

n=1

〈unk|
∂

∂kx
unk〉. (37)

Historically, Eqs. (36) and (37) were derived first by King-Smith and Vanderbilt [5], and the

single-point formula, Eq. (31), much later [7].

For the sake of completeness, we give also the formula for the most general crystalline lattice, with

double band occupation. The electronic contribution to electronic polarization is the Brillouin-

zone (BZ) integral

P(el) = −
2i

(2π)3

∫

BZ
dk

nb
∑

n=1

〈unk|∇kunk〉, (38)

where it is understood that the expression must be used to evaluate polarization differences in a

two-point formula, and the sum is over the occupied bands. The formula given here is in atomic

Hartree units, for double occupancy, and for orbitals normalized to one over the crystal cell.

The integral is over the BZ or, equivalently, over a reciprocal cell.

We remind that polarization (as a bulk material property) only makes sense in insulators, and

that, in this work, we refer more precisely to “KS insulators”. In fact, the integration is Eqs. (37)

and (38) is over the whole reciprocal cell or, equivalently, over the whole BZ. The spectrum has

a gap and the number nb of occupied orbitals is independent of k. Also, it is worth noticing that

the integrand in Eqs. (37) and (38) is not gauge-invariant, in that it depends on the (arbitrary)

choice of the phases of |unk〉 at different k’s; nonetheless the integral is gauge-invariant (modulo

the “quantum” discussed below). More generally, the integral is invariant for any differentiable

unitary mixing of the occupied |unk〉 between themselves at a given k. A similar observation

was made above about the discrete Eq. (33).

6.4 The polarization “quantum”

Given that every phase is defined modulo 2π, all of the two-point formulas for ∆P in terms of

Berry phases are arbitrary modulo a polarization “quantum”. This is the tradeoff one has to pay

when switching from the adiabatic-connection formula, Eq. (26)—where no such arbitrariness

exists—to any of the two-point formulas given above.
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In the single k-point case, Eq. (31), the ‘quantum” is 2/L2: since we are interested in the large

supercell limit, where the “quantum” vanishes, the two-point formula is apparently useless. This

is not the case, and in fact Eq. (31) is routinely used for evaluating polarization differences in

noncrystalline materials. The key point is that the L → ∞ limit is not actually needed; for

an accurate description of a given material, it is enough to assume a finite L, actually larger

than the relevant correlation lengths in the material. For any given length, the polarization

“quantum” 2/L2 sets an upper limit to the magnitude of a polarization difference accessible

via the two-point formula, Eq. (31). The larger are the correlation lengths, the smaller is the

accessible ∆P. This is no problem at all in practice, either when evaluating static derivatives

by numerical differentiation, such as e.g. in Ref. [50, 71], or when performing Car-Parrinello

simulations [51,52]. In the latter case ∆t is a Car-Parrinello time step (a few a.u.), during which

the polarization varies by a tiny amount, much smaller than the quantum 2/L2 (the tipical

size of a large simulation cell nowadays is L ≃ 50 a.u.). Whenever needed, the drawback may

be overcome by splitting ∆t in Eq. (26) into several smaller time intervals, and by using the

two-point formula for each of them.

It is worth emphasizing that—owing to supercell periodicity—even the classical nuclear term in

Eq. (31) is affected by a similar indeterminacy, whenever a nuclear displacement ∆Rm becomes

of order L.

In the crystalline case translational invariance produces the much larger “quantum” 2/a2. In

fact, it is easily shown that Eq. (37) is gauge-invariant modulo 2π. The classical nuclear term

has a similar indeterminacy.

Caution is in order in numerical work, when using Eq. (36) at finite M , since in general the |unk〉

obtained from numerical diagonalization at the mesh points are not differentiable functions of k.

