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1 Editorial

In this first Psi-k Newsletter of 2011 we have one workshop announcement and two brief reports
on recent workshops, three job announcements and a number of abstracts of newly submitted
or recently published papers.

The scientific highlight article of this issue is by Mike J. Gillan (London), Mike D. Towler
(Cambridge, London, and AACP, Italy) and Dario Alfè (London) on ”Petascale computing
opens new vistas for quantum Monte Carlo”.

For details please check the table of content of this newsletter.

The Uniform Resource Locator (URL) for the Psi-k webpage is:

http://www.psi-k.org.uk/

Please submit all material for the next newsletters to the email address below.

The email address for contacting us and for submitting contributions to the Psi-k newsletters is

function
psik-coord@stfc.ac.uk messages to the coordinators, editor & newsletter

Dzidka Szotek, Martin Lüders, Leon Petit and Walter Temmerman
e-mail: psik-coord@stfc.ac.uk
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2 Psi-k Activities

”Towards Atomistic Materials Design”

2.1 Workshop Announcements

2.1.1 First Announcement of the Workshop on Self-Interaction Correction: State
of the Art and New Directions

September 18, 2011 to September 21, 2011

Ramada Jarvis Hotel, Chester, UK

Organisers:

Martin Lueders (Daresbury Laboratory, UK)

Leon Petit (Daresbury Laboratory, UK)

Zdzislawa (Dzidka) Szotek (Daresbury Laboratory, UK)

Local administration:

Damian Jones and Shirley Miller (Daresbury Laboratory, UK)

Sponsored by

Psi-k Network and CECAM-Hartree Node (UK)

Motivation

The motivation for this workshop is to review different methodologies and different applications
of self-interaction corrected local-density approximation (LDA). The self-interaction error, intro-
duced by local and semi-local approximations to density functional theory (DFT), leads to some
dramatic failures of DFT, ranging from wrong predictions in chemical reactions to the failure in
describing the insulating state in many transition metal oxides, and qualitatively wrong pictures
for lanthanide and actinide compounds. Thirty years ago, Perdew and Zunger (PZ) suggested
a remedy for this error, the so-called self-interaction corrected (SIC) local (spin) density (LSD)
approximation [Phys. Rev. B23, 5048 (1981)]. During the years that have passed since the
publication of this seminal paper, the method has led to a plethora of applications in different
fields of physics and chemistry. The original paper also gave rise to a variety of implementa-
tions, generalizations, and extensions of the method. It has also become apparent that different
branches of SIC have been developed nearly independently of each other, in particular in the
field of quantum chemistry and solid state physics, with the experiences/advances gained in one
field barely noticed in the other areas. We think that this year’s 30th anniversary of the original
paper by Perdew and Zunger would be a good opportunity to bring together, for the first time,
all the groups that have applied/worked on self-interaction correction, in order to discuss and
assess the state of the art of all the different flavours of SIC, share the experiences and identify
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the most important and burning issues, unsolved problems, and perhaps find a common direc-
tion for the future development. Longer talks and ample time for discussion are envisaged to
facilitate a successful outcome of the workshop.

Invited Speakers

Hisazumi Akai (Osaka University, Japan)
Björn Baumeier (MPI Mainz, Germany) (tbc)
Klaus Capelle (Sao Paulo, Brazil) (tbc)
Aron Cohen (Cambridge, UK)
Olle Eriksson (Uppsala University, Sweden)
Alessio Filippetti (Sardinia, Italy) (tbc)
Hannes Jonsson (Faculty of Science, VR-II, Univ. of Iceland)
Stephan Kuemmel (University of Bayreuth, Germany)
Nektarios Lathiotakis (NHRF, Athens, Greece) (tbc)
Nicola Marzari (University of Oxford, UK)
Mark R. Pederson (NRL,USA)
John P. Perdew (Tulane University, USA)
Adrienn Ruzsinszky(Tulane University, USA)
Stefano Sanvito (Trinity College Dublin, Ireland)
Thomas C. Schulthess (ETH Zurich, Switzerland)
Eric Suraud (University of Toulouse, France)
Axel Svane (Aarhus University, Denmark)
Takao Tsuneda (Riken, Japan)
Oleg Vydrov (Rice University, USA) (tbc)

A dedicated web page (still at the stage of development) of this meeting is

http://www.cse.scitech.ac.uk/cecam_at_daresbury/self-interaction_correction.shtml

and the registration will open there in April 2011.

However, an early expression of interest and/or access to further information is possible by
contacting shirley.miller@stfc.ac.uk. The total number of participants is expected to be between
40 and 50.

All the future information concerning the workshop will be distributed via Psi-k Portal and in
the forthcoming Psi-k newsletters.
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2.2 Reports on the Workshops supported by Psi-k

2.2.1 Report on ”Computational Magnetism and Spintronics 2010” Workshop

Bonn, Gustav-Stresemann-Institut, Germany

May 10th-12th 2010

Psi-k Network and Forschungszentrum Jülich

Stefan Blügel and Yuriy Mokrousov (Forschungszentrum Jülich)

Alexander Shick (Institute of Physics, ASCR, Prague)

http://www.fz-juelich.de/iff/CompMag2010/

Scientific Report

Spintronics, magnetoelectronics and magnetism continues to be very creative, innovative and
active research themes in condensed matter physics. The Hall effects, the concept of topological
matter, the Dzyaloshinskii-Moriya interaction in inversion symmetry broken solids, the magne-
toelectric coupling, the spin-transfer torque, magnetic susceptibilities, multiferroicity at oxide
interfaces and heterostructures are issues which emerged during the past 5 years and represent
vital scientific issues of broad scientific and technological interest. These fields are progress-
ing very fast and continue branching into increasingly wider areas of condensed matter: these
include the strongly correlated electron systems, multiferroic oxides and oxide junctions, ox-
ides and semiconductors in terms of diluted magnetic semiconductors, to organic and inorganic
molecules in terms of molecular magnets, and carbon nanotubes in the field of nano-spintronics
or even to ferroelectric materials in terms of multiferroics. Moreover, it is widely recognized
that first-principles calculations on magnetic materials can give important clues to understand-
ing properties and behavior of different materials and can have a remarkable impact both from
the basic as well as from the technological point of view.

However, within the rich and vivid field of magnetism, there are few opportunities to discuss −
within the ab-initio community − issues such as accuracy and limits of density functional theory
for novel magnetic materials, methods development, specific computational issues, etc. This
motivated in 2006 the working groups Magnetoelectronics and Complex Magnetism of the Psi-k
Network to organize within the next years a regular series of conferences and workshops, which
will be integrated within the new cooperation between Psi-k and CECAM (Centre European de
Calcule Atomique et Moleculaire). Every second year it is planned to have a conference with
maximum 60 participants on a broader scope of content and every other year we think of a more
focused Psi-k/CECAM-workshop (or two of them). In 2008, O. Eriksson, I. Mertig, and P. Zahn
organized the CCMS08 in Dresden. The current workshop was in the line of such meetings.

In the workshop ”Computational Magnetism and Spintronics 2010” we tried to bring together
leading experts in first-principles description of magnetic properties, spin excitations, spin-orbit
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interaction, spin dynamics and spin-dependent transport in solids and nanostructures. This
year we focussed on (i) recent developments in spin-orbit related phenomena due to symmetry
breaking on surfaces and interfaces, skyrmion lattice, Dzyaloshinkskii-Moriya interaction (G.
Bihlmayer), (ii) spin-orbit interaction-driven transport properties such as anisotropic magne-
toresistance, anomalous Hall and spin Hall effects (I. Turek, H. Ebert, F. Freimuth), (iii) spin-
relaxation and spin-torque (M. Stiles, Z. Yuan, A. Starikov), (iv) magnetoelectric coupling (C.
Ederer, A. Ernst), (v) spin-dependent transport (A. Smogunov, S. Khmelevskyi, C. Heiliger),
(vi) developments beyond LDA (P. Rinke, L. Nordström, M. Schlipf), (vii) multiferroics, ox-
ides, oxide interfaces (M. Stengel, R. Pentcheva, S. Picozzi, I. Popov), (viii) spin dynamics and
spin excitations (A. Schindlmayr, L. Sandratskii, L. Nordström, M. Katsnelson, R. Muniz, A.
Pertsova), (ix) electron paramagnetic resonance (U. Gerstmann). Each presentation of the work-
shop was followed by intensive discussions among the participants of the workshop. The general
scientific atmosphere of the discussions and the workshop in general was open and creative.

Program

Monday, May 10th 2010

9:00−9:20 Stefan Blügel: Welcome

9:20−10:00 Gustav Bihlmayer: ”Two-dimensionally modulated spin-structures at sur-

faces”

10:00−10:40 Silvia Picozzi: ”Electronic magnetic ferroelectrics: modelling and under-

standing”

10:40−11:00 Coffee break

11:10−11:50 Claude Ederer: ”Different ways to couple magnetism and electric polariza-

tion in multiferroic materials”

11:50−12:30 Patrick Rinke: ”Approaching unity: the advanced DFT functionals exact-

exchange and RPA meet quasiparticle energy calculations”

12:30−14:30 Lunch break

14:30−15:10 Lars Nordström: ”Polarizations of transition metals: the role of higher mul-

tipoles - hidden orders and complex magnetism”

15:10−15:30 Igor Popov: ”Multiferroicity of magnetism hexaboride”

15:30−16:00 Martin Schlipf: ”Hybrid Functionals within the All-Electron FLAPW Method:

Implementation and Applications”

16:00−16:30 Coffee break

16:30−17:10 Mikhail Katsnelson: ”Towards ab initio spin dynamics”

17:10−17:50 Lars Nordström: ”Atomistic spin dynamics: recent progress”

18:00−22:00 Poster session

Tuesday, May 11th 2010

9:00−9:40 Hubert Ebert: ”Ab initio investigation of the Spin Hall Effect for non-magnetic

alloys”

9:40−10:20 Ilja Turek: ”Anisotropic magnetoresistance and anomalous Hall effect in ran-

dom ferromagnetic alloys”
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10:20−10:40 Frank Freimuth: ”Orientational dependence of the spin-Hall conductivity:

toy models and first-principles calculation”

10:40−11:10 Coffee break

11:10−11:50 Arthur Ernst: ”Magneto-electric coupling in thin films”

11:50−12:30 Rossitza Pentcheva: ”Tayloring Electronic States at Oxide Surfaces and In-

terfaces”

12:30−12:50 Hubert Ebert: ”Orbital-dependent functionals within the KKR-multiple

scattering formalism - an implementation of exact exchange”

12:50−14:30 Lunch break

14:30−15:10 Sergii Khmelevskyi: ”Spin-orbit coupling induced anisotropy effects and ex-

change interactions in Mn-based bimetallic antiferromagnets”

15:10−15:50 Alexander Smogunov: ”Locally magnetic nanostructures: interplay between

magnetism and electron transport”

15:50−16:10 Christian Heiliger: ”Calculations of spin dependent transport in MnAs”

16:10−16:40 Coffee break

16:40−17:20 Roberto Muniz: ”Spin dynamics in magnetic metallic nanostructures”

17:20−18:00 Leonid Sandratskii: ”Non-adiabatic spin-dynamics of complex magnetic sys-

tems”

18:00−18:20 Anna Pertsova: ”Dynamics of localized spin impurities in one-dimensional

wires”

19:00−22:00 Conference dinner

Wednesday, May 12th 2010

9:00−9:40 Arno Schindlmayr: ”Spin excitations in itinerant ferromagnets from first prin-

ciples”

09:40−10:20 Mark Stiles: ”Calculation of spin-orbit induced relaxation in transition metal

ferromagnets”

10:20−10:40 Anton Starikov: ”A first-principles study of the resistivity, Gilbert damping

and spin-flip diffusion in Ni1−xFex substitutional alloys”

10:40−11:10 Coffee break

11:10−11:30 Zhe Yuan: ”Non-adiabatic spin torque in magnetic domain walls from first

principles”

11:30−12:10 Massimiliano Stengel: ”Proper treatment of the macroscopic variables in

multiferroic systems”

12:10−12:50 Uwe Gerstmann: ”Magnetic properties of surface and interface states inves-

tigated via ab initio g-tensor calculations”

12:50 - 14:30 Lunch Break

List of participants

Mikhail Katsnelson (Radboud University Nijmengen, The Netherlands)
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Leonid Sandratskii (Max-Planck-Institut für Mikrostrukturphysik, Halle, Germany)

Claude Ederer (School of Physics, Trinity College, Dublin, Ireland)

Roberto Muniz (Universidade Federal Fluminense, Niteroi, Brazil)

Lars Nordström (Department of Physics, Uppsala University, Sweden)

Arthur Ernst (Max-Planck-Institut für Mikrostrukturphysik, Halle, Germany)

Ilja Turek (Institute of Physics of Materials, ASCR, Brno, Czech Republic)

Sergii Khmelevskii (Vienna University for Technology, Vienna, Austria)

Uwe Gerstmann (Department Physik, Universität Paderborn, Germany)

Arno Schindlmayr (Department Physik, Universität Paderborn, Germany)

Patrick Rinke (Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany)

Hubert Ebert (Ludwig-Maximilians-Universität München, Germany)

Rossitza Pentcheva (Ludwig-Maximilians-Universität München, Germany)

Silvia Picozzi (CNR-INFM, L’Aquila, Italy)

Massimiliano Stengel (ICMAB-CSIC, Barcelona, Spain)

Mark Stiles (Center for Nanoscale Science and Technology, Gaithersburg, USA)

Chandrima Mitra (Max-Planck-Institut fur Eisenforschung, Düsseldorf, Germany)

Paolo Ferriani (University of Kiel, Germany)

Peter Dederichs (Forschungszentrum Jülich, Germany)

Nicolae Atodiresei (Forschungszentrum Jülich, Germany)

Marjana Lezaic (Forschungszentrum Jülich, Germany)

Phivos Mavropoulos (Forschungszentrum Jülich, Germany)

Yuriy Mokrousov (Forschungszentrum Jülich, Germany)

Stefan Blügel (Forschungszentrum Jülich, Germany)

Alexander Shick (Institute of Physics, ASCR, Prague, Czech Republic)

Manuel dos Santos Dias (Department of Physics, University of Warwick, UK)

Anna Pertsova (Department of Physics, Trinity College, Dublin, Ireland)

Michael Czerner (Justus-Liebig-Universität Giessen, Germany)

Christian Heiliger (Justus-Liebig-Universität Giessen, Germany)

Paul Kelly (University of Twente, Enschende, The Netherlands)

Hongbin Zhang (Forschungszentrum Jülich, Germany)

Frank Freimuth (Forschungszentrum Jülich, Germany)

Anton Starikov (University of Twente, Enschende, The Netherlands)

Igor Popov (University of Twente, Enschende, The Netherlands)

Zhe Yuan (University of Twente, Enschende, The Netherlands)

Yi Liu (University of Twente, Enschende, The Netherlands)

Dmitry Fedorov (Martin-Luther-Universität Halle-Wittenberg, Germany)

Gustav Bihlmayer (Forschungszentrum Jülich, Germany)

Antonio Costa (University of California at Irvine, USA)

Alexandr Smogunov (CEA Saclay, France)

Parwana Habibi (CEA Saclay, France)

Pengxiang Xu (Forschungszentrum Jülich, Germany)

Daniel Wortmann (Forschungszentrum Jülich, Germany)
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Timo Schena (Forschungszentrum Jülich, Germany)

David Bauer (Forschungszentrum Jülich, Germany)

Kourosh Rahmanizadeh (Forschungszentrum Jülich, Germany)

Konstantin Rushchanskii (Forschungszentrum Jülich, Germany)

Ivetta Slipukhina (Forschungszentrum Jülich, Germany)

Adam Jakobsson (Forschungszentrum Jülich, Germany)

S. Hasan Sadat Nabi (Ludwig-Maximilians-Universität München, Germany)

Karel Carva (Charles University in Prague, Czech Republic)

Mousumi Upadhyay Kahaly (CEA Saclay, Paris)

Peter Entel (Universität Duisburg-Essen, Germany)

Martin Schlipf (Forschungszentrum Jülich, Germany)
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2.2.2 Report on Workshop: ”HoW exciting! Hands-on workshop on excitations
in solids employing the exciting code

CECAM-HQ-EPFL, Lausanne, Switzerland

November 11-17, 2010

Sponsors:

CECAM, Psi-k, & SimNet Styria

Organisers:

Claudia Ambrosch-Draxl - University of Leoben

Pasquale Pavone - Materials Center (MCL) Leoben Forschung GmbH
& University of Leoben

Clas Persson - Royal Institute of Technology, Stockholm

Jürgen Spitaler - MCL Leoben Forschung GmbH

Web pages:

http://www.cecam.org/workshop-455.html

http://exciting-code.org/how-exciting

Summary

The CECAM workshop was devoted to the presentation of both basic concepts and com-

putational tools (embedded in the software package exciting) which are needed for the

calculations of various excitations in solids. The workshop took place at the CECAM

Head Quarter in Lausanne, Switzerland, in November 2010. It turned out to be very suc-

cessful and reached all the expected goals. The participants enjoyed a varied programme

of interesting lectures and discussions.
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Workshop background

Density-functional theory (DFT) has proven to be an excellent technique for the calcula-

tion of structures and molecular dynamics such that a variety of popular DFT codes has

already been established for being used by a large and even swiftly growing community.

