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Abstract

The ground state electronic properties of a material can be obtained using density func-
tional theory as embodied by the Kohn-Sham equation. Typically, one employs eigensolver-based
approaches to solve this equation. These approaches can be computationally demanding and
have largely limited the applicability of the Kohn-Sham framework to systems of no more than
a few hundred atoms. Here we discuss a different approach based on a nonlinear Chebyshev-
filtered subspace iteration, which avoids computing explicit eigenvectors except to initiate the
process. Our method centers on solving the original nonlinear Kohn-Sham equation by a non-
linear form of the subspace iteration technique, without emphasizing the intermediate linearized
Kohn-Sham eigenvalue problems. The method achieves self-consistency within a similar number
of self-consistent field iterations as eigensolver-based approaches. However, replacing the stan-
dard diagonalization at each self-consistent iteration by a Chebyshev subspace filtering step
results in a significant speedup over methods based on standard dagonalization, often by more
than an order of magnitude. Algorithmic details of a parallel implementation of this method
are discussed. Numerical results are presented to show that the method enables one to perform
a class of highly challenging applications that heretofore were not feasible.

1 Introduction

Electronic structure calculations based on first principles use often employ a very successful combi-
nation of density functional theory (DFT) [1,2] and pseudopotential theory [3-6]. DFT reduces
the original multi-electron Schrédinger equation into an effective one-electron Kohn-Sham equation,
where the non-classical electronic interactions are replaced by a functional of the charge density. Pseu-
dopotential theory further simplifies the problem by replacing the “all electron” atomic potential with
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an effective “pseudopotential” that is smoother, but takes into account the effect of core electrons.
Combining pseudopotential with DFT greatly reduces the number of one-electron wave-functions to
be computed, but more importantly the energy and length scales are set solely by the valence states.
As such, species such as a carbon and lead can be treated on equal footing. However, even with
these simplifications, solving the Kohn-Sham equation remains computationally challenging when the
systems of interest contain a large number, e.g., more than a few hundred, atoms.

Several approaches have been advocated for solving the Kohn-Sham equations. They can be classified
in two major groups: basis-free or basis-dependent approaches, according to whether they use an
explicit basis set for electronic orbitals or not. Among the basis-dependent approaches, plane wave
methods are frequently used in applications of DFT to periodic systems where plane waves can
easily accommodate the boundary conditions [7,8]. In contrast, localized basis sets such as Gaussian
orbitals are very popular in quantum-chemistry applications [6,9]. Special basis sets have also been
designed for all-electron DFT calculations, which do not make use of pseudopotentials. These basis
sets include: linearized augmented plane waves, muffin-tin orbitals, projector-augmented waves. A

survey of advantages and disadvantages of these explicit-basis methods can be found in [6, 10].

Here we will focus on a different approach based on real space methods, which are “basis free.” Real
space methods have gained ground in recent years [11-14] owing in great part to their simplicity and
ease of implementation. In particular, these methods are readily implemented in parallel environments.
A second advantage is that, in contrast with a plane wave approach, real space methods do not
impose artificial periodicity in non-periodic systems. In contrast, plane wave basis techniques can be
applied to clusters (or molecules) by placing the system of interest in a large supercell. Provided the
supercell is sufficiently large so that the cluster of interest is removed from neighboring replicants, the
electronic structure solution will correspond to that of the isolated cluster. However, the potentials
from neighboring cells can be an issue. This makes supercell solutions converge slowly with the size of
the cell [15]. A related, and perhaps more significant issue, is that supercells complicate the handling
of systems that are not electronically neutral. Charged systems can be handled within plane wave
methods by including a compensating uniform charge [15]. Real space methods need not address
such complications. A third advantage is that the application of the Hamiltonian to electron wave-
functions is performed directly in real-space. Although the Hamiltonian matrix in real space methods
is typically much larger than with plane waves, the Hamiltonians are highly sparse and never stored or
computed explicitly. Only matrix-vector products that represent the application of the Hamiltonians

on wave-functions need to be computed.