If each of the M2 terms in the sum is chosen with arbitrary modulo 2π freedom, then γ
(crys)
α is

unavoidably arbitrary modulo 2π/M2. A more clever choice is possible (and actually performed

in practical implementations) as follows. One starts choosing arbitrarily one of the possible

(modulo 2π) values for the first term in the sum (s2 = 0 and s3 = 0); for the remaining terms,

it is possible to impose that nearest-neighbor phases differ by much less than 2π (if the mesh is

dense enough). This choice is unique, and eliminates any residual arbitrariness, corresponding

to the discrete average of a continuous function of kykz, as indeed in Eq. (37). By this token the

discrete Berry-phase formula, Eq. (36), leads to the polarization “quantum” 2/a2 (independent

of M and L), indeed identical to the continuous one, and large enough to be harmless for most

computations.

6.5 Wannier functions

The KS ground state is a Slater determinant of doubly occupied orbitals; any unitary transfor-

mation of the occupied states among themselves leaves the determinantal wavefunction invariant

(apart for an irrelevant phase factor), and hence it leaves invariant any KS ground-state property.

For an insulating crystal, the KS orbitals are the Bloch states of completely occupied bands;

these can be tranformed to localized Wannier orbitals (or functions) WFs. This is known since

1937 [72], but for many years the WFs have been mostly used as a formal tool; they became
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a popular topic in computational electronic structure and within the Ψk community only after

the seminal work of Marzari and Vanderbilt [73]; a comprehensive review appeared as the June

2003 Ψk “Scientific Highlight of the Month” [74]. If the crystal is metallic, the WFs can still

be technically useful, but it must be emphasized that the ground state cannot be written as a

Slater determinant of localized orbitals of any kind, as a matter of principle [75].

The transformation of the Berry phase formula Eq. (38) in terms of WFs provides an alterna-

tive, and perhaps more intuitive, viewpoint. The formal transformation was known since the

1950s [76], although the physical meaning of the formalism was not understood until the seminal

work of King-Smith and Vanderbilt.

The unitary transformation which defines the WF wnR(r), labeled by band n and unit cell R,

within our normalization is

|wnR〉 =
Vc

(2π)3

∫

BZ
dk eik·R |ψnk〉 . (39)

If one then defines the“ Wannier centers” as rnR = 〈wnR|r|wnR〉, it is rather straightforward to

prove that Eq. (38) is equivalent to

P(el) = −
2

Vc

nb
∑

n=1

rn0. (40)

This means that the electronic term in the macroscopic polarization P is (twice) the dipole of

the Wannier charge distributions in the central cell, divided by the cell volume. The nuclear

term is obviously similar in form to Eq. (40).

WFs are severely gauge-dependent, since the phases of the |ψnk〉 appearing in Eq. (39) can

be chosen arbitrarily. However, their centers are gauge-invariant modulo R (a lattice vector).

Therefore P(el) in Eq. (40) is affected by the same “quantum” indeterminacy discussed above.

7 Geometrical issues

7.1 Chern invariants and topological insulators

It has been observed that macroscopic polarization (as a bulk material property) only makes

sense in insulating materials, while macroscopic orbital magnetization exists both in insulators

and metals. Furthermore, magnetic insulators come in two classes: the “nonexotic” and the

“exotic” ones, called in the following “normal insulators” and “topological insulators”, respec-

tively.

Until recently the only known realization of a topological insulator was the quantum Hall effect

(QHE): a 2d electron fluid in a perpendicular B field exibits a new state of matter. The “bulk”

of the system is insulating, but there are circulating edge states which are robust (“topologically

protected”) in presence of disorder, and are responsible for the famous plateaus in the transverse

conductivity. The same electron fluid can be described using toroidal boundary conditions, where

no edge exists. In this case the signature of the quantum Hall state is a topological integer C1

(Chern number of the first class) which geometrically characterizes the wavefunction. The Chern
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number is defined below, Eq. (42), and C1 = 0 means a normal insulator. The Hall conductivity

in the QHE regime is simply expressed in atomic Hartree units as

σT = −C1/2π, (41)

or, in ordinary units, σT = −C1e
2/h.

This result is due to Thouless and coworkers, both in the case of integer [77] and fractional [78]

QHE. These two milestone papers mark the debut of geometrical concepts in electronic structure

theory [79]. Notice that in the QHE regime, due to the presence of a macroscopic B field, the

Hamiltonian cannot be lattice periodical.