While most of the applications are still dedicated to the investigation of ground-state

properties, there is rapidly increasing demand for understanding and predicting various

kinds of excitations. The topics range from light-matter interaction via spin fluctuations

and lattice vibrations to situations where several fundamental excitations take place on

the same energy scale and may interact with each other.

This scenario gives raise to many exciting basic scientific questions which, at the same

time, are important in terms of industrial applications. While light- or current-induced

electronic excitations play the major role in opto-electronic devices, lattice excitations and

their interaction with the electronic system lead to phenomena like superconductivity or

the thermal behaviour of materials. All these effects are extremely relevant in industrial

products such as solar cells, light-emitting diodes, and high-strength materials or thermal

coatings. Such considerations require the development of basic concepts as well as the

corresponding computer codes capable of dealing with these situations.

Workshop contents

The CECAM workshop provided training of young people, making them familiar with

the exciting code, a package which is dedicated to excited-state properties.

Besides the fundamentals related to the method (Ambrosch-Draxl, Meisenbichler

Spitaler, Pavone, Sagmeister) and hands-on exercises, we had keynote lectures

given by world-leading experts in the various fields. They comprised the cornerstones of

DFT (Burke), time-dependent DFT (Rubio), many-body perturbation theory (Rein-

ing), phonons and electron-phonon coupling (Baroni), superconductivity (Gross), mag-

netism (Nordström), large scale simulations (Blaha, Gonze), thermodynamic and

mechanical properties (Neugebauer), and multi-scale modelling based on ab-initio ap-

proaches (Scheffler). A special talk was also organized to address the future evolution

in terms of memory and speed of computing in condensed matter physics (Schulthess).

By exploring the fundamental physical concepts in combination with practical exercises,

the participants could profit from another exciting experience, which is learning by doing.
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The exciting code

The simulation package exciting (web site: http://exciting-code.org) is a young

public-domain all-electron package based on DFT for the investigation of condensed mat-

ter on the atomic scale. It combines several major advantages:

• It is a full-potential all-electron code based on the linearized augmented plane-wave

(LAPW) method, which stands for highest precision and the fact that it can be used

for any material.

• It is the only all-electron package comprising vast implementations of excited state

properties within TDDFT as well as many-body perturbation theory.

• It is developers-friendly through a clean and fully documented programming style,

being written from scratch and handled with a modern version-control system (git).

• It is user-friendly through an easy-to-handle user interface comprising various tools

to create and validate input files and analyze results.

• It is seminal by being interfaced to packages operating on the next higher length

scale and by the development of tools which allow for the handling by users from an

industrial environment.

Notes and statistics

Notes of the lectures presented at the workshop can be found as PDF files at the web

page http://exciting-code.org/cecam-talks. The list and description of the tutorial

exercises is also available at http://exciting-code.org/cecam-exercises.

There were a total of 47 scientific participants, among them 4 organisers, 11 lecturers,

6 tutors, and 26 student participants from institutions of 13 countries, including various

European nations, Mexico, Japan, and USA.

Reception by the participants

After the workshop, we received a very positive feedback from the student participants

showing that they enjoyed very much this tutorial. In particular, they found the work-

shop very nice and well organized and were enthusiastic about both the pedagogical and

scientific quality of all lecturers. The competence and availability of the tutors during the

exercises was also very much appreciated.
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Programme

Day 1 - November 11, 2010

08:40 - 09:00 Welcome

09:00 - 10:00 Kieron Burke

ABC of DFT

10:00 - 10:30 Claudia Ambrosch-Draxl

APW-derived basis sets

10:30 - 10:45 Coffee Break

10:45 - 12:45 Exercises: Electronic structure

12:45 - 14:00 Lunch Break

14:00 - 14:30 Christian Meisenbichler

Exciting installations and user tools

14:30 - 16:00 Exercises: I/O and templates

16:00 - 16:30 Coffee Break

16:30 - 17:30 Exercises: I/O and templates

17:30 - 18:30 Thomas Schulthess

Petascale computing in condensed matter physics

Day 2 - November 12, 2010

09:00 - 10:00 Kieron Burke

EFG of DFT

10:00 - 11:00 Exercises: DFT

11:00 - 11:15 Coffee Break

11:15 - 12:00 Exercises: User projects

12:00 - 13:30 Lunch Break

13:30 - 14:30 Jörg Neugebauer

Ab-initio thermodynamics:
From excitations to material properties

14:30 - 15:00 Jörg Neugebauer

Introduction to cluster expansion

15:00 - 15:30 Jürgen Spitaler

ATAT@exciting

15:30 - 16:00 Coffee Break

16:00 - 18:00 Exercises: Cluster expansion
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Day 3 - November 13, 2010

09:00 - 10:00 Stefano Baroni

Lattice excitations

10:00 - 10:45 Pasquale Pavone

Stress and strain in exciting

11:00 - 11:15 Coffee Break

11:15 - 12:45 Exercises: Elastic constants

12:45 - 14:00 Lunch Break

14:00 - 14:30 Pasquale Pavone

Forces, phonons, and thermal properties in exciting

14:30 - 16:15 Exercises: Structure optimization and phonons

16:15 - 16:45 Coffee Break

16:45 - 18:15 Exercises: Energy functionals

Day 4 - November 14, 2010

Excursion

Day 5 - November 15, 2010

09:00 - 10:00 Angel Rubio

Time-dependent DFT

10:00 - 10:30 Stephan Sagmeister

TDDFT in exciting

10:30 - 10:45 Coffee Break

10:45 - 12:45 Exercises: Linear-response TDDFT

12:45 - 14:00 Lunch Break

14:00 - 15:00 Lucia Reining

Many-body perturbation theory:
From fundamental ideas to use in practice

15:00 - 15:30 Stephan Sagmeister

BSE in exciting

15:30 - 16:00 Coffee Break

16:00 - 18:00 Exercises: Excitonic effects via BSE
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Day 6 - November 16, 2010

09:00 - 10:00 Lars Nordström

Exciting behaviour of exotic magnetic materials:
Up and down and around

10:00 - 10:30 Jürgen Spitaler

Magnetism in exciting

10:30 - 10:45 Coffee Break

10:45 - 12:45 Exercises: Magnetism

12:45 - 14:00 Lunch Break

14:00 - 15:00 Xavier Gonze

Addressing large-scale software development and maintenance
from a physicist point of view

15:00 - 16:00 Peter Blaha

Challenges of large scale simulations with all-electron methods

16:00 - 16:30 Claudia Ambrosch-Draxl

Core-level spectroscopy: Core electrons and relativistic effects

16:30 - 16:45 Coffee Break

16:45 - 18:45 Exercises: Core excitations via BSE

Day 7 - November 17, 2010

09:00 - 10:00 E.K.U. Gross

Superconductivity

10:00 - 11:45 Exercises: Advanced user projects

11:45 - 12:00 Coffee Break

12:00 - 13:00 Matthias Scheffler

Multi-scale modeling of the function of materials from first principles
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List of participants

Organisers

Claudia Ambrosch-Draxl University of Leoben, AUT

Pasquale Pavone MCL Leoben & University of Leoben, AUT

Clas Persson Royal Institute of Technology, Stockholm, SWE

Jürgen Spitaler MCL Leoben, AUT

Lecturers

Stefano Baroni International School for Advanced Studies, Trieste, ITA

Peter Blaha Technical University of Vienna, AUT

Kieron Burke University of California Irvine, USA

Xavier Gonze Universite Catholique de Louvain, BEL

E.K.U. Gross Max Planck Institute of Microstructure Physics, Halle, DEU

Jörg Neugebauer Max-Planck Institute for Iron Research, Düsseldorf, DEU

Lars Nordström University of Uppsala, SWE

Lucia Reining Ecole Polytechnique, Palaiseau, FRA

Angel Rubio Universidad del Páıs Vasco, San Sebastian, ESP

Matthias Scheffler Fritz-Haber-Institut der MPG, Berlin, DEU

Thomas Schulthess Swiss National Supercomputer Center, Zürich, CHE

Tutors

Thomas Dengg University of Leoben, AUT

Rostam Golesorkhtabar MCL Leoben & University of Leoben, AUT

Dominik Legut MCL Leoben & University of Leoben, AUT

Christian Meisenbichler University of Leoben, AUT

Weine Olovsson University of Leoben, AUT

Stephan Sagmeister MCL Leoben & University of Leoben, AUT
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Student participants

Audrius Alkauskas Ecole Polytechnique Fédérale de Lausanne, CHE

Gustavo Baldissera Royal Institute of Technology, Stockholm, SWE
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3 General Job Announcements

Postdoctoral Position

Centre de Physique Théorique, Ecole Polytechnique, Palaiseau,
France

Several postdoctoral positions are available in the condensed matter theory group of the

Centre de Physique Théorique of Ecole Polytechnique, Palaiseau, France.

The positions can either focus on electronic structure calculations for correlated materi-

als, involving a part of method developments within the dynamical mean field (DMFT)

framework, or on materials modelling in view of photovoltaic applications.

The starting date should be as early as possible.

Candidates should be familiar with first principles electronic structure calculations or with

the physics of correlated materials.

Please send your CV, a brief description of your research interests, and the names of at

least two referees to: silke.biermann@polytechnique.edu
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Post-Doc Position in Lyon (France): Theoretical Heterogeneous
Catalysis

One Post-doc position, starting as soon as possible, is available in the field of Theoretical

Chemistry at the Laboratory of Chemistry, Ecole Normale Supérieure de Lyon, France.

Net salary between 2100-2300 EUR/month depending on experience. Position is for 18

months.

The research project concerns the modeling of the solvent in a QM/MM molecular dy-

namic simulation. Indeed, most of the standard approaches resort to a static definition of

the QM/MM partitioning: one molecule is either MM or QM. However, when dealing with

reactions in solution, this can be a problem: some solvent molecule can become reactants

or can act as electron attractors through hydrogen bonding for example. In order to deal

with such cases, we want to implement the adaptive QM/MM scheme recently proposed

by Bulo et al. (DOI:10.1021/ct900148e) into CPMD. The scheme will then be applied to

the study of organic and biochemical reactions. One important application will be the

mechanistic study of the imine formation in water under different pH conditions. This

textbook reaction is of the utmost importance not only in organic synthesis, but also in

the context of DNA damage.

Applicants are expected to have a good background in either quantum chemistry or molec-

ular dynamics. Knowledge of CPMD or CP2K is a requirement. Fluency in a high-level

programming language, such as FORTRAN90 or/and Python would be a definite plus.

Lyon’s listing by UNESCO as a World Heritage Site gives recognition to the long history

heritage of the city. It is also recognized for its gastronomy and last but not least, Lyon

is a vivid city with thousands of students.

Motivated candidates are invited to send their CV, including a short motivation for car-

rying out this project, list of publications, abstract of research results (one page) and two

recommendation letters by e-mail (preferred format pdf or plain text) to:

Paul Fleurat-Lessard

Laboratoire de Chimie, UMR CNRS 5182,

École Normale Supérieure de Lyon

46, Allée d’Italie

69364 Lyon Cedex 07

France

Phone: +33 4 72 72 81 54

Fax: +33 4 72 72 88 60

E-mail: Paul.Fleurat-Lessard at ens-lyon.fr
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Postdoc Offer - CINN - Oviedo - Spain

CINN - Nanotechnology & Nanoscience Research Institute CSIC -

Universidad de Oviedo, Spain

http://www.cinn.es

A 3-year post-doctoral position is offered with a gross salary of 27.540,24 euro/year.

The candidate will be expected to work on DFT/multiscale approaches to problems at the

nanoscale. Areas of interest include, but are not limited to, electronic transport, nano-

magnetism, biosystems, structural nanomaterials, nanominerals, energy-efficient nanos-

tructures.

Interested researchers should contact

Prof. Jaime Ferrer

CINN - Universidad de Oviedo

Spain

email: ferrer@uniovi.es

The deadline for applications is February 7th 2011. These include submission of a research

project and some other paperwork.

All the docs are available (in spanish) at https://sede.csic.gob.es/servicios/formacion-y-empleo/

convocatorias/personal-laboral/2010/jae-doc-2010

Lucas Fernández Seivane

Ph. D. Candidate

Universidad de Oviedo - CINN

http://condmat.uniovi.es/~quevedin

http://www.researcherid.com/rid/A-8610-2008
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4 Abstracts

ESTEST: a framework for the validation and verification of

electronic structure codes

Gary Yuan1 and François Gygi2

Department of Applied Science, University of California Davis,

Davis, CA 95616, USA

Department of Computer Science, University of California Davis,

Davis, CA 95616, USA

Abstract

We present a framework for the verification and validation (V&V) of electronic structure
simulation software. Electronic structure computations involve numerous parameters and
approximations that determine their accuracy and reliability. As a large number of simulation
data coming from several electronic structure codes are becoming available, the associated
V&V process is becoming increasingly complex. We introduce ESTEST as a framework for
facilitating the verification and validation of electronic structure computations. ESTEST
software enables the V&V, comparison and sharing of simulation data by constructing a
unified representation of code outputs, populating and organizing a query database with
these representations and interfacing the data through a web service that offers ways to
search, view, compare, visualize and post-process the data. We present examples of V&V
as well as comparison and analysis from our implementation, and justify the details of each
of the innovative features of this software. The present implementation supports electronic
structure codes such as Qbox, Quantum Espresso, ABINIT, and the Exciting code. An
online demonstration is available at http://estest.ucdavis.edu.

(Computational Science & Discovery 3 (2010) 015004)

(http://iopscience.iop.org/1749-4699/3/1/015004)
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Ab initio calculation of phonon dispersions in size-mismatched

disordered alloys

Biswanath Dutta, Konark Bisht and Subhradip Ghosh

Department of Physics, Indian Institute of Technology Guwahati,

Guwahati, Assam 781039, India

Abstract

Size mismatch and the resulting local lattice relaxations play a very crucial role in de-
termining the lattice dynamical properties of substitution-ally disordered alloys. In this
paper we focus on the influence of size mismatch between the components of an disordered
alloy on the phonon dispersions, by considering the illustrative examples of Cu0.715Pd0.285

and Cu0.75Au0.25 systems. A combination of ab-initio electronic structure method and the
transferable force-constant model has been used as a first-principles tool to compute the
inter-atomic force constants between various pairs of chemical specie in a disordered alloy.
The Green’s function based Itinerant Coherent Potential Approximation is then used to
compute the phonon dispersion relations by performing the configuration-averaging over the
fluctuations in the mass and the force- constants due to the size mismatch. A systematic
investigation on the influence of the size mismatch of end point components of an alloy on
the phonon spectra is carried out in detail. We show that the consideration of the local
lattice relaxation as a manifestation of size mismatch is important in addressing the correct
behavior of the phonon dispersions in these alloys. Our results are in good agreement with
the experimental results in case of Cu0.715Pd0.285. In case of Cu0.75Au0.25, our results predict
a resonance behavior which is not observed experimentally. Based upon an analysis of the
inter-atomic force constants between various pairs of chemical specie, we explain the reason
of this discrepancy.

(Phys. Rev. B 82, 134207 (2010))

Contact person: Biswanath Dutta (b.dutta@iitg.ernet.in)
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Theory of gold on ceria

Changjun Zhang, Angelos Michaelides

London Centre for Nanotechnology and Department of Chemistry,

University College London, London WC1E 6BT, U.K.

Stephen J. Jenkins

Department of Chemistry, University of Cambridge,

Lensfield Road, Cambridge, CB2 1EW, U.K.