As in plane wave methods, the chief impediment to solving the Kohn-Sham problem is “diagonalizing”
the Hamiltonian and obtaining a self-consistent field (SCF) solution. We present examples of a
recently developed nonlinear Chebyshev-filtered subspace iteration (CheFSI) method, implemented in
our own DFT solution package called PARSEC (Pseudopotential Algorithm for Real-Space Electronic
Calculations) [11,12]. Although described in the framework of real-space DFT, CheFSI can be
employed to other SCF iterations. The subspace filtering method takes advantage of the fact that
intermediate SCF iterations do not require accurate eigenvalues and eigenvectors of the Kohn-Sham

equation.
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The “standard” SCF iteration framework is used in CheFSI, and a self-consistent solution is obtained
as with previous work, which means that CheFSl has the same accuracy as other standard DFT
approaches. Unlike, some so-called “order-N" methods [16,17] CheFSl is equally applicable to metals
and insulators. One can view CheFSl as a technique to tackle directly the original nonlinear Kohn-Sham
eigenvalue problems by a form of nonlinear subspace iteration, without emphasizing the intermediate
linearized Kohn-Sham eigenvalue problems. In fact, within CheFSl, explicit eigenvectors are computed
only at the first SCF iteration, in order to provide a suitable initial subspace. After the first SCF step,
the explicit computation of eigenvectors at each SCF iteration is replaced by a single subspace filtering
step. The method reaches self-consistency within a number of SCF iterations that is close to that
of eigenvector-based approaches. However, since eigenvectors are not explicitly computed after the
first step, a significant gain in execution time results when compared with methods based on explicit

diagonalization.

When compared with calculations based on efficient eigenvalue packages such as ARPACK [18] and
TRLan [19,20] an order of magnitude speed-up is usually observed.

CheFSI enabled us to perform a class of highly challenging DFT calculations, including clusters with
over ten thousand atoms, which were not feasible before without invoking additional approximations
in the Kohn-Sham problem [21-24].

2 Eigenvalue problems in density functional calculations

The Kohn-Sham equation as defined in density functional theory is given by

__mv2 + ‘/Ytotal(p(r)ar) \IJZ(T) = EZ\IIZ(T)’ (1)
where W;(r) is a wave function, E; is a Kohn-Sham eigenvalue, 7 is the Planck constant, and m is

the electron mass. (We will often use atomic units: i=m = e =1 in the following discussion.)

The total potential Vg, is the sum of three terms,

‘/total(p(r)v 7“) = ‘/ion(r) + VH(p(T)v T) + Vzc(p(r)v 7“), (2)

where Vj,, is the ionic potential, Vj is the Hartree potential, and V. is the exchange-correlation
potential. The Hartree and exchange-correlation potentials depend on the charge density p(r), which

is defined as

Nocc

p(r) =2 |Wi(r). (3)
i=1

Here nocc is the number of occupied states, which is equal to half the number of valence electrons in
the system. The factor of two comes from spin multiplicity, if the system is non-magnetic. Eq. (B
can be easily generalized to situations where the highest occupied states have fractional occupancy

or when there is an imbalance in the number of electrons for each spin component.

The most computationally expensive step of DFT is in solving the Kohn-Sham Eq. ([l). Since Vipa
depends on the charge density p(r), which in turn depends on the wave functions ¥;, Eq. ({Il), can
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be viewed as a nonlinear eigenvalue problem. The SCF iteration is a general technique used to solve
this nonlinear eigenvalue problem. The iteration process begins with an initial guess of the charge
density usually constructed from a superposition of free atomic charge densities, then obtains the
initial Viotq; and solves Eq. ([l) for ¥,(r)’s to update p(r) and Vitq;. Then the Kohn-Sham (Eq. ()
is solved again for the new W;(r)’s and the process is iterated until V;,; (and also the wave functions)
becomes stationary. The standard SCF process is described in Algorithm Il and illustrated in Fig. [

Algorithm 2.1 Self-consistent-field iteration:

1. Provide initial guess for p(r), get Viewar(p(r),r).

2. Solve for U;(r), i =1,2,..., from

39 Vi (p(r), 1) | Wilr) = Bwir). 0

3. Compute the new charge density p(r) =2 roce |W,(r) %
4. Obtain new Hartree potential Vi by solving: V>V (r) = —4np(r).

5. Update Vy.; get new Vtoml(p,r) = Vien(r) + Vi (p,r) + Vie(p, ) with a potential-mizing
step.

6. If Hf/total - Vtotal” < tol, stop; Else, Viotar < ‘7total; goto step 2.

The number of eigenvectors needed in Step 2 of Algorithm BT is just the number of occupied states.
In practice, a few more eigenvectors are usually computed. For complex systems, i.e., when the
number of valence electrons is large, each of the linearized eigenvalue problems can be computationally

demanding. This is compounded by the fact that Hamiltonian matrices can be of very large size.

| Assume initial density: p

| Solve: V*V, =—4rwep I=

!

Form: V, =V +V, +V_

[V’
Solve: | ——V/" +V, + V«_:|‘1’n =EVY,
| 2m ’

|

Form: p=e z

n, occup

2

Y

n

Figure 1: Flow diagram for obtaining a self-consistent solution of the Kohn-Sham equation.