A subsequent breakthrough on the theory side is the Haldane model Hamiltonian [80]: it is

comprised of a 2d honeycomb lattice with two tight-binding sites per primitive cell with site

energies ±∆, real first-neighbor hoppings t1, and complex second-neighbor hoppings t2e
±iϕ, as

shown in Fig. 4. Within this two-band model, one deals with insulators by taking the lowest

band as occupied. The appeal of the model is that there is no macroscopic field, hence the vector

potential and the Hamiltonian are lattice periodical and the single-particle orbitals always have

the usual Bloch form. Essentially, the microscopic magnetic field can be thought as staggered

(i.e. up and down in different regions of the cell), but its cell average vanishes. As a function of

the flux parameter φ, this system undergoes a transition from zero Chern number (i.e. normal

insulator) to |C1| = 1 (i.e. topological insulator).

In general, the Chern number for any lattice-periodical Hamiltonian in 2d is expressed in terms

of the Bloch orbitals as

C1 =
i

2π

nb
∑

n=1

∫

BZ
dk [ 〈∂unk/∂k1 | ∂unk/∂k2〉 − 〈∂unk/∂k2 | ∂unk/∂k1〉 ], (42)

where the sum is over the occupied n’s only, and the integral is over the 2d Brillouin zone (the

formula here is given for single band occupancy). It is easily verified that C1 is dimensionless,

and in fact is quantized in integer units.

t1

+∆

−∆

t2 ie φ

Figure 4: Four unit cells of the Haldane model [80]. Filled (open) circles denote sites with

E0 = −∆ (+∆). Solid lines connecting nearest neighbors indicate a real hopping amplitude t1;

dashed arrows pointing to a second-neighbor site indicates a complex hopping amplitude t2e
iφ.

Arrows indicate sign of the phase φ for second-neighbor hopping.
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In 3d the Chern number, Eq. (42), is generalized to the (vector) Chern invariant

C =
i

2π

nb
∑

n=1

∫

BZ
dk 〈∂kunk| × |∂kunk〉, (43)

with the usual meaning of the cross product between three-component bra and ket states. Here

the integral is over the 3d Brillouin zone, and ∂k = ∂/∂k. The Chern invariant has the dimension

of an inverse length, and in fact is quantized in units of reciprocal lattice vectors. Notice the

analogy with—but also the key difference from—the Berry-phase formula in the modern theory

of polarization, Eq. (38).

Whenever the Chern invariant (number in 2d) is nonzero in a periodic Hamiltonian the bulk

states are gapped, but there are topologically protected surface (edge in 2d) states which are

conducting: we call “Chern insulator” this kind of topological insulator. It is worth noticing that

in a Chern insulator Wannier functions cannot exist [81] (despite the fact that the Hamiltonian

eigenstates do have the Bloch form).

Until recently no experimental realization of an insulator with nonzero Chern number (in 2d)

or nonzero Chern invariant (in 3d), in absence of a macroscopic B field was known. All known

real materials were either conductors or normal insulators, and the exotic insulators remained a

curiosity of academic interest only. A mesoscopic 2d Chern insulator, in the same spirit as the

Haldane model Hamiltonian, was synthesized in 2008 [82].

The interest in topological insulators has boomed in the last couple of years, and a genuine

revolution is underway in two directions: (i) other, more complex topological invariants have

been proposed [83,84]; and (ii) the experimental realization of a topological insulator in 2d and

3d has been demonstrated. This exciting new field is clearly beyond the scope of the present

review. We quote only a few very recent references for orientation [85–87].

7.2 Berry curvature and the anomalous Hall effect

The integrand in Eqs. (42) and (43) is a key geometrical feature of the wavefunction within

PBCs, and goes under the name of “Berry curvature” (in both 2d and 3d), or, equivalently, of

“gauge field”. We define it per band, i.e.

Ωn(k) = i〈∂kunk| × |∂kunk〉 = −Im 〈∂kunk| × |∂kunk〉; (44)

equivalently one can define the Berry curvature as the antisymmetric Cartesian tensor

Ωn,αβ(k) = −2 Im 〈∂unk/∂kα | ∂unk/∂kβ〉. (45)

The Berry curvature is gauge invariant, hence in principle it leads to observable effects.