Abstract

The great promise of ceria-supported gold clusters as catalysts of the future for important
industrial processes, such as the water gas shift reaction, has prompted a flurry of activity
aimed at understanding the molecular-level details of their operation. Much of this activity
has focused on experimental and theoretical studies of the structure of perfect and defective
ceria surfaces, with and without gold clusters of various sizes. The complicated electronic
structure of ceria, particularly in its reduced form, means that at present it is highly chal-
lenging to carry out accurate electronic structure simulations of such systems. To overcome
the challenges, the majority of recent theoretical studies have adopted a pragmatic and often
controversial approach, applying the so-called DFT + U technique. Here we will briefly
discuss some recent studies of Au on CeO2(111) that mainly use this methodology. We will
show that considerable insight has been obtained into these systems, particularly with regard
to Au adsorbates and Au cluster reactivity. We will also briefly discuss the need for improved
electronic structure methods, which would enable more rigorous and robust studies in the
future.

(Invited article on Phys. Chem. Chem. Phys. 13, 22 (2011))

Contact person: angelos.michaelides@ucl.ac.uk
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To Wet or Not to Wet? Dispersion Forces Tip the Balance for

Water Ice on Metals

Javier Carrasco

London Centre for Nanotechnology and Department of Chemistry,

University College London, London WC1E 6BT, U.K.

Fritz-Haber-Institut der Max-Planck-Gesellschaft,

Faradayweg 4-6, D-14195 Berlin, Germany

Biswajit Santra

Fritz-Haber-Institut der Max-Planck-Gesellschaft,

Faradayweg 4-6, D-14195 Berlin, Germany

Jǐŕı Klimeš, Angelos Michaelides

London Centre for Nanotechnology and Department of Chemistry,

University College London, London WC1E 6BT, U.K.

Abstract

Despite widespread discussion, the role of van der Waals dispersion forces in wetting
remains unclear. Here we show that nonlocal correlations contribute substantially to the
water-metal bond and that this is an important factor in governing the relative stabilities
of wetting layers and 3D bulk ice. Because of the greater polarizability of the substrate
metal atoms, nonlocal correlations between water and the metal exceed those between water
molecules within ice. This sheds light on a long-standing problem, wherein common den-
sity functional theory exchange-correlation functionals incorrectly predict that none of the
low temperature experimentally characterized icelike wetting layers are thermodynamically
stable.

(Phys. Rev. Lett. 106, 026101 (2011))

Contact person: angelos.michaelides@ucl.ac.uk
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The c(2x2) water-hydroxyl overlayer on Cu(110): a wetting

layer stabilized by Bjerrum defects

Matthrew Forster, Rasmita Raval, Andrew Hodgson

Surface Science Research Centre and Department of Chemistry,

University of Liverpool, Oxford Street, Liverpool, L69 3BX, U.K.

Javier Carrasco

London Centre for Nanotechnology and Department of Chemistry,

University College London, London WC1E 6BT, U.K.

Fritz-Haber-Institut der Max-Planck-Gesellschaft,

Faradayweg 4-6, D-14195 Berlin, Germany

Angelos Michaelides

Department of Chemistry, University College London, London WC1H 0AJ, UK

Abstract

Understanding the composition and stability of mixed water/hydroxyl layers is a key
step in describing wetting and how surfaces respond to redox processes. Here we show that,
instead of forming a complete hydrogen bonding network, structures containing an excess of
water over hydroxyl are stabilized on Cu(110) by forming a distorted hexagonal network of
water-hydroxyl trimers containing Bjerrum defects. This arrangement maximizes the number
of strong bonds formed by water donation to OH and provides uncoordinated OH groups
able to hydrogen bond multilayer water and nucleate growth.

(Accepted by Phys. Rev. Lett., to appear in 2011)

Contact person: angelos.michaelides@ucl.ac.uk
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Quantum Nuclear Effects on the Location of Hydrogen Above

and Below the Palladium(100) Surface

Changjun Zhang, Angelos Michaelides

London Centre for Nanotechnology and Department of Chemistry,

University College London, London WC1E 6BT, U.K.

Abstract

We report ab initio path integral molecular dynamics simulations of hydrogen and deu-
terium adsorbed on and absorbed in the Pd(100) surface at 100 Kelvin. Significant quantum
nuclear effects are found by comparing with conventional ab initio molecular dynamics sim-
ulations with classical nuclei. For on-surface adsorption, hydrogen resides higher above the
surface when quantum nuclear effects are included, an effect which brings the computed
height into better agreement with experimental measurements. For sub-surface absorption,
the classical and quantum simulations differ in an even more significant manner: the clas-
sically stable subsurface tetrahedral position is unstable when quantum nuclear effects are
accounted for. This study provides insight that aids in the interpretation of experimen-
tal results and, more generally, demonstrates that despite the computational cost ab initio
path integral molecular dynamics simulations of surface and subsurface adsorption are now
feasible.

(Accepted by Surf. Sci., to appear in 2011)

Contact person: angelos.michaelides@ucl.ac.uk
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Intermediate band solar cells: influence of band formation on

dynamical processes in InAs/GaAs quantum dot arrays

Stanko Tomić

STFC Daresbury Laboratory, Daresbury, WA4 4AD, U.K.

Abstract

We present a theoretical model for design and analysis of semiconductor quantum dot
(QD) array based intermediate band solar cell (IBSC). The plane wave method with periodic
boundary conditions is used in expansion of the k·p Hamiltonian for calculation of the
electronic and optical structure of InAs/GaAs QD array. Taking into account realistic QD
shape, QD periodicity in the array, as well as effects like band mixing between states in the
conduction and valence band, strain and piezoelectric field, the model reveals the origin of
the intermediate band formation inside forbidden energy gap of the barrier material. Having
established the interrelation between QD periodicity and the electronic structure across the
QD array Brillouin zone, conditions are identified for the appearance of pure zero density of
states regions, that separate intermediate band from the rest of the conduction band. For one
realistic QD array we have estimated all important absorption coefficients in IBSC, and most
important, radiative and nonradiative scattering times. Under radiative limit approximation
we have estimated efficiency of such IBSC to be 39%.

(Phys. Rev. B 82, 195321 (2010))

Contact person: stanko.tomic@stfc.ac.uk
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Unraveling the Stability of Polypeptide Helices: Critical Role of

van der Waals Interactions

Alexandre Tkatchenko1, Mariana Rossi1, Volker Blum1,

Joel Ireta2, and Matthias Scheffler1

1Fritz-Haber-Institut der Max-Planck-Gesellschaft,

Faradayweg 4–6, 14195 Berlin, Germany
2Departamento de Qúımica, División de Ciencias Básicas e Ingeniéıa,

Universidad Autónoma Metropolitana-Iztapalapa,

A.P. 55-534, México, Distrito Federal 09340, Mexico

Abstract

Folding and unfolding processes are important for the functional capability of polypep-
tides and proteins. In contrast to physiological environment (solvated or condensed phases),
an in vacuo study provides well-defined “clean room” conditions to analyze the intra-
molecular interactions that largely control the structure, stability, and folding/unfolding
dynamics. Here we show that a proper consideration of van der Waals (vdW) dispersion
forces in density-functional theory (DFT) is essential, and the recently developed DFT+vdW
approach enables long time-scale ab initio molecular dynamics simulations at an accuracy
close to “gold standard” quantum-chemical calculations. The results show that the inclusion
of vdW interactions qualitatively changes the conformational landscape of alanine polypep-
tides, and greatly enhances the thermal stability of helical structures, in agreement with
gas-phase experiments.

(Submitted to: Phys. Rev. Lett. (2011).)

Contact person: Alexandre Tkatchenko (tkatchenko@fhi-berlin.mpg.de)
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Anisotropic spin–spin correlations in Mn1/X(111), with X =

Pd, Pt, Ag and Au

M dos Santos Dias and JB Staunton

Department of Physics, University of Warwick, Coventry, United Kingdom

A Deak and László Szunyogh

Department of Theoretical Physics,

Budapest University of Technology and Economics, Budapest, Hungary

Abstract

We present a finite–temperature theory of the anisotropic spin–spin correlations in mag-
netic metallic monolayers, deposited on a suitable substrate. The ‘spins’ are the local mo-
ments set up by the itinerant electrons, and the key concept is the relativistic disordered local
moment state, which represents the paramagnetic state of a set of local moments. The spin–
spin correlations between these local moments are then extracted using the linear response
formalism. The anisotropy is included in a fully relativistic treatment, based on the Dirac
equation, and has a qualitative impact on noncollinear magnetic states, by lifting their chiral
degeneracy. The theory is applied to Mn monolayers on the hexagonal (111) surfaces of Pd,
Pt, Ag and Au. The presence of competing exchange interactions is highlighted by choosing
different substrates, which favour either the row–wise antiferromagnetic state or the chiral
triangular Néel state. We correlate the electronic structure with the magnetic properties,
by comparing filled with partially filled substrate d–bands, and low vs high atomic number.
The disagreement between theory and experiment for Mn1/Ag(111) is addressed, and the
nature of the magnetic domains found experimentally is suggested to be chiral.

(Submitted to Phys Rev B, in press; arXiv:1010.5135v2)

Contact person: M dos Santos Dias – manuel.d.s.dias@gmail.com
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5 SCIENTIFIC HIGHLIGHT OF THE MONTH

Petascale computing opens new vistas
for quantum Monte Carlo

M.J. Gillan1,2,3, M.D. Towler4,5,6 and D. Alfè1,2,3,4

1Thomas Young Centre at UCL, Gordon Street, London WC1H 0AH, U.K.
2London Centre for Nanotechnology, UCL, Gordon Street, London WC1H 0AH, U.K.

3Department of Physics and Astronomy, UCL, Gower Street, London WC1E 6BT, U.K.
4Department of Earth Sciences, UCL, Gower Street, London WC1E 6BT, U.K.

5TCM Group, Cavendish Laboratory, University of Cambridge,

19 J.J. Thomson Avenue, Cambridge CB3 0HE, U.K.
6Apuan Alps Centre for Physics, via del Collegio 22, Vallico Sotto,

Fabbriche di Vallico 55020 (LU), Tuscany, Italy

Abstract

For many kinds of problem the accuracy of quantum Monte Carlo (QMC) is much better
than that of density functional theory (DFT), and its scaling with number of atoms is much
more favourable than that of high-level quantum chemistry. However, the widespread use of
QMC has been hindered by the fact that it is considerably more expensive than DFT. We
show here that QMC is very well placed to exploit the power of petascale supercomputers
that are now becoming available, and we explain how this is opening up new scientific areas
to investigation with QMC. We describe how we have been able to modify the Cambridge
QMC code CASINO so that it runs with almost perfect parallel efficiency on 100000 cores and
more on the JaguarPF machine at Oak Ridge. We also present illustrative results showing
how QMC calculations run in this way are enabling us to go beyond the limitations of DFT
in three important areas: the surface formation energies of materials, the adsorption energies
of molecules on surfaces, and the energetics of water systems.

1 Introduction

The past twenty years have seen an extraordinary transformation in the ability of com-

puter simulation to mimic the material world on the atomic scale. The accuracy and real-

ism of simulations have been raised to completely new heights, partly by huge increases in

computer power and partly by the development of powerful electronic-structure techniques

of various kinds, including density functional theory (both standard and hybrid) [1, 2],
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high-level quantum chemistry methods such as 2nd-order Møller-Plesset and coupled-

cluster methods [3–5], computational many-body theory (for example the random-phase

approximation) [6, 7], and quantum Monte Carlo [8, 9]. The power of supercomputers

continues to grow at a dizzying rate: the petaflop barrier (1015 floating point operations

per second) was broken in 2008, and exaflop speeds (1018 flops) are projected for sometime

around 2016. However, the materials modelling community faces a daunting challenge.

The new increases in computer power are coming almost entirely from enormous increases

in the number of processors, and the practical exploitation of this power will force a com-

prehensive reappraisal of how materials modelling is done. In the next few years, some

modelling techniques will benefit more than others from the increase of supercomputer

power. We will argue here that the techniques of quantum Monte Carlo (QMC) are

particularly well placed to benefit, and we will outline some of the steps we have taken

to implement the casino QMC code [8, 10] on very large parallel computers, including

the Jaguar supercomputer at Oak Ridge National Laboratory. We will also give some

illustrations of how these new implementations of QMC are already allowing us to tackle

problems that were out of reach before.

One way to characterize the growth of supercomputer power is to refer to the publicly

available information on the Top500 website [11], which gives the technical specifications

of the 500 most powerful supercomputers in the world. The data there shows that in the

fifteen years from 1993 to 2008 the aggregate computing power of all 500 supercomputers

in the list has grown by a factor of 14221. This implies a doubling time of only a little

more than a year. Some of this vast increase has come from the growth of clock speed

of the individual processors, but in recent years most of it has come from the increasing

numbers of processors. In June 1993, the average number of processors of machines in

the Top 500 was 142, but in November 2008 it was 6234. Today, the JaguarPF machine

(currently second in the Top 500 list) has 224256 cores. Since clock speeds have not

increased significantly in the past five years, and are unlikely to increase much in the

future, the push towards exaflops will come almost entirely from further increases in the

core count.

This all means that the materials modelling techniques that are likely to benefit most

from the availability of petascale facilities are those for which the calculations can be

broken into a very large number of separate pieces that can be executed simultaneously,

preferably with only simple communications between the pieces. Quantum Monte Carlo is

a technique of this kind, because it relies on very extensive statistical sampling. Diffusion

Monte Carlo (DMC) is at present the type of QMC most commonly used for high-precision

calculations on materials, and DMC works with large numbers of ‘walkers’ or ‘configu-

rations’, whose job is to explore the electronic configuration space of the system. These

walkers are to quite a large extent independent of each other, and this means that groups

of walkers can be given to individual processors, with only fairly light communications

between them. This is why DMC is particularly well suited to large parallel machines, and

we will describe in this article how we have been able to run such calculations efficiently

on machines having tens of thousands of processors.
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We believe that there are strong scientific reasons for taking seriously the capabilities of

QMC on large parallel machines. Although DFT dominates atomic-scale materials mod-

elling and will obviously continue to be extremely important, its accuracy is sometimes

insufficient. When people want to comment on failures of DFT, they often like to refer

to strongly-correlated systems, where are there are clear reasons for expecting DFT to

struggle. But there are many other kinds of problems where the accuracy of DFT falls far

short of what is needed. An obvious example is the inclusion of van der Waals dispersion,

a crucially important effect in many fields, including molecular biology, surface science

and aqueous systems. Although the generalisation of DFT to include dispersion has been

hugely important (see e.g. Refs. [12–14]), there are still unsolved issues. Another impor-

tant example is the adsorption energy of molecules on surfaces, where DFT is sometimes

unable to give predictions of useful accuracy. DFT values of surface formation energies of

quite simple paradigm materials such as silicon and magnesium oxide also depend strongly

on the assumed exchange-correlation functional, and there is usually no way of knowing

in advance which functional to trust. The well-known problem of calculating electronic

band gaps could also be mentioned. The urgent practical need to do better in these and

other areas is driving current efforts to develop more accurate methods, and the phrase

‘beyond DFT’ has become familiar over the past few years.

There is abundant evidence that there are large classes of problems for which QMC

techniques are considerably more accurate than DFT, and we shall point out some of the

evidence in this article. One of the main factors that has tended to deter researchers from

applying QMC to their problems is that it demands much larger computer resources than

DFT. Roughly speaking, one can expect a DMC calculation of the ground-state energy

of a reasonably-sized assembly of atoms in a given geometry to take about 104 times

more CPU time than the same calculation with standard (as opposed to hybrid) DFT.

Obviously, 104 is a large factor, but it happens to be very similar to the factor by which

Top500 supercomputer power grew from 1993 to 2008. This means that the situation

with QMC now is similar to the DFT situation in the early 1990s, which was when

the parallelisation of DFT first started to make an impact on materials modelling. The

kinds of DFT calculations that appeared ridiculously daunting then are now performed

routinely on desktop machines, and will presumably be performed by smart-phone apps

in the future. A similar evolution path may well be followed by QMC, and we believe

that now is the time to find out what can be achieved with QMC on petascale machines.

In the next Section, we will sketch the main ideas of QMC, noting the important role

played by variational Monte Carlo, but then focusing mainly on the rather standard

methods of diffusion Monte Carlo, and summarising the features of the casino code. In

Section 3 we will outline the issues that we had to address in implementing casino on

large parallel computers, particularly the UK national supercomputer HECToR, and the

Jaguar machine at ORNL. In that Section, we will present some results of our parallel

scaling tests, which show the possibility of running production calculations on 100000

or more cores. Then in Section 4, we give some illustrations of the calculations we are

performing, including preliminary results that suggest how hitherto intractable scientific
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problems can be tackled in the near future. At the end of the article, we will offer some

speculations about further developments that can be expected in the next few years.

2 The quantum Monte Carlo method

The fundamental quantum-mechanical object in the QMC method - somewhat unfash-

ionably, given the emphasis normally and quite understandably placed on reducing the

number of variables in the problem - is the full many-body wave function Ψ(r1, r2, . . . , rN).