For this reason, one hopes to lessen the burden of solving Eq. Blin the SCF iteration. There are several
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options here. One could use some physical arguments to reduce the matrix size or zero some existing
elements. Or, one could attempt to avoid diagonalization altogether, as is done in work represented
by linear-scaling or order-N methods (see e.g. [16,17]). This approach, however, has other limitations.
In particular, the approximations involved rely heavily on some decay properties of the density matrix
in certiain function bases. In particular, they can be difficult to implement in real-space discretizations
or for systems where the decay properties are not optimal, e.g., in metals. Another option is to use
better (faster) diagonalization routines. However, this approach is limited as most diagonalization

software is quite mature.

Our approach avoids standard diagonalizations, but otherwise makes no new approximations to the
Hamiltonian. We take advantage of the fact that accurate eigenvectors are unnecessary at each SCF
iteration, since Hamiltonians are only approximate in the intermediate SCF steps, and exploit the
nonlinear nature of the problem. The main point of the new algorithm is that once we have a good
starting point for the Hamiltonian, it suffices to filter each basis vector at each iteration. In the
intermediate SCF steps, these vectors are no longer eigenvectors but together they represent a good

basis of the desired invariant subspace.

3 Numerical methods for parallel platforms

The motivation and original ideas behind our real space method (PARSEC) go back to the early
1990s, see [11,12]. Within PARSEC, an uniform Cartesian grid in real-space is placed on the region
of interest, and the Kohn-Sham equation is discretized by a high order finite-difference method [25]
on this grid. Wave functions are expressed as values on grid positions. Outside a specified sphere
boundary that encloses the physical system, wave functions are set to zero for non-periodic systems.
In addition to the advantages mentioned in the introduction, another advantage of the real-space

approach is that periodic boundary conditions are also reasonably simple to implement [26].

The latest version of PARSEC is written in Fortran 90/95. PARSEC has now evolved into a mature,
massively parallel package, which includes most of the functionality of comparable DFT codes [27].

The reader is referred to [28,29] for details and the rationale of the parallel implementation. The
PARSEC software can be obtained from

http://parsec.ices.utexas.edu/

The following is a brief summary of the most important points. PARSEC allows for either parallel or
sequential excecutions. When run in the parallel mode, PARSEC uses the standard Message Passing
Interface (MPI) library for communication. Parallelization is achieved by partitioning the physical
domain which can have various shapes depending on boundary conditions and symmetry operations.
Fig. 2 illustrates four cube-shaped neighboring sub-domains. For a generic, confined system without
symmetry, the physical domain is a sphere which contains all atoms plus some additional space (owing

to delocalization of electron charge).

In recent years, PARSEC has been enhanced to take advantage of physical symmetry. If the system
is invariant upon certain symmetry operations, the physical domain is replaced with an irreducible

wedge constructed according to those operations. For example, if the system has mirror symmetry
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Figure 2: Sample decomposition of a physical domain used in the PARSEC package.

on the xy plane, the irreducible wedge covers only one hemisphere, either above or below the mirror
plane. For periodic systems, the physical domain is the periodic cell, or an irreducible wedge of it if
symmetry operations are present. In any circumstance, the physical domain is partitioned in compact
regions, each assigned to one processor only. Good load balance is ensured by enforcing that the

compact regions have approximately the same number of grid points.

Once the physical domain is partitioned, the physical problem is mapped onto the processors in a
data-parallel way: each processor is in charge of a block of rows of the Hamiltonian corresponding
to the block of grid points assigned to it. The eigenvector and potential vector arrays are row-wise
distributed in the same fashion. The program only requires an index function indx(i,j, k) which

returns the number of the processor in which the grid point (4, j, k) resides.

Because the Hamiltonian matrix is never stored, we need an explicit reordering scheme which renum-
bers rows consecutively from one processor to the next one. For this purpose we use a list of pointers

that gives for each processor, the row with which it starts.

Since finite difference discretizetion is used, when performing an operation such as a matrix-vector
product, communication will be required between nearest neighbor processors. For communication we
use two index arrays, one to count how many and which rows are needed from neighbors, the other
to count the number of local rows needed by neighbors. With this decomposition and mapping, the
data required by the program is completely distributed. In other words, the code runs in the so-called
“Single Program Multiple Data” approach. For large problems it is quite important to be able to
distribute memory loads among processors on high performance computers. For example, certain
large jobs can simply not be run on a small number of processors on good-size distributed memory

machines.