In presence of time-reversal symmetry the Chern invariant vanishes, i.e. the Berry curvature

integrates to zero over the BZ. However, it is identically zero only in centrosymmetric crys-

tals. Instead, in crystals which are time-reversal symmetric but non centrosymmetric, Ωn(k)

contributes to the semiclassical equation of transport [88].

When time-reversal symmetry is broken and the system is metallic the integral of Ωn(k) over the

occupied states provides a sizeable contribution to the anomalous Hall effect (AHE), discussed

in the following.
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In absence of time-reversal symmetry (e.g. in a metallic ferromagnet) the transverse conductance

is nonzero even in zero magnetic field. This is the AHE, discovered by E. R. Hall in 1881 (at

about the same time as the normal Hall effect); it gathered a renewal of interest in the 2000s.

The effect is due to several mechanisms, some of them extrinsic, and the relative role of the

different mechanisms is still controversial; however, one important term in the AHE conductivity

is intrinsic and purely geometrical. Using Eq. (45) this term is (in atomic Hartree units and for

single band occupancy)

σαβ = −
1

(2π)3

∑

n

∫

BZ
dk fnkΩn,αβ(k), (46)

where fnk = θ(µ− ǫnk) is the Fermi occupancy factor at T = 0, and µ is the Fermi energy. A

formula similar, though not identical, to Eq. (46), was proposed as early as 1954 by Karplus and

Luttinger [89]. The genuine Berry-connection formula, Eq. (46), was established in 2002 [90], and

implemented in first-principle calculations soon afterwards [91–93] for the three ferromagnetic

metals Fe, Co, and Ni.

It is worth pointing out that the 2d analogue of Eq. (46), when applied to a gapped crystal,

coincides exactly with the QHE formula, Eq. (41). In both the QHE and AHE cases these

topological formulas, derived within PBCs for a sample without boundaries, correspond to

dissipationless boundary currents in finite samples.

8 Modern theory of magnetization

First of all we remind that both spin and orbital motion of the electrons contribute to the total

magnetization. While spin magnetization can be calculated with high accuracy by standard

state-of-the-art method as the spin-density functional theory (SDFT), orbital magnetization is

the subject of investigations in progress at the fundamental level. In this work, we refer to M as

to the macroscopic orbital magnetization in zero B field. This requires breaking of time-reversal

symmetry in the spatial wavefunction, which can occur in several ways. An important paradigm

is the 2d model Hamiltonian introduced by Haldane in 1988 [80] (Fig. 4); in real materials the

time-reversal symmetry breaking can be due to spin-orbit interactions (as in ferromagnets), or

to an explicit perturbation in nonmagnetic materials (as e.g. detailed in Sec. 5.4).

8.1 Normal insulators

In a normal insulator (i.e. whenever the Chern invariant is zero) the Bloch orbitals can be

chosen so as to obey |ψnk+G〉 = |ψnk〉 (the so-called periodic gauge), which in turn warrants the

existence of WFs enjoying the usual properties. Under this condition, the formula yielding the

macroscopic orbital magnetization in vanishing macroscopic B field is

M =
1

c(2π)3
Im

nb
∑

n=1

∫

BZ
dk 〈∂kunk| × (Hk + ǫnk ) |∂kunk〉 . (47)

The formula as given here is in atomic Hartree units (c ≃ 137) and for double band occupancy.

As usual, |unk〉 is the periodic part in a Bloch orbital, ǫnk is the band energy, and Hk is the

effective Hamiltonian acting on the u’s, i.e. Hk = e−ik·rHeik·r. The orbitals are normalized to
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one over the crystal cell of volume Vc; the sum is over the occupied bands and the integral is

over the whole BZ.

Eq. (47) has been first established for the single band case, independently in Ref. [11] (via the

semiclassical method) and in Ref. [12] (addressing the ground state in term of WFs). In the

latter case, computer simulations based on the 2d Haldane model Hamiltonian (Fig. 4) have been

instrumental in order to arrive at the magnetization formula and to validate it. A precursor

work, appeared in 2003 [94], provides the correct formula for the special case of the Hofstadter

model Hamiltonian. The (nontrivial) extension to the many-band case, as given in Eq. (47),

was provided in 2006 by Ceresoli et al. [22] (again, via WFs).