This is a function of 3N variables, a complication which compares very unfavourably with

the fundamental quantity in DFT - the electron density - which depends on only three

variables. We use it nonetheless simply because we know the mathematical form of the

differential equation which it satisfies, namely the Schrödinger equation:

ĤΨ = EΨ. (1)

If we wish to reformulate this problem in terms of the density then we face the issue

that the exact equation satisfied by the ground-state density is completely unknown. In

DFT, the complicated many-body problem is effectively subsumed in the definition of the

exchange-correlation functional whose correct mathematical expression is unlikely ever

to be known exactly. The inevitable approximations to this quantity, from the simplest

LDAs up to the best modern functionals, substantially reduce the attainable accuracy

and predictability of the method. This is an excellent reason for looking further at QMC.

Two alternatives for ‘solving the Schrödinger equation’ using QMC methods are normally

used. First, take the wave function as a given analytic form and evaluate the energy using

numerical integration; if necessary change the shape of the wave function by varying the

parameters which define it until the energy is minimized. This is variational Monte Carlo.

A more accurate alternative is to represent the wave function using a non-analytic method

(the distribution in time and configuration space of an ensemble of diffusing particles) and

encourage the particles to distribute themselves according to the true ground state wave

function through the use of a projection technique. When they have done so, numerically

integrate by sampling the wave function as before. This is diffusion Monte Carlo.

These two techniques will now be described in turn.

2.1 Variational Monte Carlo

Variational Monte Carlo, or VMC, is a relatively straightforward stochastic numerical

integration method. It is in principle capable of computing quantum-mechanical expecta-

tion values for any many-electron wave function whose value can be evaluated at arbitrary

points in its configuration space. Given some trial wave function ΨT satisfying the ap-

propriate boundary conditions one may, for example, simply calculate the total energy as

the expectation value of the many-body Hamiltonian operator Ĥ,
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∫
Ψ∗T (R, {α})ĤΨT (R, {α}) dR∫
Ψ∗T (R, {α})ΨT (R, {α}) dR

= E({α}) ≥ E0 , (2)

where R is a 3N -dimensional vector giving the configuration coordinates (r1, r2, . . . , rN) of

the N particles in the system (we ignore spin for the moment). The numerical integration

is performed by sampling the configuration space of the wave function at random points.

Now for a wave function with appropriate properties the usual variational theorem tells

us that by evaluating this integral we obtain an energy which is an upper bound to the

exact ground-state energy, that is, energies for approximate wave functions are always

higher than that of the true ground state. Such wave functions generally depend on some

parameters - here collectively denoted by {α} - and these parameters may thus be varied

to minimize an objective function such as the energy; in so doing the ‘shape’ of the wave

function can be optimized.

The reason for sampling the wave function at random points is that the error in the integral

then decreases as the square root of the number M of sampling points - irrespective of the

dimensionality d of the integral. One may contrast this with a standard grid method such

as the trapezoidal rule where the error decreases as O(M− 2
d ). Though Monte Carlo is less

efficient in one dimension, it wins for more than four and as d increases it becomes the

only practical approach. For example, in a system of thirty electrons in three dimensions

one must integrate over the ninety degrees of freedom of the system, and the trapezoidal

rule would need ∼ 1067 function evaluations to achieve the same accuracy as the Monte

Carlo method with 1000 data points. When evaluating quantum-mechanical expectation

values for N -particle systems we must do 3N -dimensional integrals and it is clear there

is simply no alternative to Monte Carlo methods.

Now in practice we do not wish to sample the random points from a uniform probabil-

ity distribution - as implied above - but rather to group the points in regions where the

integrand is finite, and to do this in such a way as to minimize the sample variance.

Such importance sampling requires us to generate points distributed according to some

non-uniform probability distribution p(R), following which the calculation of the mean

proceeds as usual. This sampling can be accomplished using a random walk moved ac-

cording to the rules of the Metropolis algorithm [15]. We propose random moves taken

from some standard distribution (usually Gaussians of appropriate width centred on the

current points), always accepting moves to points of higher probability, and occasionally

rejecting moves to regions of lower probability according to a particular formula obeying

a detailed balance condition. Assuming ergodicity - that is, any point in the configuration

space can be reached in a finite number of moves - then the distribution of the moving

points will converge to the desired p(R) after some appropriate period of equilibration.

To apply this procedure to evaluate an integral like Eq. 2 we need to rewrite the expres-

sion so that the integrand looks like a probability distribution times some appropriate

function to be evaluated at each point (that can later be averaged). The best proba-

bility distribution to use (in the sense of minimizing the sample variance) is pbest(R) =
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|f(R)|/
∫
|f(R′)| dR′, that is, we concentrate sampling points in regions where the abso-

lute value of the integrand is large. In general we do not know the normalization integral

in the denominator, so the best one can do is to make p(R) look as much like this as

possible. It is readily seen that in the Schrödinger case case p(R) = |ΨT (R)|2 and for an

approximate eigenstate this is a good approximation to the above ideal sampling distribu-

tion. We may therefore rewrite the expectation value of the Hamiltonian Ĥ with respect

to the trial wave function ΨT as

〈Ĥ〉 =

∫
|ΨT (R)|2EL(R) dR∫
|ΨT (R)|2 dR

, (3)

where the function to be evaluated - EL(R) = Ĥ(R)ΨT (R)
ΨT (R)

- is known as the local energy. If

ΨT were in fact the exact ground state wave function note that, according to Schrödinger’s

equation, the local energy should have a constant value E0 over the whole of configuration

space. For an approximate wave function this is no longer the case; a plot of the local

energy for 1000 Metropolis-sampled points in the configuration space of an approximate

trial function for a hydrogen atom (approximate since it is expanded in a finite Gaussian

basis set) might look as in Fig. 1:
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Figure 1: Local energies of points in the random walk for a VMC run with an approximate wave
function. All values are clustered around the true value of −0.5 Ha.

So having used the Metropolis algorithm to generate a sequence of configurations R

distributed according to Ψ2
T (R) we may then compute the desired expectation value by

averaging the set of local energies:

〈Ĥ〉 =
1

M

M∑
i=1

EL(Ri) =
1

M

M∑
i=1

ĤΨT (Ri)

ΨT (Ri)
. (4)
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It should be clear from the figure that for hydrogen the energy thus obtained should

(correctly) be −0.5 Ha plus or minus some small error bar. The error bar may need to

be refined somewhat by particular statistical techniques to account for serial correlation

of the points along the walk. Clearly expectation values other than the energy could be

calculated in a similar way.

2.2 Diffusion Monte Carlo

In general, commonly-used expressions for the VMC wave function turn out not to have

enough variational freedom to represent the true wave function - it is simply not possible to

write down an analytic formula for an arbitrarily complex many-electron wave function.

Using VMC to calculate the expectation value of the Hamiltonian therefore gives an

energy which is incorrect (sometimes substantially so) and thus VMC in general is not

accurate enough to justify the bother. It is at this point that diffusion Monte Carlo

(DMC) comes to the rescue. This technique is able to automatically correct the shape of

a ‘guessed’ wave function (particularly when given a good guess, such as the output of a

VMC optimization) so that it looks much more like the exact one before calculating the

expectation value.

This is clearly a nice trick, but as one might expect, the DMC algorithm is necessarily

rather more involved than that for VMC. An approachable way of understanding it is to

focus on the properties of quantum-mechanical propagators. Let’s say we wish to integrate

the time-dependent Schrödinger equation,

i~
∂Ψ(R, t)

∂t
= − ~2

2m
∇2Ψ(R, t) + V (R, t)Ψ(R, t) = ĤΨ(R, t) , (5)

where R = {r1, r2, . . . , rN}, V is the potential energy operator, and∇ = (∇1,∇2, . . . ,∇N)

is the 3N -dimensional gradient operator. Integrating this is equivalent to wanting a

formula for Ψ and, to find this, we must invert this differential equation. The result is an

integral equation involving the propagator K:

Ψ(R, t) =

∫
K(R, t; R′, t′)Ψ(R′, t′) dR′. (6)

The propagator is interpreted as the probability amplitude for a particle to travel from

one place to another (in this case, from R′ to R) in a given time t − t′. It is a Green’s

function for the Schrödinger equation. We see that the probability amplitude for a particle

to be at R sometime in the future is given by the probability amplitude of it travelling

there from R′ - which is just K(R, t; R′, t′) - weighted by the probability amplitude of it

actually starting at R′ in the first place - which is Ψ(R′, t′) - summed over all possible

starting points R′. This is a straightforward concept.

How might we calculate the propagator? A typical way might be to use the Feynman path-

integral method. For given start and end points R′ and R one gets the overall amplitude

by summing the contributions of the infinite number of all possible ‘histories’ or paths
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which include those points. It doesn’t matter why for the moment but the amplitude

contributed by a particular history is proportional to eiScl/~ where Scl is the classical

action of that history, i.e. the time integral of the classical Lagrangian 1
2
mv2 − V along

the corresponding phase space path of the system. The full expression for the propagator

in Feynman’s method may then be written as

KF (R, t; R′, t′) = N
∑

all paths

exp

[
i

~

∫ t

t′
Lcl(t

′′) dt′′
]
. (7)

An alternative way to calculate the propagator is to use the de Broglie-Bohm pilot-

wave interpretation of quantum mechanics [16], where the electrons both objectively exist

and have the obvious definite trajectories derived from a straightforward analysis of the

streamlines of the quantum-mechanical probability current. From this perspective we

find we can achieve precisely the same result as the Feynman method by integrating the

quantum Lagrangian Lq(t) = 1
2
mv2−(V +Q) along precisely one path - the path that the

electron actually follows - as opposed to linearly superposing amplitudes obtained from

the classical Lagrangian associated with the infinite number of all possible paths. Here

Q is the ‘quantum potential’, which is the potential energy function of the quantum force

(the force that the wave field exerts on the electrons). It is easy to show the equivalent

pilot-wave propagator is:

KB(R, t; R′, t′) =
1

J(t)
1
2

exp

[
i

~

∫ t

t′
Lq(t

′′) dt′′
]

(8)

where J is a simple Jacobian factor. This formula should be contrasted with Eq. 7. One

should also note that because de Broglie-Bohm trajectories do not cross, one need not

sum over all possible starting points R′ to compute Ψ(R, t) - one simply uses the R′ that

the unique trajectory passes through.

What is the connection of all this with DMC? Well, in DMC an arbitrary starting wave

function is evolved using a (Green’s function) propagator just like the ones we have been

discussing. The main difference is that the propagation occurs in imaginary time τ = it

as opposed to real time t. For reasons that will shortly become apparent this has the

effect of ‘improving’ the wave function, i.e. making it look more like the ground state as

imaginary time passes. For technical reasons, it also turns out that the propagation has

to take place in a sequence of very short hops in imaginary time, and so our evolution

equation now looks like this:

Ψ(R, τ + δτ) =

∫
KDMC(R,R′, δτ)Ψ(R′, τ) dR′. (9)

The evolving wave function is not represented in terms of a basis set of known analytic

functions but by the distribution in space and time of randomly-diffusing electron positions

over an ensemble of copies of the system (‘walkers’ or ‘configurations’). So in other words,

the DMC method is a ‘stochastic projector method’ whose purpose is to evolve/project

out the solution to the imaginary-time Schrödinger equation from an arbitrary starting
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state. We shall write this equation - which is simply what you get by taking the regular

time-dependent equation and substituting τ for the time variable it - in atomic units as

−∂ΨDMC(R, τ)

∂τ
= −1

2
∇2Ψ(R, τ) + (V (R)− ET )Ψ(R, τ) . (10)

Here the real variable τ measures the progress in imaginary time and, for purposes to be

revealed presently, we have included a constant ET - an energy offset to the zero of the

potential which only affects the wave function normalization.

How then does propagating our trial function in imaginary time ‘improve’ it? For eigen-

states, the general solution to the usual time-dependent Schrödinger equation is clearly

φ(R, t) = φ(R, 0)e−i(Ĥ−ET )t. By definition, we may expand an arbitrary ‘guessed’ Ψ(R, t)

in terms of a complete set of these eigenfunctions of the Hamiltonian Ĥ:

Ψ(R, t) =
∞∑
n=0

cnφn(R)e−i(En−ET )t. (11)

On substituting it with imaginary time τ the oscillatory time-dependence of the complex

exponential phase factors becomes an exponential decay:

Ψ(R, τ) =
∞∑
n=0

cnφn(R)e−(En−ET )τ (12)

Let us assume our initial guess for the wave function is not orthogonal to the ground

state (i.e. c0 6= 0). Then if we magically choose the constant ET to be the ground state

eigenvalue E0 (or, in practice, keep very tight control of it through some kind of feedback

procedure) then it is clear we should eventually get imaginary-time independence of the

probability distribution, in the sense that as τ → ∞, our initial Ψ(R, 0) comes to look

more and more like the stationary ground state φ0(R) as the contribution of the excited-

state eigenfunctions dies away:

Ψ(R, τ) = c0φ0 +
∞∑
n=1

cnφn(R)e−(En−E0)τ . (13)

So now we know why we do this propagation, how in practice do we find an expression for

the propagator K? Consider now the imaginary-time Schrödinger equation in two parts:

∂Ψ(R, τ)

∂τ
=

1

2
∇2Ψ(R, τ) (14)

∂Ψ(R, τ)

∂τ
= −(V (R)− ET )Ψ(R, t). (15)

These two formulae respectively have the form of the usual diffusion equation and of a

rate equation with a position-dependent rate constant. The appropriate propagator for

the diffusion equation is well-known; it is a 3N -dimensional Gaussian with variance δτ in
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each dimension. The propagator for the rate equation is also known - it gives a so-called

‘branching factor’ which can be interpreted as a position-dependent weight for a member

of an ensemble. Multiplying the two together to get the following propagator for the

imaginary-time Schrödinger equation is an approximation - the ‘short time approximation’

- valid only in the limit of small δτ (which is why we need to do the evolution as a sequence

of short hops):

KDMC(R,R′, δτ) =
1

(2πδτ)
3N
2

exp

(
−|R−R′|2

2δτ

)
exp

[
−δτ

(
V (R) + V (R′)− 2ET

2

)]
.

(16)

Let us then summarize with a simple example how the DMC algorithm works. If we

interpret Ψ as a probability density, then the diffusion equation ∂Ψ
∂τ

= 1
2
∇2Ψ represents

the movement of N diffusing particles. If we turn this around we may decide to represent

Ψ(R, τ) by an ensemble of such sets of particles. Each member of such an ensemble is

a ‘configuration’ or ‘walker’. We interpret the full propagator KDMC(R,R′, δτ) as the

probability of a configuration moving from R′ to R in a time δτ . The branching factor

in the propagator will generally be interpreted as a stochastic survival probability for

a given configuration rather than as a simple weight, as the latter is prone to numerical

instabilities. This means that the configuration population becomes dynamically variable;

walkers that stray into regions of high V have a good chance of being killed (removed

from the calculation); in low V regions walkers have a high probability of multiplying (i.e.

they create copies of themselves which then propagate independently). It is solely this

branching or reweighting that ‘changes the shape of the wave function’ as it evolves. So,

as we have seen, after a sufficiently long period of imaginary-time evolution all the excited

states will decay away leaving only the ground-state wave function, at which point the

propagation may be continued in order to accumulate averages of interesting observables.

As a simple example, consider Fig 3. Here a deliberately bad guess is made for the trial

function: the ground-state wave function for a single electron in a harmonic potential

well is assumed to be a constant in the vicinity of the well and zero everywhere else.

The calculation begins with seven copies of the system or configurations in our ensemble;

the electrons in this ensemble are initially randomly distributed according to the uniform

probability distribution in the region where the trial function is finite. The particle distri-

bution is then evolved in imaginary time according to the scheme developed above. The

electrons are subsequently seen to become distributed according to the proper Gaussian

shape of the exact ground-state wave function. It is evident from the figure that the

change in shape is produced by the branching factor occasionally eliminating walkers in

high V regions and duplicating them in low V regions.

This ‘pure DMC’ algorithm works very well in a single-particle system with a nicely-

behaved potential, as in the example. Unfortunately it suffers from two very serious

drawbacks which become evident in multi-particle systems with divergent Coulomb po-

tentials.