Parallelizing subspace methods for the linearized eigenvalue problems (represented as Eq. B becomes
quite straightforward with the above mentioned decomposition and mapping. Note that the subspace
basis vectors contain approximations to eigenvectors, therefore the rows of the basis vectors are
distributed in the same way as the rows of the Hamiltonian. In this way, all vector updates (e.g.,
linear combinations of vectors), can be executed locally (i.e., without communication). Matrix-
vector products, and matrix-matrix products, can be easily executed in parallel but may require some
communication with a few neighbors. Reduction operations, e.g., computing inner products and

making the result available in each processor, are efficiently handled by the MPI reduction function
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MPI_ALLREDUCE().

4 The nonlinear Chebyshev-filtered subspace iteration

Since the Hamiltonians of the intermediate SCF steps are approximate, there is no need to compute
eigenvectors of the intermediate Hamiltonians to a high accuracy. Moreover, as observed in Refs. [13,
17,22, 30-32], the (discretized) charge density is the diagonal of the “functional” charge density
matrix defined as P = ®®”L, where the columns of the matrix ® are discretized wave functions
corresponding to occupied states. Notice that for any orthonormal matrix @) of a suitable dimension,
P = (®Q)(®Q)T. Therefore, explicit eigenvectors are not needed to calculate the charge density.
Any orthonormal basis of the eigensubspace corresponding to occupied states can give the desired

intermediate charge density.

The proposed method combines the outer SCF iteration and the inner iteration required for diagonal-
ization at each SCF step into one nonlinear subspace iteration. In this approach an initial subspace
is progressively refined by a low degree Chebyshev polynomials filtering. This means that each basis

vector u; is processed as follows:

Ui new = pm(H)ui

where p,, is some shifted and scaled Chebyshev poynomial whose goal is to enhance eigencomponents
of u; associated with the occupied states. Throughout the article the integer m denotes the degree

of the polynomial p,, which is used for filtering.

If it were not for the nonlinear nature of the SCF loop, i.e., if H were a fixed operator, this approach
would be equivalent to the well-known Chebyshev accelerated subspace iteration proposed by Bauer
[33], and later refined by Rutishauser [34, 35].

Chebyshev polynomial filtering has long been utilized in electronic structure calculations (see e.g.
[30,36-40]), focussing primarily on approximating the Fermi-Dirac operator.

Chebyshev polynomials of rather high degree were necessary and additional techniques were required
to suppress the Gibbs phenomena. In contrast, the polynomials used in our approach are of relatively
low degree (say < 20). They exploit the fast growth property of Chebyshev polynomials outside the

interval [—1, 1] to filter out undesired eigencomponents.

The main idea of CheFSl is to start with a good initial subspace V' corresponding to occupied states of
the initial Hamiltonian, this initial V' is usually obtained by a diagonalization step. No diagonalizations
are necessary after the first SCF step. Instead, the subspace from the previous iteration is filtered by
a degree-m polynomial, p,,(t), constructed for the current Hamiltonian H. The polynomial differs
at each SCF step since H changes. Note that the goal of the filter is to make the subspace spanned
by pm(H)V approximate the eigensubspace corresponding to the occupied states of the final H.
At the intermediate SCF steps, the basis need not be an accurate eigenbasis since the intermediate

‘Rutishauser published an Algol routine called ritzit in the volume: “Handbook for automatic computations:
linear algebra”, see [35]. This volume was largely at the origin of the EISPACK package (which later became a
part of LAPACK), but Rutishauser’s ritzit Algol routine was not translated into EISPACK.
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Hamiltonians are not exact. The filtering is designed so that the resulting sequence of subspaces will
progressively approximate the desired eigensubspace of the final Hamiltonian when self-consistency
is reached. At each SCF step, only two parameters are required to construct an efficient Chebyshev
filter, namely, a lower bound and an upper bound of the higher portion of the spectrum of the current
Hamiltonian H in which we want p,,(t) to be small. These bounds can be obtained with little
additional cost, as will be seen in Section &2

After self-consistency is reached, the Chebyshev filtered subspace includes the eigensubspace cor-
responding to occupied states. Explicit eigenvectors can be readily obtained by a Rayleigh-Ritz

refinement [41] (also called subspace rotation) step.

4.1 Chebyshev-filtered subspace iteration

The main structure of CheFSI, which is given in Algorithm is quite similar to that of the standard
SCF iteration (Algorithm ZTI). One major difference is that the inner iteration for diagonalization at
Step 2 is now performed only at the first SCF step. Thereafter, diagonalization is replaced by a single
Chebyshev subspace filtering step, performed by calling Algorithm

Although the charge density (Eq. (B)) requires only the lowest n,.. states, the number of computed
states, which is the integer s in Algorithm is typically set to a value larger than n,e, in order to
avoid missing any occupied states. In practice we fix an integer ngiqre Which is slightly larger than

Noce, and set s = ngpgte + Nadqd With nggq < 10.