It is expedient to compare Eq. (47) with its electrical analogue, which is the King-Smith and

Vanderbilt polarization formula, written in Eq. (38) (for double band occupancy and in atomic

units as well). The main ingredient in both formulas are k-derivatives of the periodic |unk〉

orbitals; additionally, the Hamiltonian and the band energies appear in M. A key difference

is that in Eq. (38) the integrand is gauge-dependent, and only the integral is gauge-invariant;

in the magnetic case, instead, both the integrand and the integral are gauge-invariant. In the

electrical case only the BZ integral—as in Eq. (38)—makes sense, and this is in agreement with

the fact that bulk polarization P is well defined only in insulators (within our KS scheme, in

“KS insulators”, to be more precise). In the magnetic case, instead, the same integral appearing

in Eq. (47), but limited to states below the Fermi level in metals, is gauge invariant and could

make physical sense, since M is well defined even in metals. The actual formula for metals (see

below, Sec. 8.3) is similar, but somewhat different. A further key difference, worth emphasizing,

is that there is no “quantum” indeterminacy in the magnetic case.

An apparent paradox is that Eq. (47) does not appear at first sight to be invariant with respect to

translation of the energy zero. However, the zero-Chern-invariant condition—compare Eq. (47)

to Eq. (43)—enforces such invariance in any normal insulator.

The main magnetization formula, Eq. (47), for the orbital magnetization of a crystalline insulator

can easily be implemented in existing first-principle electronic structure codes, making available

the computation of the orbital magnetization in crystals and at surfaces. The k-derivatives

therein must be discretized as finite differences; a gauge-invariant numerical algorithm to this

aim is detailed in Appendix A of Ref. [22].

8.2 Single k-point formula for supercell calculations

We start observing that Eq. (47) is invariant by cell doubling. In fact, starting with a cell (or

supercell) of given size, we may regard the same physical system as having double periodicity

(in all directions), in which case the integration domain in Eq. (47) gets “folded” and shrinks

by a factor 1/8, while the number of occupied eigenstates gets multiplied by a factor of 8. It is

easy to realize that these are in fact the same eigenstates as in the unfolded case, apart possibly

for a unitary transformation, irrelevant here. As for the discretized form of Eq. (47), it can be

chosen to be numerically invariant by cell doubling within the computational tolerance chosen

(by a suitable choice of the mesh).

The supercell is the obvious way of dealing with disordered systems, which can be regarded as

71



a crystalline systems of large enough size. The actually required size depends on the relevant

correlation lengths in the material addressed.

If we replace Vc in Eq. (47) with a (large) supercell volume V , the integral is approximated

by the value of the integrand at k = 0 times the reciprocal volume (2π)3/V . If there are N

electrons in the supercell the formula is

M =
1

cV
Im

N/2
∑

n=1

〈∂kun0| × (H0 + ǫn0 ) |∂kun0〉 . (48)

This formula has been proposed in Ref. [26] and validated, once more, via simulations based

on the 2d Haldane model Hamiltonian. One key virtue of Eq. (48) is its gauge invariance in a

generalized sense, that is for arbitrary unitary mixing of the occupied |unk〉 among themselves.

The k = 0 derivatives |∂kun0〉 appearing in Eq. (48) deserve further discussion, since here we

no longer have any mesh, only one reciprocal point (the Γ point). One possible approach is to

evaluate such derivatives via perturbation theory, i.e.

|∂kun0〉 =
∑

m6=n

|um0〉
〈um0|v|un0〉

ǫm0 − ǫn0
, (49)

where v is the velocity operator

v = i[H, r] = ∇kHk|k=0 . (50)

Eq. (49) is convenient for tight-binding implementations, where the sum is over a small number

of terms. We also notice that the matrix representation of r, for use in Eq. (50), is usually taken

to be diagonal on the tight-binding basis.