The first problem arises due to our assumption that Ψ is a probability distribution -
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Figure 2: Schematic illustration of the DMC algorithm for a single electron in a harmonic
potential well, showing the evolution of the shape of the wave function due to propagation in
imaginary time. Figure taken from Ref. [18].

necessarily positive everywhere - even though the antisymmetric nature of multi-particle

fermionic wave functions means that it must have both positive and negative parts sep-

arated by a ‘nodal surface’, that is, a 3N − 1-dimensional hypersurface on which it has

the value zero. One might think that two separate populations of walkers with attached

positive and negative weights might get round this problem (essentially the well-known

’fermion sign problem’) but in practice there is a severe signal-to-noise issue. It is pos-

sible to construct formally-exact algorithms of this nature which overcome some of the

worst practical problems [19] but to date all seem highly inefficient with poor system size

scaling.

The second problem is less fundamental but in practice very severe. The required rate

of removing or duplicating walkers diverges when the potential energy diverges (which

occurs whenever two particles are coincident) due to the presence of V in the branching

factor of Eq. 16. This leads to stability problems and poor statistical behaviour.

These problems may be dealt with at the cost of introducing the most important approx-

imation in the DMC algorithm: the fixed-node approximation [20]. We say, in effect, that

particles may not cross the nodal surface of the trial wave function ΨT , that is, there is

an infinite repulsive potential barrier on the nodes. This forces the DMC wave function

Ψ to be zero on that hypersurface. If the nodes of the trial function coincide with the

exact ones, then such an algorithm will give the exact ground-state energy (it is of course

well-known that the exact de Broglie-Bohm particle trajectories cannot pass through the

nodal surface). If the trial function nodes do not coincide with the exact ones then the

DMC energy will be higher than the ground-state energy (but less than or equal to the

VMC energy). The variational principle thus applies.
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To make such an algorithm efficient we must introduce importance sampling, and this is

done in the following way. We require that the imaginary-time evolution produces the

mixed distribution f = ΨTΨ, rather than the pure distribution. Substituting this into the

imaginary time Schrödinger equation Eq. 10 we obtain

−∂f(R, τ)

∂τ
= −1

2
∇2f(R, τ) +∇ · [vD(R)f(R, τ)] + (EL(R)− ET )f(R, τ) , (17)

where vD(R) is the 3N -dimensional drift velocity vector defined by

vD(R) = ∇ ln |ΨT (R)| = ∇ΨT (R)

ΨT (R)
, (18)

and

EL(R) = Ψ−1
T

(
−1

2
∇2 + V (R)

)
ΨT , (19)

is the usual local energy. The propagator from R′ to R for the importance sampled

algorithm now looks like this:

KDMC(R,R′, δτ) =
1

(2πδτ)
3N
2

exp

[
−(R−R′ − δτF(R′))2

2δτ

]
exp

[
−δτ

2
(EL(R) + EL(R′)− 2ET)

]
.

(20)

Because the nodal surface of Ψ is constrained to be that of ΨT then their product f

is positive everywhere and can now be properly interpreted as a probability distribution.

The time evolution generates the distribution f = ΨTΨ, where Ψ is now the lowest energy

wave function with the same nodes as ΨT . This solves the first of our two problems. The

second problem of the poor statistical behaviour due to the divergences in the potential

energy is also solved because the term (V (R) − ET ) in Eq. 10 has been replaced by

(EL(R)− ET ) in Eq. 17 which is much smoother. Indeed, if ΨT was an exact eigenstate

then (EL(R)−ET ) would be independent of position in configuration space. Although we

cannot in practice find the exact ΨT it is possible to eliminate the local energy divergences

due to coincident particles by choosing a trial function which has the correct cusp-like

behaviour at the relevant points in the configuration space [21]. Note that this is all

reflected in the branching factor of the new propagator of Eq. 20.

The nodal surface partitions the configuration space into regions that we call ‘nodal pock-

ets’. The fixed-node approximation implies that we are restricted to sampling only those

nodal pockets that are occupied by the initial set of walkers, and this appears to introduce

some kind of ergodicity concern since at first sight it seems that we ought to sample every

nodal pocket. This would be an impossible task in large systems. However, the tiling

theorem for exact fermion ground states [22, 23] asserts that all nodal pockets are in fact

equivalent and related by permutation symmetry; one need therefore only sample one of

them. This theorem is intimately connected with the existence of a variational principle
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for the DMC ground state energy [23]. Other interesting investigations of properties of

nodal surfaces have been published. [24–26]

A practical importance-sampled DMC simulation proceeds as follows. First we pick an

ensemble of a few hundred walkers chosen from the distribution |ΨT |2 using VMC and

the standard Metropolis algorithm. This ensemble is then evolved according to the short-

time approximation to the Green function of the importance-sampled imaginary-time

Schrödinger equation (Eq. 17), which involves repeated steps of biased diffusion followed

by the deletion and/or duplication of walkers. The bias in the diffusion is caused by the

drift vector arising out of the importance sampling which directs the sampling towards

parts of configuration space where |ΨT | is large (i.e. it plays the role of an Einsteinian

osmotic velocity). This drift step is always directed away from the node, and ∇ΨT is

in fact a normal vector of the nodal hypersurface. After a period of equilibration the

excited state contributions will have largely died out and the walkers start to trace out

the probability distribution f(R)/
∫
f(R) dR. We can then start to accumulate averages,

in particular the DMC energy. Note that throughout this process the reference energy

ET is varied to keep the walker population under control through a specific feedback

mechanism.

The DMC energy is given by

EDMC =

∫
f(R)EL(R) dR∫

f(R) dR
≈
∑
i

EL(Ri) . (21)

This energy expression would be exact if the nodal surface of ΨT were exact, and the

fixed-node error is second order in the error in the ΨT nodal surface (when a variational

theorem exists [23]). The accuracy of the fixed-node approximation can be tested on small

systems and normally leads to very satisfactory results. The trial wave function thus limits

the final accuracy that can be obtained and it also controls the statistical efficiency of

the algorithm. Like VMC, the DMC algorithm satisfies a zero-variance principle, i.e. the

variance of the energy goes to zero as the trial wave function goes to an exact eigenstate.

For other expectation values of operators that do not commute with the Hamiltonian then

the DMC mixed estimator is biased and other techniques are required in order to sample

the pure distribution [27–29].

A final point: the necessity of using the fixed-node approximation suggests that the

best way of optimizing wave functions would be to do it in DMC directly. The nodal

surface could then in principle be optimized to the shape which minimizes the DMC

energy. The backflow technique [32] has some bearing on the problem, but the usual

procedure involving optimization of the energy or variance in VMC will not usually lead

to the optimal nodes in the sense that the fixed-node DMC energy is minimal. The large

number of parameters - up to a few hundred - in your typical Slater-Jastrow(-backflow)

wave function means that direct variation of the parameters in DMC is too expensive.

Furthermore, we note that optimizing the energy in DMC is tricky for the nodal surface

as the contribution of the region near the nodes to the energy is small. More exotic ways

of optimizing the nodes are still being actively developed [30,31].
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2.3 The CASINO code

The CASINO quantum Monte Carlo program [8,10] has been developed in Cambridge by

Richard Needs, Mike Towler, Neil Drummond, Pablo López Ŕıos and their collaborators

since the mid-1990s, and is freely available to the academic community. It is able to do

variational and diffusion Monte Carlo calculations for finite systems such as atoms and

molecules, for real materials periodic in one, two or three dimensions, and for various

model systems such as homogeneous and inhomogeneous electron gases [35–37], Wigner

crystals [38], and excitonic bilayers [39].

A general problem for QMC programs arises from the need to interact with other elec-

tronic structure codes for the purpose of importing trial wave functions. The basic form

of many-body wave function used by CASINO is the common Slater-Jastrow type. This

consists of a single Slater determinant of orbitals (or sometimes a linear combination of a

small number of them) multiplied by an optimizable positive-definite Jastrow correlation

function which is symmetric in the electron coordinates and depends on the inter-particle

distances. The Jastrow function, through its explicit dependence on interparticle sepa-

rations, allows efficient inclusion of both long and short range correlation effects. As we

have observed, the final DMC answer depends only on the nodal surface of the wave func-

tion and this cannot be affected by the nodeless positive-definite Jastrow, and in DMC

it serves mainly to decrease the amount of computer time required to achieve a given

statistical error bar and to improve the stability of the algorithm. The basic form of the

Slater-Jastrow wave function may thus be written as:

Ψ(X) = eJ(X)
∑
n

cnDn(X) , (22)

where X = (x1,x2, . . . ,xN) and xi = {ri, σi} denotes the space-spin coordinates of elec-

tron i, eJ(X) is the Jastrow factor, the cn are determinant coefficients, and the Dn(X)

are Slater determinants of single-particle orbitals φj. Orbitals for realistic atomic sys-

tems are generally obtained from self-consistent DFT or Hartree-Fock calculations, and

CASINO has interfaces to many codes capable of producing these, including GAUS-

SIAN [40], CRYSTAL [41], TURBOMOLE [42], GAMESS-US [43], PWSCF [44],

ABINIT [45], CASTEP [46],and ADF [47], Of course the exact degree of support for

each can vary as the programs evolve, as the developers forget that the interface exists,

and as the relevant expertise moves in and out of the Cambridge group. This set of codes

requires CASINO to work with orbitals expanded in a variety of basis sets, including

Gaussians, Slater functions, plane-waves, and blip functions [50], in addition to orbitals

tabulated on grids.

CASINO has been designed to run on essentially any hardware with minimal setup,

but it is particularly effective on machines with large numbers of processors. This is the

principal topic of this article to which we now turn.

45



3 DMC on massively parallel computers

3.1 Introduction

Quantum Monte Carlo is in general an intrinsically parallel technique, and as such is

ideally placed to exploit new and future generations of massively parallel computers.

This is trivially realized in the case of VMC and in the various associated techniques

for carrying out VMC wave function optimization. In the pure VMC case, essentially

no interprocessor communication is required during a simulation. Each processor carries

out an independent random walk using a fixed wave function and a different random

number sequence. The resulting energies are then averaged over the processors at the

end. Assuming the equilibration time to be negligible, running for a length of time T on

Np processors generates the same amount of data as running for time NpT on a single

processor (though of course the results will only agree within statistical error bars since

the random walks are different in the two cases). VMC should therefore scale to an

arbitrarily large number of processors.

We have not spoken in detail about the various techniques used to optimize wave functions

in VMC, nor is this necessary for our purposes. In general, one is required to minimize an

objective function (usually the variance or the energy) with respect to a set of parameters

in the wave function. In the basic variance minimization algorithm we run a sequence of

short VMC runs to generate sets of walkers distributed according to the current wave func-

tion, and each of these is followed by an optimization (Levenberg-Marquardt non-linear

least squares or similar). The VMC stages are perfectly parallel, as described above. In

the optimization stages, the set of configurations is distributed evenly between the pro-

cessors. The master processor broadcasts the current set of optimizable parameters, then

each processor calculates the local energy of each of its configurations and reports the

energies (and weights, if required) to the master. The CPU time required to evaluate the

local energies of the configuration set usually far exceeds the time spent communicating

(reporting one or two numbers per configuration to the master and receiving a handful of

parameter values at each iteration). In particular the time spent evaluating the local ener-

gies increases with system size, whereas the time spent on interprocessor communication

is independent of system size.

For the case of energy minimization, the VMC stages are perfectly parallel as described

above. The optimization stages involve various matrix algebra operations. In this scheme

the walkers are divided evenly between the processors, each of which separately generates

one section of the full matrices. The full matrices are then gathered on the master

processor, where the matrix algebra is done. The time taken to do the matrix algebra is

usually insignificant in comparison to the time taken in VMC and matrix generation. The

time taken in interprocessor communication is recorded and written out during energy

minimization, and is typically at maximum a few percent of the total time spent in an

iteration (and often much less than one percent). Overall, energy minimization is very

nearly perfectly parallel.
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The problem - if there is a problem - therefore lies in the DMC algorithm, and this

is largely to do with load balancing. DMC is parallelized in a similar way to VMC - by

assigning separate walkers to different processors - but in DMC by contrast the processors

are required to communicate. The branching algorithm explained in Section 2.2 leads to

a dynamically variable population of walkers, that is, the population fluctuates during

the run as walkers are killed or duplicated to ‘change the shape of the wave function’.

One of the reasons that this leads to interprocessor communication is that the population

must be adjusted dynamically to some initial target via a kind of feedback mechanism

as the simulation proceeds. This relies on a knowledge of the instantaneous total energy,

which must be calculated and averaged over all processors after each time step. The

most important problem, however, is the necessity to transfer walkers between the cores

(a walker, in this sense, being the list of current electron positions for the configuration,

along with various associated quantities related to the energy and wave function). These

transfers are purely for efficiency; in order to maintain load balance it is important to

ensure that each core has roughly the same number of walkers, since the cost of each time

step is determined by the processor with the largest population. The total number of

walkers communicated between processors increases with the number of cores and ends

up being the single greatest cause of inefficiency for runs on massively parallel machines.

A rough theoretical analysis of the expected scaling behaviour might run as follows [17].

The time tmove required to propagate each walker scales as Nα
e , where Ne is the number

of particles, and α is an integer power. For typical systems, where extended orbitals

represented in a localized basis are used and the CPU time is dominated by the evaluation

of the orbitals, α = 2 [18]. The use of localized orbitals can improve this to α = 1 [33,34].

For very large systems, or systems in which the orbitals are trivial to evaluate, the cost of

updating the determinants will start to dominate: this gives α = 3 with extended orbitals

and α = 2 with localized orbitals. Hence the average cost of propagating all the walkers

over one time step, which is approximately the same on each processor, is

TCPU ≈ a
Nα
e Ntarget

Nproc

, (23)

where a is a constant which depends on both the system being studied and the details of

the hardware, Ntarget is the target population, and Nproc is the number of processors.

So now the population varies on each processor. How? Let nredistτ be the redistribution

period, that is, we redistribute the walker population after every nredist time steps τ . Given

the form of the branching factor (the second exponential in Eqn. 20), the population on

a processor p at any given time must be increasing or decreasing exponentially, because

the mean energy E(p) of the walker population on that processor is unlikely to be exactly

equal to the reference energy ET in the argument of the branching factor. We assume

that E(p)− ET remains roughly constant over the redistribution period. At the start of

the redistribution period the population Nw(p, 0) on each processor is the same. At the

end of the redistribution period, the expected population on processor p is Nw(p, nredist) =

Nw(p, 0) exp[−(E(p) − ET )nredistτ ]. Hence N̄w(nredist) ≈ N̄w(0) exp[−(Ē − ET )nredistτ ] +

O(n2
redistτ

2), where the bar denotes an average over the processors, and so the average
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growth or decay of the population is the same as that of the entire population (which

should be small, because ET is chosen so as to ensure this).

What is the optimal redistribution period? Recall tmove is the cost of propagating a

single walker over one time step. Let ttrans be the cost of transferring a single walker

between processors. Let q be the processor with the largest number of walkers, i.e., the

one with the lowest energy E(q) ≡ min{E(p)}. Both the cost of propagating walkers

and the cost of transferring them are determined by processor q. The expected number

of walkers on processor q at the end of the redistribution period (i.e., after nredist time

steps) is max{Nw(p, nredist)} ≈ N̄w(nredist) + cnredist + O(n2
redist), where c = N̄w(1)(Ē −

min{E(p)})τ . Here 〈N̄w(0)〉 = Ntarget/Nproc and 〈c〉 is a positive constant. At the end of

the redistribution period, cnredist walkers are to be transferred from processor q. Hence

the average cost of transferring walkers per time step is ttrans〈c〉, which is independent of

nredist.

The average cost per time step of waiting for the processor q with the greatest number of

walkers to finish propagating all its excess walkers is

tmove〈c〉 [0 + 1 + . . .+ (nredist − 1)]

nredist

=
tmove〈c〉(nredist − 1)

2
. (24)

So the total average cost per time step in DMC is

T =
tmoveNtarget

Nproc

+
tmove〈c〉(nredist − 1)

2
+ ttrans〈c〉. (25)

Clearly the redistribution period should be chosen to be as small as possible to minimize

T . Numerical tests confirm that increasing the redistribution period only acts to slow

down calculations. One should therefore choose nredist = 1, i.e., redistribution should take

place after every time step. We assume this to be the case henceforth.

What, then, is the cost of load balancing? Let σE(p) be the standard deviation of the set

of processor energies. We assume that 〈E(p)〉−〈min{E(p)}〉 ∝ σE(p) ∝
√
NeNproc/Ntarget.

Hence 〈c〉 ∝
√
NeNtarget/Nproc. The cost ttrans of transferring a single walker is propor-

tional to the system size Ne. Hence the cost of load balancing is

Tcomm ≈ b

√
NtargetN3

e

Nproc

, (26)

where the constant b depends on the system being studied, the wave-function quality

and the computer architecture. Note that good trial wave functions will lead to smaller

population fluctuations and therefore less time spent load-balancing.