The parallel implementations of Algorithms and are quite straightforward with the parallel
paradigm discussed in Section We only mention that the matrix-vector products related to fil-
tering, computing upper bounds, and Rayleigh-Ritz refinement, can easily execute in parallel. The
re-orthogonalization at Step 4 of Algorithm uses a parallel version of the iterated Gram-Schmidt
DGKS method [42], which scales better than the standard modified Gram-Schmidt algorithm. This
process is illustrated in Fig. B

The estimated complexity of the algorithm is similar to that of the sequential CheFSI method in [22].
For parallel computation it suffices to estimate the complexity on a single processor. Assume that p
processors are used, i.e., each processor shares N/p rows of the full Hamiltonian. The estimated cost
of Algorithm on each processor with respect to the dimension of the Hamiltonian denoted by NV,
and the number of computed states s, is as follows:

e The Chebyshev filtering in Step 3 costs O(s* N/p) flops. The discretized Hamiltonian is sparse
and each matrix-vector product on one processor costs O(N/p) flops. Step 3 requires m * s
matrix-vector products, at a total cost of O(s*m=*N/p) where the degree m of the polynomial

is small (typically between 8 and 20).

e The ortho-normalization in Step 4 costs O(s?+ N/p) flops. There are additional communication

costs because of the global reductions.
e The eigen-decomposition at Step 5 costs O(s3) flops.

e The final basis refinement step (® := ®Q) costs O(s? * N/p).
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If a standard iterative diagonalization method is used to solve the linearized eigenproblem (Eq. H)
at each SCF step, then it also requires (i) the orthonormalization of a (typically larger) basis; (ii)
the eigen-decomposition of the projected Rayleigh-quotient matrix; and (iii) the basis refinement
(rotation). These operations need to be performed several times within this single diagonalization.
But Algorithm performs each of these operations only once per SCF step. Therefore, although
Algorithm B2 scales in a similar way to standard diagonalization-based methods, the scaling constant
is much smaller. For large problems, CheFS can achieve a tenfold or more speedup per SCF step,
over using the well-know efficient eigenvalue packages such as ARPACK [18] and TRLan [19, 20].

Select initial Potential (e.g., superpose atomic
charge densities)

v

Get initial basis: {y,} from diagonalization

Find the charge density from the basis:

p= 3 vl

n,occup

Solve for VH and and compute ch:

Vz‘/H = ‘47[[3 ‘/xc = ‘/xc[p]

Construct Hamiltonian:

-1_,
H=—V>+Vl +V, +V,
> _

ion

Apply Chebyshev filter to the basis:

{w,}=c,(E@){y,}

Figure 3: Flow diagram for obtaining a self-consistent solution of the Kohn-Sham equation using

damped Chebyshev subspace filtering.

In summary, a standard SCF method has an outer SCF loop—the usual nonlinear SCF loop, and
an inner diagonalization loop, which iterates until eigenvectors are within specified accuracy. Algo-
rithm 1] essentially bypasses the second loop, or rather it merges it into a single outer loop, which
can be considered as a nonlinear subspace iteration algorithm. The inner diagonalization loop is

replaced by a single Chebyshev subspace filtering step.

4.2 Chebyshev filters and estimation of bounds

Chebyshev polynomials of the first kind are defined, for £ = 0,1,---, by (see e.g., [41, p.371],
or [43, p.142]):

cos(k cos™1(t)), -1<t<1,
Ci(t) =
cosh(k cosh™1(t)), lt| > 1.
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Algorithm 4.1 CheFSI for SCF calculation:

1. Start from an initial guess of p(r), get Vietar(p(r),r).

2. Solve [—4V2 4 Vi (p(r), )] Us(r) = EWi(r)  for Uy(r), i =1,2,....s.
8. Compute new charge density p(r) =23 o5 |W;(r)%.

4. Solve for new Hartree potential Vi from V2V (r) = —4mp(r).

5. Update Vye; get new Vigar(p,7) = Vien(r) + Vir(p,7) + Vie(p,7) with a potential-mizing
step.

6. If ||Viotal — Viotarl| < tol, stop; Else, Vigtar — Viotar (update H implicitly),
call the Chebyshev-filtered subspace method (Algorithm[-3) to get s approzimate wave func-
tions; goto step 3.

Algorithm 4.2 Chebyshev-filtered Subspace (CheFS) method:

1. Get the lower bounds by, and 7y from previous Ritz values (use the largest one and the
smallest one, respectively).

2. Compute the upper bound by, of the spectrum of the current discretized
Hamiltonian H (call Algorithm in Section [I-3).