However, Eq. (49) is not convenient for a first-principle implementation, since it would require

the evaluation of slowly convergent perturbation sums. This can be avoided taking a different

approach. If If bj are the shortest reciprocal vectors of the supercell, and ∂j indicates the partial

k-derivative in the direction of bj, then by definition

|∂jun0〉 = lim
λ→0

1

λ|bj|
( |un λbj

〉 − |un0〉 ). (51)

For a large enough supercell, the limit is approximated by taking λ = 1. Next we wish to evaluate

|unbj
〉 without actually diagonalizing the Hamiltonian at k 6= 0. To this aim, we notice that the

state e−ibj ·r|un0〉 obeys periodic boundary conditions and is an eigenstate ofHnbj
corresponding,

possibly, to a different occupied eigenvalue and to a different phase choice. In other words, no

further diagonalization is needed to identify the manifold spanned by the occupied eigenstates

|unbj
〉 appearing in Eq. (51). It is then easy to evaluate Eq. (48), provided a specific gauge

is enforced. In fact, Eq. (48) is gauge invariant by unitary mixing of the occupied eigenstates.

We further observe that the eigenstates |unk〉 obtained from numerical diagonalization are not

analytical functions of k—as instead is implicitly assumed in Eq. (51). But this feature makes

no harm after the gauge transformation is performed. The algorithm performing the required

gauge transformation is detailed in Ref. [26], and is ispired by Refs. [95,96].

The single-point formula, Eq. (48), has been implemented in a first-principle framework to

evaluate the NMR shielding tensor in liquid water, via the converse approach discussed in

Sec. 5.4 [27].
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The formula is ideally suited for implementation in time-dependent Car-Parrinello simulations,

as in the corresponding electrical case (Sec. 6.1), but an important caveat is in order. Whenever

time-reversal symmetry is absent, the classical nuclear equation of motion needs to be modified

by the occurrence of a vector potential of geometric origin (or “gauge potential”) entering the

nuclear kinetic energy. For more details, see Sec. 5.2 in Ref. [70].

8.3 Chern insulators and metals

We switch here to single band occupancy, having in mind e.g. a ferromagnet (where the orbitals

for up and down spins are different). The macroscopic magnetization per spin channel is

M =
1

2c(2π)3
Im

∑

n

∫

BZ
dk fnk〈∂kunk| × (Hk + ǫnk − 2µ ) |∂kunk〉 , (52)

where fnk is, as above, the Fermi occupancy factor at T = 0 and µ is the Fermi energy. The

formula applies to both Chern insulators (defined as insulators with nonzero Chern invariant)

and metals. Eq. (52) is obviously invariant by translation of the energy zero and coincides with

(one half of) Eq. (47) in the case of a normal insulator. In fact, the role of µ is irrelevant if

the Chern invariant, Eq. (43), vanishes. In both Chern insulators and metals the magnetization

depends on µ, as it must be (see Sec. 8.4).

Eq. (52) was first derived from semiclassical arguments for the single-band case in Ref. [11].

Subsequently, Eq. (52) was heuristically assumed in Ref. [22] and validated via computer exper-

iments. Needless to say, the transformation to WFs leading to the proof of Eq. (47) could not

be used for Chern insulators and for metals.

The numerical validation of Eq. (52) was based once more on the 2d Haldane model Hamiltonian

(Fig. 4) at various fillings, and required two sets of simulations based on (i) OBCs, corresponding

to a finite sample with a boundary, and (ii) PBCs. In case (i) the magnetization M was computed

in the trivial way by means of Eq. (14), while in case (ii) M was computed by means of Eq. (52),

discretized on a numerical grid and exploiting a smearing technique (Fermi-Dirac occupancy at

finite T ). The two sets of computations indeed converged to the same M value in the large-

system limit [22].

More recently, a quantum derivation of Eq. (52) beyond the semiclassical regime, and based on

perturbation theory, was published by Shi et al. [24]. Only one first-principle implementation

exists at the time of writing. This is still at the stage of a preprint [28] and concerns the orbital

contribution to the spontaneous magnetization of Fe, Co, and Ni.