Clearly one would like to have TCPU � Tcomm, as the DMC algorithm would in theory

be perfectly parallel in this limit. The ratio of the cost of load balancing to the cost of

propagating the walkers is

Tcomm

TCPU

=
b

a

(
Nproc

Ntarget

)1/2

N3/2−α
e . (27)
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It is immediately clear that by increasing the number of walkers per processor Ntarget/Nproc

the fraction of time spent on interprocessor communication can be made arbitrarily small.

In practice the number of walkers per processor is limited by the available memory, and

by the fact that carrying out DMC equilibration takes longer if more walkers are used.

Increasing the number of walkers does not affect the efficiency of DMC statistics accu-

mulation, so, assuming that equilibration remains a small fraction of the total CPU time,

the walker population should be made as large as memory constraints will allow.

For α > 3/2 (which is always the case except in the regime where the cost of evaluating

localized orbitals dominates), the fraction of time spent on interprocessor communication

falls off with system size. Hence processor-scaling tests on small systems may significantly

underestimate the maximum usable number of processors for larger problems.

So that’s the theory; how does this work in practice? In analyzing scaling behaviour one

normally distinguishes between ‘strong scaling’ - where we ask how the time to solution

for a fixed system size varies with the number of processors - and ‘weak scaling’ where

we ask how the time to a solution varies for a fixed system size per processor (i.e. if we

double the number of processors). Perfect weak scaling is thus a constant time to solution,

independent of processor count.

What is the appropriate definition of ‘system size’ in this context? One would think that

QMC is different from DFT, of course, since if we double what we normally consider to

be the size of the system (the number of electrons in the molecule, or whatever) then we

must double the number of samples of the wave function in order to get the same error

bar. So our criterion for the system size, is something like ‘the number of samples of

the wave function configuration space required to get a fixed error bar’. In all the scaling

calculations reported here, we report the time taken to sample the wave function N times,

where N is the number of walkers times the number of moves. N is constant for all core

counts, therefore we are looking at the strong scaling.

Two ways of doing this have been considered. The first way is to consider both a fixed

total target population of walkers and a fixed number of moves, neither of which varies

with the number of processors. For a code that scaled ideally one would then expect the

time taken to halve if we double the number of processors since each individual processor

will have half the number of walkers to deal with. This is usually not the best way to

exploit QMC on a parallel machine, but it serves to illustrate several important points.

In Fig. 3 we display timing data of this nature obtained with the Cambridge QMC program

CASINO [8,10] in a typical DMC simulation for a system of one water molecule adsorbed

on a graphene sheet represented by a 2D periodic cell containing fifty carbon atoms. The

initial number of walkers and the subsequent target population is fixed at 486000. The

graph shows the parallel performance of CASINO on the JaguarPF machine (a Cray XT5

machine with 224256 cores, at Oak Ridge National Laboratory, U.S.A. currently - that

is, Jan 2011 - listed in second position on the Top 500 supercomputer list). Because of

the nature of the multi-core processors on this machine the core count must be a multiple

of twelve. We therefore start with 684 cores, and progressively double it seven times.
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Figure 3: Scaled CPU time required by various numbers of cores of the JaguarPF machine to
carry out one ten-move DMC statistics accumulation block for a water molecule adsorbed on
a two-dimensionally periodic graphene sheet containing fifty carbon atoms per cell, using both
the September 2010 version of CASINO 2.6 (solid-red line) and our newly modified version of
CASINO (dotted blue line). For comparative purposes ‘ideal linear scaling’ is shown by the solid
black line. Fixed target of 486000 for total walker population. Note that fixing the total target
population can introduce considerable inefficiency at higher core counts and this graph should
not be looked on as representing the general scaling behaviour of the CASINO program. This
inefficiency can generally be decreased by increasing the number of walkers per core.

The CPU time taken on 648, 1296, 2592, 5184, 10368, 20736, 41472 and 82944 cores to

do one block of ten DMC statistics accumulation moves for 486000 configurations was,

respectively, 5787, 2867, 1452, 742, 389, 230, 159, 216 seconds. In plotting the data we

have rescaled it (by dividing by the time taken for the 1296-core case and multiplying by

1296) in order to display the deviation from linear scaling. Focussing on the red solid line

for CASINO 2.6 in the diagram, one can see that that pretty good scaling is obtained up

to around 20000 cores, but beyond that the performance starts to fall away, and the code

is actually slower the more processors are used beyond around 50000 cores.

Is it possible to improve this behaviour? One of us (MDT) - having finally been allowed

near a computer where he can routinely use more than 500 processors - has recently

investigated this problem [49]. It turns out to be possible to substantially improve the

performance, and even to effectively eliminate the cost of walker redistribution completely.
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The improved performance was obtained via the following strategies:

(1) The use of asynchronous, non-blocking communications. CASINO uses the standard

Message Passing Interface (MPI) [48] to handle interprocessor communication. Using

this software to send a message from one processor to another, one might typically call

blocking MPI SEND and MPI RECV routines on a pair of communicating processors. All

other work will halt until the transfer completes. However, one may also use non-blocking

MPI calls, which allow processors to continue doing computations while communication

with another processor is still pending. Another advantage is that if used correctly, some

internal MPI buffers may be bypassed with a dramatic increase in the communication

bandwidth. On calling the non-blocking MPI ISEND routine, for example, the function

will return immediately, usually before the data has finished being sent.

Bearing this in mind, the CASINO DMC algorithm has now been modified to do some-

thing like the following:

MOVE 1

- Move all currently existing walkers forward by one time step

- Compute the multiplicities for each walker (the number of copies of each

config to continue in the next move).

- Looking at the current populations of walkers on each processor, and at the

current multiplicities, decide which walkers to send between which pairs of

processors, and how many copies of each are to be created when they reach

their destination.

- Sending processors initiate the sends using non-blocking MPI_ISENDs; receiving

processors initiate the receives using non-blocking MPI_IRECVs. All continue

without waiting for the operations to complete.

- Perform on-site branching (kill or duplicate walkers which require it on any

given processor).

MOVE 2 AND SUBSEQUENT MOVES

- Move all currently existing walkers on a given processor by one time step (not

including walkers which may have been sent to this processor at the end of the

previous move).

- Check that the non-blocking sends and receives have completed (they will

almost certainly have done so) using MPI_WAITALL. When they have, duplicate

newly-arrived walkers according to their multiplicities and move by one time
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step.

- Compute the multiplicities for each moved walker.

- Continue as before

It was also found necessary to:

(2) Parallelize the procedure for deciding which walkers to send between which pairs of

processors, as follows.

Having received a report of the current population of walkers on each core, the master

computes a set of instructions for the walker transfers. The algorithm aims to produce the

fewest possible number of transfers by carefully matching the requirements of receiving

processors (those with a population less than the target) and the availability and multi-

plicity of surplus walkers on sending processors (those with a population greater than the

target). For example, if processor A had a deficit of five walkers and processor B had a

surplus of one walker with a multiplicity of four, then both target populations could be

satisfied by the transfer of one walker (which would duplicate itself four times on arriving

at the destination processor). This is quite clearly more efficient than having five separate

processors transfer one walker each to processor A, or by processor C sending five separate

walkers each with a multiplicity of one to processor A.

Unfortunately doing this process carefully and exactly (working out on the master a set

of optimally-efficient instructions for each processor, and sending the instructions from

the master to the slaves) scales linearly with the number of processors, and eventually the

cost of working out the most efficient transfers becomes more expensive than doing the

transfers themselves. This is the sort of thing that is easily missed in formal analyses, but

for very large numbers of processors this was the rate limiting step in CASINO. It is quite

easy to fix, for example, by only considering transfers in small ‘redistribution groups’ of

around 500 cores which are large enough for a full set of ‘good matches’ to be made.

Having done this for our test case the time taken to create and broadcast the whole set

of transfer instructions for the ten-move block was only a second or two, independent of

the number of processors, rather than a few hundred seconds as was the case on 82944

processors of the JaguarPF machine.

Taken together, these improvements (together with some other more minor refinements)

have effectively removed the cost of redistributing and branching in CASINO, as shown

by the timings in Table 1. For the largest number of cores studied, the new redistribution

algorithm was over 270 times faster. The improvements to the scaled timing data are also

shown in Fig. 3 as the dashed blue line (in terms of raw data, the CPU time required for

a ten move block of DMC statistics accumulation moves on 648, 1296, 2592, 5184, 10368,

20736, 41472 and 82944 cores was, respectively, 5767, 2883, 1462, 743, 382, 221, 115, and

68 seconds).
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Number of cores Time, CASINO 2.6 (s.) Time, Modified CASINO (s.)

648 1.00 1.05
1296 3.61 1.27
2592 7.02 1.52
5184 18.80 3.06
10368 37.19 3.79
20736 75.32 1.32
41472 138.96 3.62
82944 283.77 1.04

Table 1: CPU time taken to carry out operations associated with redistribution of walkers between
processors in the original version of CASINO and in the newly-modified version, during one ten-
move DMC block for a water molecule adsorbed on a 2d graphene sheet (these numbers include
ten moves of DMC equilibration, and should be roughly halved to compare with the times quoted
in the text).

So while this represents a great improvement for large core counts (the total CPU time

required for the calculation on 82944 cores was over three times faster than before) the

scaling is still not linear with the number of processors. Why? We shall use an alternative

way of doing the scaling calculations to illustrate. Previously we used a fixed target

number of walkers and a fixed number of DMC moves for all the calculations. Every time

the core count was doubled, the number of configs per processor was halved, and by 82944

cores there are only five or so walkers per processor (down from 750 per processor in the

684-core case). Each processor was able to move these five walkers so quickly that the

time taken for various minor tasks normally considered unimportant became significant

in determining the scaling. The rate limiting step in the 82944-core case turned out to

be the summing of the energies and associated quantities over all the processors using an

MPI REDUCE operation, in preparation for computing averages over the nodes, an operation

which is difficult to make any more efficient than it already is. Interestingly, the cost of

walker transfers using the new algorithm was negligible by comparison.

It is vital therefore to ensure that each processor has enough to do during each move of the

entire ensemble of configurations, and a much better way of utilizing a massively parallel

machine (if it turns out to be possible) is to consider a large-enough fixed target number

of walkers per processor, rather than a fixed total target population. If we start with N

walkers we can, at least in principle, decrease the error bar on the answer by the same

amount either by doubling the number of walkers to 2N or by moving the N walkers for

twice as many moves. Only in the latter case do we double the amount of interprocessor

communication required. We have therefore redone the calculations using a fixed target

of 100 walkers per processor. Every time we double the processor count the total number

of walkers doubles and, in order that we maintain the ‘system size’ - defined earlier as

the total number of sampling configurations of the configuration space to get a fixed error

bar - we halve the number of moves (one cannot of course do this indefinitely!). In such

a case doubling the number of processors should halve the required CPU time as before.
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Note that all we are really doing here is changing how many samples we do on each core

between each global communication; we are exploiting the freedom that we are allowed in

choosing the number of moves and walkers to make sure that there is enough work for the

processors to do during a move. We are, in effect, improving the ratio in Eq. 27 in the way

suggested. So, the resulting graph is shown in Fig. 4, and we see that now the processors

have enough to do, the scaling is essentially linear with our new, updated algorithm. Our

modifications have also significantly improved the behaviour of CASINO relative to the

current 2.6 version. For the 82944-core case, the modified version was more than 30%

faster and the total cost of redistributing walkers (including the DMC equilibration) went

down from 412 seconds to 1 second, demonstrating that the overhead from this process

has now been essentially eliminated. Clearly, these results imply that it will be possible in

the future to use CASINO on machines with numbers of cores well in excess of 100000.
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Figure 4: Scaled CPU time required by various numbers of cores of the JaguarPF machine to
carry out one ten-move DMC statistics accumulation block for a water molecule adsorbed on
a two-dimensionally-periodic graphene sheet containing fifty carbon atoms per cell, using both
the September 2010 version of CASINO 2.6 (solid-red line) and our newly modified version of
CASINO (dotted blue line). For comparative purposes ‘ideal linear scaling’ is shown by the solid
black line. Fixed target of 100 per core for total walker population.

3.2 Other considerations for large parallel QMC computations

The moral of the previous Section appears to be to use as many walkers as we can on

each processor in order to maximize the efficiency on a parallel machine. This leads us to
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other considerations since, as we have already stated, the number of walkers per processor

will be constrained by the available memory. Furthermore, the memory architecture of

modern multi-core processors can be somewhat complicated and it is important to ensure

that CASINO can take full advantage of this. How can the memory best be utilized on a

massively parallel machine?

Moving the walkers requires repeated evaluation of the wave function Ψ(R1 . . .RN), that

is, the values of the single particle orbitals φj, various determinants of these orbitals, and

the many-particle Jastrow factor. The information required to evaluate these must be

held in memory. The largest block of data to store is generally the orbital coefficients

(the coefficients in the linear expansion over basis functions used to construct the orbitals)

and, as we have seen, there is a choice of various different basis set to represent the orbitals

in CASINO including Gaussians, Slater functions, blips (B-splines), and plane waves.

Plane waves are generally obsolete in QMC; although CASINO supports them for histor-

ical reasons, their use is not recommended since the number of delocalized plane waves to

evaluate at a point is proportional to system size and this multiplies an extra factor of N

into the scaling of CPU time with the number of particles. Physicists who refuse to use

anything else in DFT calculations - of which there are many - need not worry, since the

output of plane-wave DFT codes such as CASTEP, PWSCF and ABINIT can be easily

transformed into a basis of localized functions which CASINO also supports.

In QMC, therefore, we prefer to use strictly-localized basis functions since then only a

fixed number of them are non-zero at any randomly-chosen point, no matter what the size

of the system. We may choose atom-centred functions such as the Gaussians and Slater

functions widely-used in quantum chemistry, or functions localized on a three-dimensional

grid which are unaware of the existence of atoms. Blips, which are 3rd-order polynomials

strictly localized in particular boxes surrounding each grid point, are an example of the

latter type [50]. In terms of memory use Gaussians and Slaters provide a very compact

representation (Slaters slightly more so) since the total number of basis functions is rel-

atively small. They are, however, somewhat less efficient to evaluate than blips. This is

because they require the evaluation of exponential functions as well as polynomials, and

because at any random point where an electron may end up it is not known in advance

which functions are non-zero there, and one ends up having to dynamically screen them.

Blips, like plane waves, have the advantage of being systematically improvable, universal,

and unbiased. They are in fact closely related to plane waves: each single particle orbital

φj expressed as a linear combination of plane waves (that is, as φj =
∑

G ciG exp(iG · r)

where G is a wave vector and ciG are complex orbital coefficients) can also be approxi-

mately expressed as a linear combination of blip basis functions, that is, as φj ∼
∑

n ainbn,

where bn is the blip function sitting on grid point n. The grid spacing is closely related

to the plane-wave cutoff, and the set of coefficients ain can be obtained from the set of

coefficients ciG using Fast Fourier Transform routines [50].

For most purposes, blips are probably our preferred basis set in QMC. The only problem is

that there are generally a hell of a lot of them, and the orbitals coefficients ain can require
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a great deal of memory to store. The number of these coefficients is in fact proportional

to the square of the number of electrons in the system, with a pre-factor that depends on

the fineness of the grid (fine grids are required in particular for hard pseudopotentials).

For large enough systems the memory needed to store the coefficients can be of the order

of several Gb, which often exceeds the memory available on a single core. This problem

has recently been alleviated by allowing CASINO to exploit the architecture of modern

multi-core processors which share a common memory on a node (currently JaguarPF has

twelve cores per node, and the UK national supercomputer HECToR twenty-four cores

per node, with sixteen and thirty-two Gb of memory per node respectively). This is done

by having only one of the cores on the node allocate the required memory to store the wave

functions, while allowing all cores access to the shared memory area. This modification

is now allowing simulations of systems more than one order of magnitude bigger than

previously possible.

In our scaling experiments we have not concerned ourselves with aspects of real practical

calculations, such as whether the error bar on the result is small enough. Furthermore,

in repeatedly doubling the number of walkers we have blithely and repeatedly halved the

number of moves without considering whether the number of moves left is great enough

that we can perform a proper statistical analysis of the sampled data (a procedure called

‘reblocking’ [51] is normally applied to the sampled data in order to compute an accurate

statistical error bar on the DMC energy). Under certain circumstances (say, if we fix in

advance a required error bar and demand at least a given number of moves are performed)

then our ability to use the maximum number of walkers allowed by the available memory

will be reduced.