3. Perform Chebyshev filtering (call Algorithm [.3 in Section [[.3) on the previous basis P,
where ® contains the discretized wave functions of V;(r), i =1,...,s:
¢ = Chebyshev_filter(®, m, biow, bup, 7)-

4. Ortho-normalize the basis ® by iterated Gram-Schmidt.
5. Perform the Rayleigh-Ritz step:

(a) Compute H=®TH®;

(b) Compute the eigendecomposition of H: HQ=QD,
where D contains non-increasingly ordered eigenvalues of H, and Q) contains the cor-
responding eigenvectors;

(¢) ’Rotate’ the basis as ® := ®Q; return ® and D.
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Deg. 8 Cheb. polynom., on interv.: [-11]

1 m= -
0.8

0.6

0.2

Figure 4: Degree 8 Chebyshev polynomial on the interval |-1, 1] scaled to one at v = —0.2.
The shaded area corresponds to eigen-components that will be amplified relative to the other

eigencomponents, those corresponding to the interval [—1, 1], which will be dampened.

Note that Cy(t) = 1,C1(t) = t. The following important 3-term recurrence is easy to derive from
properties of the cosine function,

Crr1(t) = 2t Cp(t) — Cp—a(t), teR. (5)

By filtering we mean a process applied to a vector that has the effect of magnifiant desired eigen-
components of this vector relative to other, undesirable, components. If the process is repeated
indefinitely, the resulting vector will have zero components in the undesirable part of the spectrum.
In our context, we need to filter out all components associated with the non-occupied states, or,

equivalently to enhance the components associated with occupied states, relative to other components.

Filtering can be readily achieved by exploiting well-known properties of Chebyshev polynomials. It is
known that among all polynomials of degree k, which have value one at a certain point |y| > 1, the
polynomial Cy(t)/Cy(7) is the one whose maximum absolute value in the interval [—1,1] is minimal.
Thus, Ci(t)/Ck(7y) can be viewed as an optimal polynomial if one wishes to dampen values of the
polynomial in [—1, 1] among all polynomials p of degree k, scaled so that p(y) = 1. The 8th degree
Chebyshev polynomial scaled at v = —0.2 is shown in Figure @

Assume that the full spectrum of H (denoted by A(H)) is contained in [y,b]. Then, in order
to approximate the eigensubspace associated with the lower end of the spectrum, say [v,a] with
v < a < b, it is necessary to map [a, b] into [—1, 1] before applying the Chebyshev polynomnial. This
can be easily realized by an affine mapping defined as

t—c a+b b—a
L(t) = T =, 6=

where ¢ denotes the center and e the half-width of the interval [a, b]. The Chebyshev iteration utilizing
the three-term recurrence (B) to dampen values on the interval [a,b] is listed in Algorithm B3] see
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also [22]. The algorithm computes
V=pn(H)X  where  py(t) = Cp[L()]. (6)
This yields the iteration
2 .
Xj+1:g(H—CI)Xj—Xj,1, ]:1,2,...,m—1.

with X given and X; = (H — cI)Xp.

The above iteration is without any scaling. In the case of the interval [—1, 1] we scaled the polynomial
by Ci(7y) in order to ensure that the value of the polynomial at v equals one. For general intervals,

this leads to the scaled sequence of polynomials [43]

fo Cy[2(H — cI)]
Ci2(y —el)]

Thus, the scaling factor is p; = Cj[2(y — cI)]. Clearly this requires an estimate for - which, in our
case, is the smallest eigenvalue of the Hamiltonian. However, since this is used for scaling, for the
purpose of avoiding overflow, only a rough value is needed. For the first SCF iteration, we can use
the smallest Ritz value of T from the same Lanczos run (Algorithm below) as used to obtain the
upper bound b for 4. For the latter SCF steps, the smallest Ritz value from the previous SCF step
can be used. Clearly, the vector sequence is not computed as shown above because p; itself can be
large and this would defeat the purpose of scaling. Instead, each Xj+1 is updated using the scaled
vectors X'j and X'j_l. The corresponding algorithm, discussed in [43] is shown in Algorithm (the
tildes and vector subscripts are omitted).

The eigen-components associated with eigenvalues in [a, b] will be transformed to small values while
those to the left of [a, b] will be around unity owing to the properties of the Chebyshev polynomials.
This is the desired filtering property when computing an approximation to the eigensubspace associated
with the lower end of A(H). As seen in Algorithm a desired filter can be easily controlled by
adjusting two endpoints that bound the higher portion of A(H).