In order to proceed further, it is expedient to write Eq. (52) identically as the sum of two terms,

each of them separately gauge invariant, hence in principle separately measurable

M = M1 + M2

M1 =
∑

n

∫

BZ
dk fnk mn(k) , mn(k) =

1

2c(2π)3
Im 〈∂kunk| × (Hk − ǫnk ) |∂kunk〉 ; (53)

M2 =
1

c(2π)3

∑

n

∫

BZ
dk fnk (µ− ǫnk )Ωn(k) . (54)

Here Ωn(k) is the Berry curvature, Eq. (44), and mn(k) coincides with the semiclassical formula

for the magnetization of a wavepacket in the n-th band [88].
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8.4 Finite-temperature formula

It has already been stated that—at variance with the electrical analogue P—orbital magnetiza-

tion M is a well defined physical property even at nonzero temperature. The Fermi occupancy

factor as a function of µ (chemical potential) and β (inverse temperature) becomes

fnk =
1

eβ(ǫnk−µ) + 1
. (55)

According to Shi et al. [24] the finite-temperature orbital magnetization can be written as

M = M1 + M2, where M1 is identical in form to Eq. (53), whereas M2 becomes instead

M2 =
1

c(2π)3

∑

n

∫

BZ
dk

1

β
ln [1 + e−β(ǫnk−µ)]Ωn(k), (56)

whose T → 0 limit coincides with Eq. (54). The formulas given here hold for any crystalline

system: normal insulators, Chern insulators, and metals.

Next we take the µ derivatives of the two terms in the magnetization formula:

∂M1

∂µ
=

∑

n

∫

BZ
dk

∂fnk

∂µ
mn(k) (57)

∂M2

∂µ
=

1

c(2π)3

∑

n

∫

BZ
dk fnk Ωn(k). (58)

We notice that at low temperature ∂fnk/∂µ is essentially a δ at the Fermi surface, and we

analyze the three cases in the T → 0 limit.

(i) For a normal insulator µ falls in an energy gap and the Berry connection integrates to zero

over the BZ. Ergo the magnetization M is µ-independent.

(ii) For a Chern insulator µ falls in a bulk gap, ergo ∂M1/∂µ vanishes, while ∂M2/∂µ is quantized

and proportional to the Chern invariant, Eq. (43):

∂M

∂µ
= −

1

c(2π)2
C. (59)

The physical interpretation of this equation is best understood in 2d, where the analogue of

Eq. (59) reads
∂M

∂µ
= −

C1

2πc
, (60)

and C1 is the Chern number. We address a finite sample cut from a Chern insulator. Owing to

Eq. (2) a macroscopic current of intensity I = cM circulates at the edge of any two-dimensional

uniformly magnetized sample, hence Eq. (60) yields

dI

dµ
= −

C1

2π
. (61)

The role of chiral edge states is elucidated, for example [97, 98], by considering a vertical strip

of width ℓ, where the currents at the right and left boundaries are ±I. The net current vanishes

insofar as µ is constant throughout the sample. When an electric field E is applied across the

sample, the right and left chemical potentials differ by ∆µ = Eℓ and the two edge currents

no longer cancel. Our Eq. (61) is consistent with the known quantum-Hall results. In fact,
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according to Eq. (61), the net current is ∆I ≃ −C1∆µ/2π, while the transverse conductivity is

defined by ∆I = σTEℓ. We thus arrive at Eq. (46).

Remarkably, the above equations state that the contribution of edge states is indeed a bulk quan-

tity, and can be evaluated in the thermodynamic limit by adopting periodic boundary conditions

where the system has no edges. As already observed, this feature may look counterintutitive,

but this fascinating behavior has been known for more than 20 years in QHE theory [77,97].

(iii) In a metal both µ-derivatives contribute. The first term ∂M1/∂µ is nontopological and has

bulk nature. It involves only the states at the Fermi level, and simply measures the magnetization

change due to the change in occupation of these bulk states. At variance with this, ∂M2/∂µ is

topological and is related to the contribution of chiral boundary states in a finite sample, very

similarly to the Chern-insulator case discussed above.