Consider that for a pure-MPI QMC calculation with Nproc processors, the total CPU time

t is roughly given by t ≈ NtargetNmovetmove/Nproc, where Nmove is the number of moves,

Ntarget is the target walker population and tmove is the average time to move one walker

at each step. On very large machines one can easily be in a situation where Nproc is great

than the required Nmove which means that there will be processors with no associated

walkers at all; they are therefore forced to be idle and this is a waste of resources. An

additional refinement is suggested for such cases where it is unnecessary to use as many

walkers per processor as possible, namely the adding of a second level of parallelisation,

capable of splitting each walker over more than one core, over and above the MPI par-

allelism. In CASINO this has been realized using OpenMP directives; OpenMP [53] is

an implementation of multithreading, a method of parallelization whereby the master

‘thread’ (a series of instructions executed consecutively) forks a specified number of slave

threads and a task is divided among them. The threads then run concurrently, with the

runtime environment allocating threads to different processors. This second level of par-

allelism becomes useful when Nproc > Ntarget. Running multiple threads on multiple cores

allows keeping Ntarget small, effectively reducing tmove in the cost formula above.

The general strategy of this implementation is to use OpenMP parallelism for the loops

whose trip counts scale with the number of electrons or atoms. In the QMC algorithm
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the basic logical units that need to be parallelized are functions like orbital evaluation,

Jastrow factor evaluation, inverse Slater matrix updating, potential energy evaluation,

and electron-electron and electron-nucleus distance evaluation. In practice this is done

by defining subgroups or ‘pools’ of small numbers of cores. Parallelisation over walkers

is maintained over pools, but inside each pool the work to be performed by each walker

is parallelised by splitting the number of orbitals over the pools (this of course helps to

address the memory problem in general). Then, each core in the pool will only evaluate,

for example, the value of a subset of orbitals. When this is done, all the cores within

the pool communicate to construct the Slater determinants, which are evaluated again in

parallel using the cores in the pool. This turns out to be efficient only if the walkers are

split among a small number of cores (typically two, and not more than four).

A good example of when this might be important is when calculating the total energy

of solids. In QMC one cannot reduce this problem to the primitive cell as in DFT

calculations, and one must in general try to eliminate finite-size effects by extrapolating

to the infinite system size limit; this is done through calculations on supercells formed by

periodically repeating a number of primitive cells. In these types of calculations one is

obviously interested in the energy per primitive cell, and therefore the many primitive cells

that build the supercells used in the simulations all contribute to reduce the statistical

errors on the energy per primitive cell. A consequence of this is that with large supercells

the number of necessary walkers is reduced, and therefore parallelisation over walkers

becomes less efficient.

We discuss finally an additional bottleneck related to DMC equilibration. Having first

computed an initial set of walkers distributed according to the chosen VMC trial func-

tion, we must propagate the walkers for a certain amount of imaginary time until the

ensemble becomes distributed according to the ground-state DMC wave function, that is,

it becomes ‘equilibrated’. Once this is the case the DMC statistics accumulation phase

begins and we begin to average data to compute the final answer and its error bar. As

we have already mentioned, the total number of walkers per processor is limited not only

by the available memory, but also by the fact that carrying out DMC equilibration takes

longer if more walkers are used. An interesting idea suggested by Neil Drummond [52]

and recently implemented by him in CASINO shows us how to greatly alleviate this prob-

lem. Having decided on a target walker population Ntarget for the statistics accumulation

phase one can initially generate and equilibrate a much smaller number of walkers than

the target. This can be done very rapidly and once equilibration is achieved, rather than

beginning the usual immediate accumulation of statistics, one does a quick ‘configuration

generation DMC run’ with this small population. That is to say, widely-spaced config-

urations distributed according to the equilibrated ground state DMC wave function are

saved for use as the initial population in the subsequent big DMC statistics accumulation

run. There is then relatively little correlation between the walkers in the initial large

population. This would of course not be the case if the target population were simply

increased to Ntarget after a small population equilibration; large numbers of the initial

walkers would be highly correlated. Preliminary results indicate that the answer is the
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same to within error bars but the time taken for DMC equilibration can be reduced by

an order of magnitude or more.

3.3 Conclusions about QMC scaling on massively parallel machines

Which of our two scaling graphs produced by our modified CASINO (Fig. 3 or Fig. 4)

most accurately represents what will happen in real-world simulations? In answering this,

we have to remind ourselves what million-core machines are actually for.

Note first that because QMC is a sampling technique, then for any given system, there is

a maximum number of processors you can exploit if you insist that your answer has no

less than some required error bar and that it has a minimum number of moves (so that

we can perform a reblocking statistical analysis of the result and its error bar).

For example, let’s say that your system requires 1000000 random samples of the wave

function configuration space to get the required error bar ε. Let’s say we need at least

1000 sampling moves to accurately reblock the results. And let’s say we have a 1000

processor computer. In that case only one walker per node is required to get the error

bar ε (even though the available memory may be able to accommodate many more than

this).

Let’s say we now buy a 2000 processor machine. How do we exploit it to speedup the

calculation? We can’t decrease the number of moves, since then we can’t reblock. It is

wasteful to just run the calculation anyway, since then the error bar will become smaller

than we require. We can split each walker over two nodes, and use OpenMP to halve the

time taken to propagate the walkers, but let’s say we find that OpenMP doesn’t really

work very well over more than two processors.

How then do we exploit a 4000 processor machine? Answer - we can’t. The computer is

simply too big for the problem if you don’t need the error bar to be any smaller.

Now it is possible to imply that our first graph in Fig. 3 (which is not linear scaling

with the number of processors, even for the modified CASINO) is more representative of

real calculations than our second graph in Fig. 4 (which is linear scaling for the modified

version), but a more fundamental observation is that Fig. 3 is just running into the

limitations of the method. In the example above, one could not talk about the scaling of

the problem to 100000 cores, in the same way as it would be silly to use a 100000 core

machine to do a Hartree-Fock calculation of a hydrogen atom, but it doesn’t mean we

can’t talk about the theoretical scaling of CASINO on that many processors for a general

system, and in general it seems to be the case that, following our modifications, CASINO

is now linear scaling with the number of processors providing the problem is large enough

to give the processors enough work to do. This should normally be easy enough to arrange,

and if you find yourself unable to do this, then you don’t need a computer that big. One

may conclude that massively parallel machines are now increasingly capable of performing

highly accurate QMC simulations of the properties of materials that are of the greatest

interest scientifically and technologically. In the next Section, we therefore turn to some
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examples of how these techniques may be applied in practice.

4 Examples of current QMC work

In choosing examples of current QMC work to illustrate the importance of petascale

computing, we naturally concentrate on work that we know best, in other words the work

that we are involved in. The illustrations that follow are all based on calculations that

are being performed on machines such as HECToR and JaguarPF, and we choose these

illustrations because we believe them to be scientifically important, and because they are

known to be difficult for DFT. We start with the surface formation energy of materials,

focusing particularly on ionic and semi-ionic materials. We then turn to the problem

of predicting the adsorption energies of molecules on surfaces, with particular reference

to water on the surface of ionic materials and on graphene. Our final example concerns

water and ice, where the difficulties encountered by DFT are notorious.

4.1 Surface energy of materials

When a macroscopic sample of a material is separated into two pieces, new surfaces are

created. The work done in creating the new surfaces divided by their area is the surface

formation energy, usually denoted by σ. For a crystal, σ depends on the orientation of

the surface. Surface formation energies are important in fields as far apart as geology and

fracture mechanics. They are particularly important in nanoscience, because in particles

a few nm across a significant fraction of the atoms are at or near the surface. One of the

consequences is that the crystal structures of nano-particles are sometimes not those of

the bulk material, because it may be advantageous to adopt a less stable bulk structure if

the energies of the surfaces are lowered [54]. For nano-particles supported on substrates,

the equilibrium form of the nano-particles is often determined by the balance between

and surface and interfacial energies.

DFT has quite serious problems in predicting σ, and it has been known for a long time

that predicted σ values can depend strongly on the exchange-correlation functional [55].

For example, as a broad generalisation, it seems that GGA approximations tend to give

σ values that are about 30 % less than LDA values [56]. Even more surprising is that

LDA values sometimes seem to agree better with experiment than their GGA counter-

parts [57]. This is unexpected, because common sense suggests that the formation of a

surface involves the breaking of bonds, and GGA is usually much better than LDA for

bond formation energies. The problem is that σ values are not easy to measure experi-

mentally, and those that have been measured are sometimes subject to large errors. In

this unsatisfactory situation, there is an obvious need for accurate computed benchmarks

for σ, which can be used to assess both DFT predictions and experimental values.

In our first attempt to compute the surface formation energy of a real material using DMC,

we studied the MgO(001) surface [58]. This is one of the few ionic materials for which
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σ has been measured experimentally, though there are considerable differences between

different measurements. For what it is worth, the experiments tend to support the LDA

value of 1.24 J m−2, rather than the PBE value of 0.87 J m−2. Five years ago, we were

able to show the feasibility of computing σ to good accuracy in slab geometry, using slabs

of different thicknesses and attempting to extrapolate to the limit of infinite thickness.

The DMC value of σ of 1.19 J −2 supported the correctness of LDA, but at that time

there were still uncertainties about pseudopotential errors. Since that time, the ability

to run calculations using large numbers of cores on machines such as the HECToR and

JaguarPF supercomputers has made the DMC calculation of surface energies much easier,

and it is already clear that such calculations will become fairly routine in the near future.

Very recently, a technique has been developed that in some cases allows the cohesive

energy, equilibrium structure and elastic properties of perfect crystals and the surface for-

mation energies of crystals to be calculated using wave function-based quantum chemistry

at the CCSD(T) level [59,60]. This so-called ‘hierarchical method’ offers for the first time

the possibility of testing high-level quantum chemistry and DMC against each other for

surface formation energies. Using casino on HECToR and JaguarPF, we have recently

made comparisons of this kind for the LiH and LiF crystals, both of which have the

rock-salt structure and are well suited to the ‘hierarchical’ quantum chemistry approach.

In the case of LiH, we have been able to perform all the DMC calculations both with

pseudopotentials and at the all-electron level [60]. With all-electron calculations, the only

remaining error is fixed-node error (and, of course, system-size errors – but these can be

systematically eliminated).

Before discussing the calculations of σ, it is worth commenting on the outstanding agree-

ment with experiment given by all-electron DMC for the properties of the LiH crystal [60].

The equilibrium lattice parameter a0 agrees to within 10−3 Å (both experiment and DMC

give 4.061 Å at T = 0 K, once corrections for zero-point effects are made). The cohesive

energy agrees with the experimental value to within 20 meV per formula unit, which

is comparable with the experimental uncertainty (once again, zero-point corrections are

crucial). The hierarchical quantum chemistry approach gives similar accuracy – possibly

even slightly better for the cohesive energy [59]. Needless to say, there are no adjustable

parameters in either method. This gives us every reason to expect excellent values of the

surface formation energy.

The DMC slab calculations on LiH went up to slab thicknesses of 6 ionic layers, with 18

ions per layer in the repeating cell (the total number of ions per repeating cell thus went

up to 108), and these slab thicknesses are more than enough to give convergence of σ to

within ∼ 1 %. We reproduce in Table 2 our final σ values from both DMC and quantum

chemistry, compared with the values from various DFT approaches [60]. The agreement

between all-electron DMC and high-level quantum chemistry is extremely close, as it

should be, and the σ values appear to provide robust benchmarks against which to judge

DFT. Just as we found for MgO, LDA performs rather well, the PBE value is about 30 %

lower and is considerably less good, while the revised PBE value (rPBE) is ∼ 40 % below
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Method σ / J m−2

DMC pseudo 0.373(3)
DMC all-elec 0.44(1)
Quantum chem (frozen core) 0.402
Quantum chem (with core) 0.434
DFT(LDA) 0.466
DFT(PBE) 0.337
DFT(rPBE) 0.272

Table 2: Calculated formation energy of the LiH (001) surface with both pseudopotential and
all-electron DMC, with hierarchical quantum chemistry with and without core correlation, and
with DFT approximations. For details, see Ref. [60].

the correct value.

We have recently completed similar calculations on σ for LiF (001) [61], and once again

we find values that support LDA, with PBE as usual underestimating by ∼ 30 %. There

now appears to be no reason why DMC calculations of this kind cannot be run for a

range of other materials, including semiconductors and metals. This would be valuable,

because it would allow a much more systematic appraisal of DFT approximations for

surface formation energies than has been possible hitherto.

4.2 Molecular adsorption on surfaces

The adsorption energies of molecules on surfaces are important for innumerable reasons.

A good example is the process of gas sensing, in which a trace concentration of a substance

(for example a pollutant) in the atmosphere is in thermal equilibrium with molecules of

the substance adsorbed on the surface of a material (for example tin oxide), the change

of whose electrical properties is used to monitor the atmospheric concentration. One of

the main quantities determining the concentration of absorbed molecules is the adsorp-

tion energy: the binding energy of the molecule to the surface. Adsorption energies are

important in many other fields, including catalysis, corrosion, gas purification, chemical

reactions in interstellar space, and atmospheric processes. But in spite of their widespread

importance, our quantitative knowledge of adsorption energies remains rather poor. One

of the major obstacles to progress is that DFT has rather poor predictive power for the

energetics of adsorption.

A famous example of DFT failing to give the right answer is the adsorption of CO on the

Pt(111) surface, where it is known experimentally that the most stable adsorption site is

the atop sites but most DFT approximations predict the hollow site to be most stable [62].

An equally severe problem is that DFT values of molecular adsorption on transition metals

can be seriously in error, sometimes by as much as 0.5 eV [63]. But the difficulties are

not confined to transition metals. For some problems, van der Waals dispersion can play

a large role in binding the molecule to the surface, and here the well known difficulties
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of DFT in accurately treating dispersion can cause major problems. The adsorption of

water on graphene is a famous example of this kind, but non-local electronic correlation

appears to be important for many other systems, including molecular adsorbates on metal

surfaces [64]. Even for apparently simple systems such as the adsorption of water on

oxide surfaces, where one might imagine electrostatics to be the dominant mechanism,

DFT values of adsorption energies can easily shift by a factor of two when the exchange-

correlation functional is changed [65].

In some cases, good experimental values of adsorption energies may be available, but often

the experiments are too difficult, or too difficult to interpret, perhaps because of surface

defects or because of interactions between the adsorbate molecules. There is clearly

an urgent need for reliable and accurate benchmark values of adsorption energies for

selected systems, just as for surface formation energies. There has recently been important

progress in the use of wave-function-based correlated quantum chemistry techniques for

the calculation of adsorption energies on extended surfaces [66, 67]. But quantum Monte

Carlo certainly offers another way of getting these benchmarks [68], and we have recently

started investigating how to do this.

An important paradigm example for benchmark purposes is the adsorption of H2O on

the LiH(001) surface. So far as we know, there is no experimental data on the adsorption

energy in this case, and indeed it seems unlikely that that there will be any, because water

reacts very exothermically with LiH to form the hydroxide. Nevertheless, the system is an

important test-bed for the development of techniques, because of its simplicity (there are

only four electrons per formula unit in LiH, and the crystal has the very simple rock-salt

structure), and because there is every reason to expect that very accurate calculations of

the energetics of H2O adsorption can be achieved using wave-function-based correlated

quantum chemistry via the incremental approach [66,67].

The H2O/LiH system is also a fascinating target for calculations, because DFT predictions

of the binding energy depend very strongly on the exchange-correlation functional. To

illustrate this, we show in Fig. 5 the binding-energy curves computed with a number of

different functionals, including the widely used PBE functional, as well as the BLYP and

revPBE (revised PBE) functionals. None of these functionals accounts for van der Waals

dispersion, so to get an indication of the likely effect of this, we also include some results

obtained with long-range correlation included using the scheme of Grimme [69], which

has come into quite common use in the past few years. Following the usual practice,

we refer to the schemes where dispersion is added to PBE, BLYP and revPBE as PBE-

D, BLYP-D and revPBE-D. The binding energy curves were computed by holding the

geometry of the H2O molecule rigid and moving it along the surface normal, with the

water-O nearly above a surface Li ion. The spread of DFT predictions is surprisingly

large, with the calculated adsorption energies at the minimum ranging from 0.1 to 0.3 eV.

This illustrates our comment about the poor predictive power of DFT for some adsorption

problems.