The wanted lower bound can be any value which is larger than the Fermi-level but smaller than the
upper bound. It can also be a value slightly smaller than the Fermi-level; thanks to the monotonicity
of the shifted and scaled Chebyshev polynomial on the spectrum of H, and the fact that we compute
§ > MNoee Nnumber of Ritz values, the desired lowered end of the spectrum will still be magnified

properly with this choice of lower bound.

Since the previous SCF iteration performs a Rayleigh-Ritz refinement step, it provides naturally an
approximation for the lower bound a. Indeed, we can simply take the largest Rayleigh-quotient from
the previous SCF iteration step as an approximation to the lower bound for the current Hamiltonian.
In other words, a is taken to be the largest eigenvalue computed in step 5-(b) of Algorithm B2 from

the previous SCF iteration, with no extra computation.

The upper bound for the spectrum (denoted by b) can be estimated by a k-step standard Lanczos
method. As pointed out in [23], the higher endpoint b must be a bound for the full spectrum of
H. This is because the Chebyshev polynomial also grows fast to the right of [—1,1]. So if [a,]
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Algorithm 4.3 [Y] = Chebyshev filter(X,m,a,b,).

Purpose: Filter column vectors of X by an m degree Chebyshev polynomial in H that dampens
on the interval [a,b]. Output the filtered vectors in'Y .

1. e=((b—-a)/2; c=(b+a)/2;

2. oc=¢e/(y—c) o1 = 0; v =2/o1.
3. Y =2(HX —cX);

4. Fori=2:m

5. oo =1/(y—0);

6. Yoew = 22(HY — cY) — 002X

7. X=Y;

8. Y = Yiew:

9. o = 09;

10. End For

with b < A\jaz(H) is mapped into [—1, 1], then the [b, A\ (H)| portion of the spectrum will also
be magnified, which will cause the procedure to fail. Therefore, it is imperative that the bound b
be larger than \,,4.(H). On the other hand it should not be too large as this would result in slow
convergence. The simplest strategy which can be used for this is to use Gerschgorin's Circle Theorem.

Bounds obtained this way can, however, overestimate \y,q.(H ).

An inexpensive way to estimate an upper bound of A(H) by the standard Lanczos [44] method is
described in Algorithm B2l to which a safeguard step is added. The largest eigenvalue A of the
tridiagonal matrix T' is known to be below the largest eigenvalue A of the Hamiltonian. If @ is
the corresponding Ritz vector and r = (H — AI )@ then there is an eigenvalue of H in the interval
A= 7l, A+ ||r]|] (see e.g. [41]). Algorithm estimates Aqe by maz(X) 4 || f||, since it is known
that ||7|| < ||f]|. This is not theoretically guaranteed to return an upper bound for A4, - but it is
generally observed to yield an effective upper bound. The algorithm for estimating b is presented in
Algorithm EZ] below. Note that the algorithm is easily parallelizable as it relies mostly on matrix-
vector products. In practice, we found that k = 4 or 5 is sufficient to yield an effective upper bound
of A(H). Larger k values (e.g., k£ > 10) are not necessary in general.

In the end we can see that the extra work associated with computing bounds for constructing the
Chebyshev polynomials is negligible. The major cost of filtering is in the three-term recurrences
in Algorithm which involve matrix-vector products. The polynomial degree m is left as a free
parameter. Our experience indicates that an m between 8 and 20 is good enough to achieve overall
fast convergence in the SCF loop.

29



Algorithm 4.4 Estimating an upper bound of A(H) by k-step Lanczos:

1. Generate a random vector v, set v < v/||va]|;

2. Compute f = Hv; a= fTv; [« f—av; T(1,1)=q;
3. Do j =2 to min(k,10)

4. B =Irl;

5. vo v v [/

6. f=Hv; [ f—pPuy;

7. a=fTo; fe f—av

8. TG j-1)=p TG-17)=08 T3Jj)=q
9. End Do

10.  Return || T5|| + || f2]| as the upper bound.

5 Diagonalization in the first SCF iteration

Within CheFSl, the most expensive SCF step is the first one, as it involves a diagonalization in order to
compute a good subspace to initiate the nonlinear SCF loop. This section discusses options available
for this task.

In principle, any effective eigenvalue algorithms can be used for the first SCF step. PARSEC originally
had three diagonalization methods: Diagla, which is a preconditioned Davidson method [28, 29]; the
symmetric eigensolver in ARPACK [18, 45]; and the Thick-Restart Lanczos algorithm called TRLan
[19,20]. For systems of moderate sizes, Diagla works well, and then becomes less competitive relative
to ARPACK or TRLan for larger systems when a large number of eigenvalues are required. TRLan
is about twice as fast as the symmetric eigensolver in ARPACK, because of its reduced need for

re-orthogonalization. In [22], TRLan was used for the diagonalization at the first SCF step.