8.5 Transport

In presence of spatial inhomogeneity at a macroscopic scale, the chemical potential acquires an

r dependence: µ = µ(r). Since ∂/∂rβ = ∂µ/∂rβ ∂/∂µ, we write Eq. (2) as

1

c
jα = εαβγ

∂Mγ

∂rβ
= εαβγ

∂µ

∂rβ

∂Mγ

∂µ
, (62)

where εαβγ is the antisymmetric tensor, and now Eqs. (57) and (58) could be used. However,

it is argued in Ref. [23] that only M2 contributes to the transport current, where M1 would

contribute an unobservable “magnetization current” [99].

If we transform he Berry curvature from vector to tensor form—Eqs. (44) and (45)—we get

Ωn,αβ = εαβγΩn,γ, where εαβγ is the antisymmetric tensor. Eq. (58) yields then

εαβγ
∂M2,γ

∂µ
= −

1

c
σαβ, (63)

where σαβ is the topological AHE conductivity, Eq. (46). Finally Eq. (62) is rewritten for the

transport current as

jα = −σαβ
∂µ

∂rβ
, (64)

which is the familiar conductivity formula, once one identifies −∇µ with the electric field. We

remind that this formula only concerns the transverse conductivity (i.e. the antisymmetric part

of the conductivity tensor), and neglects extrinsic effects.

8.6 Dichroic f-sum rule

The differential absorption of left and right circularly polarized light by magnetic materials

is known as magnetic circular dichroism. In the past 15 years or so a sum rule for x-ray

magnetic circular dichroism (XMCD) has been extensively used at synchrotron facilities to obtain

information about orbital magnetism in solids. The relationship between the M measured via

the XCMD sum rule and the M provided by the modern theory has been addressed in 2008 by

Souza and Vanderbilt [25], and will be reviewed here.
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A very important caveat is in order at the very beginning. We are going to assume in the follow-

ing that the KS energies and orbitals—both occupied and empty—provide a faithful excitation

spectrum of the crystalline system. Clearly, this is a severe approximation, whose accuracy may

be doubtful in many materials. We remind, nonetheless, that even the ground state magneti-

zation is—strictly speaking—beyond reach of standard DFT: see the discussion in Sec. 4. The

sum rule discussed here is of course exact for noninteracting electrons.

If we define as 〈σ
′′

A〉 the frequency-integrated XCMD spectrum in vector notation, the main

result of Ref. [25] is, in atomic Hartree units,

〈σ
′′

A〉 = πcM1 (65)

where M1 is given by Eq. (53). In other words, only one of the two (gauge-invariant) terms into

which we have partitioned M is measured by the XMCD spectrum. The term M2, Eq. (54), is

missing; its quantitative importance is unknown.

Eq. (65) is proved for normal insulators only—once more, via a transformation to WFs—

although it is possibly valid for Chern insulators and metals as well. In the interpretation

of Ref. [25] the XCMD sum rule probes the gauge-invariant part of the self-rotation of the

occupied WFs.

9 Conclusions

We have reviewed here, on a common ground, both the modern theory of polarization P and

the modern theory of orbital magnetization M. The former theory (or its existence at least)

is well known in the Ψk community. It is implemented as a standard option in most electronic

structure codes [13–18], has revolutionized the theory of ferroelectric and piezoelectric materi-

als [19–21], and starts reaching—although very slowly—the elementary textbooks. The theory

of magnetization, instead, is still in its infancy. The very first ab-initio implementations [27,28]

are appearing at the time of writing (2009). Previous computations of orbital magnetization in

solids have invariantly relied on the uncontrolled muffin-tin approximation.

The modern theories address P and M in zero macroscopic fields E and B. The meaning of

this apparently counterintuitive situation is thoroughly discussed (Sec. 2).

The presentation given here is strictly within a KS scheme, whose limitations are however

discussed (Sec. 4). We provide formulas both for crystalline solids, where P and M are Brillouin-

zone integrals (discretized for numerical work), and for noncrystalline condensed systems in a

single k-point supercell framework.

At the KS level both theories are in (I dare saying) a definitive shape. Instead, when dealing

with explicitly correlated wavefunctions (such as within quantum Monte Carlo), a successful

formula exists for P [6, 7]—not discussed here—but not yet for M.
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