With casino running on HECToR and Jaguar, we have found it possible to compute

62



-0.5 0 0.5 1 1.5 2
Dist. from Equil. / Å

-0.2

-0.1

0

0.1

0.2
In

te
ra

ct
io

n 
en

er
gy

 / 
eV

PBE
WC
revPBE
BLYP
PBE-D
revPBE-D
BLYP-D
DMC

Figure 5: Binding-energy of the H2O molecule with the LiH (001) surface. Preliminary DMC
results (yellow symbols with statistical error bars) are compared with DFT predictions using
a variety of exchange-correlation functionals. The H2O molecule has exactly the same (fixed)
geometry and the same (fixed) orientation in all the calculations, and only the molecule-surface
distance is changed.

the corresponding binding-energy curve with DMC with very small statistical error bars

of less than 10 meV and with thick enough slabs and large enough repeating surface

units cells to reduce the size errors to a similar size. Technical details of the calculations,

together with final results will be reported in a journal publication, but we compare

our preliminary results with the DFT binding-energy curves in Fig. 5. The comparisons

indicate that the PBE approximation is quite accurate, so long as no attempt is made to

include dispersion, but the agreement becomes rather poor once dispersion is included.

Fortuitously or otherwise, approximations such as revPBE that are seriously in error

without dispersion are greatly improved with it. These comments assume, of course, that

pseudopotential and fixed-node errors in DMC are negligible. Fortunately, as we shall

report elsewhere, we have been able to demonstrate with high-level quantum chemistry

calculations based on the incremental scheme that these DMC errors probably amount to

no more than ∼ 10 meV over the range shown in the figure, except perhaps at very short
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distances [70]. This implies that the accuracy of DMC for the adsorption energy in this

system exceeds chemical accuracy by a very large factor.

Can adsorption energies for other systems be calculated beyond chemical accuracy using

DMC? For water on the surfaces of other ionic materials, including MgO, our tests sug-

gest that the answer to this question is ‘yes’, in the sense that DMC statistical errors

and system size errors can be reduced well below the threshold of chemical accuracy,

and our comparisons with high-level quantum chemistry on appropriate clusters indicate

that pseudopotential and fixed-node errors also fall below this threshold. Large-scale

calculations are now underway, and we hope to present results very soon.

Our work on the water-graphene interaction is motivated by the huge contemporary ac-

tivity on carbon systems. The extraordinary variety of carbon structures, from graphite

to buckyballs to single- or multi-walled nanotubes to graphene has inspired a vast range

of scientific studies, as well as ideas for practical applications. The award of the 2010

Nobel Prize in Physics to Geim and Novoselov for their work on graphene recognises the

importance of the field. The interaction of water and other molecules with these struc-

tures is often vital. Remarkably, it has been shown that small changes in the H2O-carbon

interaction can make all the difference to whether a nanotube fills with water or not [71].

Recent work shows that a small variation in the strength of the water-carbon bond leads

graphite surfaces to switch between hydrophobic and hydrophilic behaviour [72]. Techno-

logical applications where the H2O-carbon interaction is crucial include device biosensing

and nanofiltration.

For all these reasons, an accurate quantitative understanding of the water-graphite (or

water-graphene) interaction has been sought for many years. Unfortunately, this is a

problem where DFT calculations have so far proved virtually useless, because an accurate

description of van der Waals dispersion is absolutely essential. To illustrate the problem,

we show in Fig. 6 a comparison of the H2O-graphene binding-energy curve (H2O geome-

try fixed, H2O-graphene distance only is varied) obtained with different DFT functionals.

Most of the standard functionals, including ‘expensive’ hybrid functionals such as B3LYP

wrongly give almost no binding (the ‘correct’ binding energy is believed to be somewhere

between 50 and 150 meV). Up to now, the only theoretical approach that has any credi-

bility at all has been high-level quantum chemistry [73], but the difficulty here is that it

has not so far been possible to perform calculations with a sufficiently good description

of electron correlation in periodic boundary conditions. For want of anything better, the

approach taken has been to start with the H2O-benzene interaction, and then to go to

the interaction of H2O with coronene and larger acenes, and to attempt to extrapolate to

the graphene limit [74]. For the interaction of H2O with large acenes, the direct applica-

tion of CCSD(T) is not possible, but there are good reasons for believing that the SAPT

approximation (Symmetry-Adapted Perturbation Theory) [75] gives an accuracy that is

close to that of CCSD(T), so that in practice the calculations have been based on SAPT.

In this challenging situation, the ability to establish accurate benchmarks for the H2O

interaction would be enormously important. But does DMC have the required accuracy,

64



2 3 4 5 6 7 8
Height (Angstrom)

-200

-150

-100

-50

0

50

100

150

200
B

in
di

ng
 E

ne
rg

y 
(m

eV
)

PBE
LDA
PBE0
revPBE
BLYP
B3LYP

Figure 6: Shows binding-energy curve for H2O molecule on graphene calculated with various
DFT approximations.

and can it be applied with small enough statistical errors to large enough periodic systems

of H2O-graphene?

To test the accuracy of DMC, one of us in collaboration with other groups has re-

cently compared DMC with high-level quantum chemistry for the interaction of the water

molecule with the benzene molecule [76]. This interaction is relatively weak, and it

was crucially important on the quantum chemistry side to employ the ‘gold-standard’

CCSD(T) technique extrapolated very close to the basis-set limit. For the DMC calcu-

lations, the system is small enough that statistical errors can be reduced to the level of

∼ 3 meV with fairly modest computational resources. The comparison of the binding-

energy curves is shown in Fig. 7, the calculations being done with the geometry of the

H2O molecule and the orientation of the molecule held fixed, with only the H2O-benzene

separation being varied. The agreement of the two curves is outstandingly good, with

discrepancies being no more than ∼ 3 meV except at the smallest separations, and this

suggests that the DMC description of van der Waals dispersion and of the weak electro-

static interaction of the water multipole moments with the small quadrupole moments of

the carbon atoms is being very accurately described. It also suggests that if the DMC

calculations can be scaled up to treat the H2O molecule interacting with a graphene sheet

in periodic boundary conditions, then the accuracy of the computed adsorption energy

should be very good, provided the DMC statistical errors can be sufficiently reduced.
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Figure 7: Shows binding-energy curve for H2O molecule interacting with the benzene molecule:
comparison of DMC with CCSD(T).

We have tested the feasibility of DMC calculations on the periodic H2O-graphene system

using JaguarPF. We find that we can simulate the system by representing the graphene

sheet with a 5x5 supercell (50 atoms), which should be large enough to give small finite

size errors (k-point errors on the binding energy are less than 1 meV with this cell size

within DFT). The simulations can be carried out on JaguarPF on more than 80000 cores,

and each single point calculation with a statistical error of ∼ 10 meV has a cost of around

200000 core hours.

4.3 Water systems

Water in its different fluid and solid forms is an outstandingly important substance,

because it is crucial in so many different fields, ranging from biology to the earth sciences,

through chemical engineering, surface science and environmental sciences and medicine.

It is also been the source of many controversies, some of which continue to this day [77],

and has certainly proved a major challenge to the capabilities of DFT. Because it is

so important, attempts to develop empirical intermolecular potentials for water go back

nearly eighty years [78], and the creation of new model potentials remains a thriving

industry [79]. Nevertheless, the need for descriptions based on electronic structure theory

was recognised many years ago, starting with the efforts of Clementi and others in the

1970s [80]. A major landmark was the publication in the early 1990s of the first simulations

of liquid water based on DFT [81]. At that time, it seemed possible that quite good

accuracy might be achieved using fairly simple exchange-correlation functionals, but it has

since became apparent that the early optimism was somewhat misplaced. It is now clear
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that the predicted properties of liquid water depends strongly on the assumed functional

and there is still no general consensus about how the properties of liquid water and the

various crystal structures of ice can best be described by DFT [82].

There is, however, one standard electronic structure technique that is generally agreed

to provide more than enough accuracy for a fully realistic description of water in all

its phases. This is the CCSD(T) technique (coupled cluster with single, double and

perturbative triple excitations), often regarded as the ‘gold standard’ for the accurate

description of the interactions between closed-shell molecules. Benchmark calculations

on the energetics of the water dimer, essentially at the basis-set limit [83], have been

compared with calculations beyond the CCSD(T) level, and the evidence suggests that the

intermolecular interaction energies are correct to within∼ 1 meV. It is also well established

that CCSD(T) gives a very accurate account of long-range dispersion for water and other

similar molecular systems. There is just one major problem: the computational effort

needed scales as N7, where N is the number of water molecules. This ferocious scaling has

so far prevented the application of CCSD(T) with well converged basis sets to bulk water

systems. (The feasibility of directly applying the 2nd-order Møller-Plesset approximation

to bulk water in periodic boundary conditions was reported recently [84]. It is also

interesting to note that CCSD(T) calculations on clusters of up to ∼ 20 water molecules

have recently been reported using the NWChem code on large parallel computers [85].

These developments suggest that the future use of CCSD(T) for extended water systems

may not be completely fanciful.)

In the current unsatisfactory situation, there is a strong need for techniques that can

deliver the required accuracy, that can be directly used in periodic boundary conditions,

and that do not scale too harshly with N . Quantum Monte Carlo clearly satisfies the

second and third conditions, so that, provided its accuracy is good enough, direct QMC

simulations on water and ice are likely to be very useful. It was shown several years

ago that DMC gives excellent values of the binding energy of the H2O dimer [86]. A

particularly interesting test of DMC is provided by the competing structures of the H2O

hexamer. What makes this interesting is that the hexamer occupies a transitional position

between smaller H2O clusters, whose most stable structures have cyclic geometries, and

larger clusters, which are more highly coordinated. The hexamer has stable structures

of both kinds, and the energy differences between them are very small (on the order of

5 meV/H2O), so that the ability to separate them is a stringent test of any technique. The

consensus from the best high-level quantum chemistry calculations is that the so-called

‘prism’ structure is most stable [87], but all DFT approximation that omit dispersion

predict the wrong energy ordering for the competing structures [88]. The predictions of

DMC, however, agree closely with high-level quantum chemistry, and predict accurate

values of the energy differences [88].

Recently, we have made our own systematic tests of DMC against quantum chemistry

benchmarks for a wide range of geometries of H2O clusters from the dimer to the hex-

amer, some of the geometry sets being obtained by extracting configurations from an MD
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simulation of bulk liquid water generated using the flexible amoeba interaction model.

These tests support the high accuracy of DMC. As an example, we show in Fig. 8 the

comparison for a thermal sample of 50 geometries of the H2O trimer. The rms fluctua-

tion of the difference between DMC and benchmark total energies is 130 µHartree (about

3.5 meV). To put this in context, we show the analogous comparison for the DFT(PBE)

total energy; the very much larger rms deviation is not too surprising, given the well

known rather poor performance of PBE for liquid water.

Figure 8: Comparison of DMC total energies (filled squares) with accurate quantum chemistry
benchmarks at CCSD(T) level for a sample of 50 geometries of the H2O trimer drawn from
an MD simulation of liquid water. Horizontal axis shows CCSD(T) energy, vertical axis shows
deviation of DMC energy from CCSD(T) energy. Filled circles show the same comparison for
DFT(PBE).

The evidence that DMC can deliver much better accuracy and reliability than DFT for

water systems is thus strong. But what is the most useful way of applying DMC to improve

the atomic-scale understanding of water? Perhaps the most straightforward application

is to the energetics of ice structures, since useful things can be done using only static

calculations, without the need to compute forces. Our preliminary tests on various ice

structures with casino on the HECToR and Jaguar machines show that it is possible to

achieve very good statistical accuracy (statistical errors of ∼ 5 meV per water molecule or

better) on the periodically repeated systems of sixty-four to ninety-six molecules or more

that are needed to reduce size errors to an acceptable level. We expect to report detailed

DMC calculations on the relative energetics of both perfect and defective ice structures

in the near future.

A further, but more challenging possibility for the future is the DMC simulation of liq-

uid water itself. The major difficulty here is in the calculation of the forces that would
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be needed for MD simulation. Recent important progress in the calculation of DMC

forces [89] demonstrates that this will eventually be feasible. However, DMC calculations

on bulk liquid water in periodic boundary conditions have already been reported, without

the calculation of DMC forces. Grossman and Mitas [90] showed several years ago how to

compute the DMC energy of bulk water on an MD trajectory generated using conventional

DFT. The key idea is that the efficiency of the DMC calculations is improved by exploit-

ing the quasi-adiabatic evolution of the DMC ground state as the nuclear coordinates

change with time. This approach does not allow the direct computation of the thermal

equilibrium structure and dynamics of the liquid associated with the DMC ground state

energy. Nevertheless, it yields benchmark energetics that could be used to calibrate and

‘tune’ DFT functionals, in much the same way as DFT molecular dynamics simulations

have often been used in the past to test and ‘tune’ empirical interaction potentials. We

plan to explore this possibility with casino and the large parallel computers to which we

have access.

5 Future prospects

We have tried to show how the availability of petascale computers having tens or hun-

dreds of thousands of cores is opening up completely new possibilities for the techniques of

quantum Monte Carlo. The basic reason for this is that diffusion Monte Carlo, operating

typically with thousands of semi-independent walkers, lends itself very readily to massive

parallelism. We have demonstrated this idea in action by showing how the casino code

implemented on machines such as the UK national HECToR supercomputer and the US

Jaguar supercomputer gives very good parallel scaling up to at least 100000 cores. We

have argued that these developments are scientifically important, because for important

types of problems QMC gives much greater accuracy than standard DFT methods, so

that some of the well known deficiencies of DFT can be overcome. We have illustrated

some of the new science that is now becoming possible using examples from three ar-

eas: the surface formation energies of materials, the adsorption energies of molecules on

surfaces, and aqueous systems, all of these being areas where DFT struggles to deliver

trustworthy results. We have also explained our belief that in these and other areas there

is a pressing need for accurate benchmarks which can be used to test and calibrate DFT

approximations, and we have shown how DMC can deliver these benchmarks in practice.

Until fairly recently, QMC has sometimes been regarded as a bit of a minority interest,

because it demands computational resources that are typically 104 times those needed

by DFT. However, we believe that the arrival of petascale computing, and the prospect

of exascale computing in the next five to ten years will change all this. One has to

remember that when the Car-Parrinello paper was published over twenty-five years ago, it

was sometimes commented that the computational requirements of DFT were completely

prohibitive and that the technique would never be widely used for practical problems.

Obviously, the critics have been proved wrong. Given that supercomputer power has
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increased by at least a factor of 10000 over the past fifteen years, it takes little imagination

to see that QMC may follow the same kind of evolution. However, a shift of thinking is

needed. Today, it is quite common to run atomic-scale materials simulations needing a

few thousand core-hours on cheap clusters. But with calculations running on, let’s say,

100000 cores, individual jobs consuming several million core-hours become feasible. In

fact, from our experience on Jaguar, we know of research groups (not our own) that have

run jobs of this size.

It is still not completely straightforward to obtain petascale resources. However, the

INCITE Program, which gives access to Jaguar and other ‘leadership-class’ resources

in the US has welcomed applications from international groups for several years now.

The European DEISA programme (www.deisa.eu) is a good source of computational

resources in Europe. It is designed to make use of a Europe wide distributed super-

computing environment, and can grant access to resources of the order of millions of core

hours. Indeed, part of our work of water on graphene benefited from a DEISA grant. The

rapidly evolving situation in China, currently home to the fastest supercomputer in the

world, is also well worth watching.

Given the developments that are underway, we believe it is now very timely for more

research groups to consider becoming involved in the QMC enterprise. But what is the

right way to do this? Here are our personal suggestions about how to think about this:

• Start small and work upwards: Clearly, one should gain experience first with small

problems (for example, problems involving small molecules), which can easily be run

on modest local resources. Work up from there to more ambitious problems that

need large machines.

• Use standard codes: A large development effort has gone into CASINO and other

QMC codes, and it makes sense to work with a code that already has a substantial

publication record.

• Collaborate: Even more than DFT, there is much that you need to know about

QMC before trying calculations. No QMC code can (yet) be treated as a black box,

and it is wise to learn from experienced practitioners. To this end, one of us (MDT,

with Pablo López Rı́os and Neil Drummond) has for the last six years been running

the annual ‘QMC and the CASINO program’ summer school at his monastery in

Tuscany, Italy, to which the interested reader is cordially invited [91].

• Choose your problem well: Just like DFT, QMC cannot solve all the world’s prob-

lems, and it is important to play to the strengths of the techniques and to be aware

of their weaknesses (fixed-node error and pseudopotential non-locality are potential

weaknesses of DMC in its present form).

Our hope for the future is that more researchers will discover for themselves the possibil-

ities offered by QMC on machines ranging all the way from local clusters to the national

and international petascale services now becoming available.
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[59] F.R. Manby, D. Alfè and M.J. Gillan, Phys. Chem. Chem. Phys. 8, 5178 (2006);
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