Another option suggested and tested in [32] but not implemented in PARSEC, is to resort to the
Lanczos algorithm with partial reorthogonalization. Partial reorthogonalization Lanczos would run
the Lanczos algorithm without restarting, reorthogonalizing the vectors only when needed, see [41].
This is a very effective procedure, some would even say optimal in some sense, except that it typically
requires an enormous amount of memory. As illustrated in [32] the method can be 5 to 7 times faster
than ARPACK for moderate size problems. It is possible to address the memory problem by resorting

to secondary storage, though parallel implementations would be tedious.

At the other extreme when considering memory usage, one can use the Chebyshev filtered subspace
iteration in its linear implementation. This means that we will now add an outer loop to the pro-
cedure described by Algorithm and test convergence for the same Hamiltonian (the initial one)

without updating potential from one outer loop to the next. Practically, this is simply as a variant of
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Algorithm BTl whereby step 2 is replaced by as many filtering steps of Algorithm as are required
for the subspace to converge. This procedure is the most economical in terms of memory, so it is rec-
ommended if memory is an issue. However, it is well-known that subspace iteration methods (linear)
are not as effective as the Lanczos algorithm, and other Krylov-based methods, see, e.g., [41, Chap.
14].

Even with standard restart methods such as ARPACK and TRLan, the memory demand can still
remain too high in some cases. Hence, it is important to develop a diagonalization method that is
less memory demanding but whose efficiency is comparable to ARPACK and TRLan. The Chebyshev-
Davidson method [23,24] was developed with these two goals in mind. Details can be found in [23,
24]. The principle of the method is to simply build a subspace by a procedure based on a form of
Block-Davidson approach. The Block-Davidson approach builds a subspace by adding a 'window’ of
preconditioned vectors. In the Chebyshev-Davidson approach, these vectors are built by exploiting

Chebyshev polynomials.

The first step diagonalization by the block Chebyshev-Davidson method, together with the Chebyshev-
filtered subspace method (Algorithm E2), enabled us to perform SCF calculations for a class of large
systems, including the silicon cluster Sigg41 H1sgo for which over 19,000 eigenvectors of a Hamiltonian
with dimension around 3 million were to be computed. These systems are practically infeasible with the
other three eigensolvers (ARPACK, TRLan and Diagla) in PARSEC, using the current supercomputer
resources available to us at the Minnesota Supercomputing Institute (MSI).

Though results obtained with the Chebyshev-Davidson method in the first step diagonalization are
satisfactory, there is still much work to be done in this area. We do not know for example how accurate
the subspace must be in order to be a good initial guess to ensure convergence. It may possible to
further reduce execution times by changing the stopping criterion needed in the first SCF step. It may
be also possible to exploit well-known “global convergence” strategies utilized for non-linear iterations

(such as continuation, or damping) to avoid completely the first step diagonalization.

6 Numerical Results

PARSEC has been applied to study a wide range of material systems (e.g. [12,26,27]). The focus of
this section is on large systems where relatively few numerical results exist because of the infeasibility
of eigenvector-based methods. \We mention that Ref. [46] contains very interesting studies on clusters
containing up to 1100 silicon atoms, using the well-known efficient plane wave DFT package VASP
[8,47]; however, it is stated in Ref. [46] that a cluster with 1201 silicon atoms is “too computationally
intensive.” As a comparison, PARSEC using CheFSI, together with the currently developed symmetric
operations of real-space pseudopotential methods [48], can now routinely solve silicon clusters with

several thousands of atoms.

The hardware used for the computations is the SGI Altix cluster at MSI, it consists of 256 Intel
[tanium processors at CPU rates of 1.6 GHz, sharing 512 GB of memory (but a single job is allowed
to request at most 250 GB memory).

The goal of the computations is not to study the parallel scalability of PARSEC, but rather to use

o7



PARSEC to do SCF calculation for large systems that were not studied before. Therefore, we do
not use different processor numbers to solve the same problem. Scalability is studied in [29] for
the preconditioned Davidson method, we mentioned that the scalability of CheFSl is better than

eigenvector-based methods because of the reduced reorthogonalizations.

In the reported numerical results, the total_eV/atom is the total energy per atom in electron-volts,
this value can be used to assess accuracy of the final result; the #SCF s the iteration steps needed
to reach self-consistency; and the #MVp counts the number of matrix-vector products. Clearly #MVp
is not the only factor that determines CPU time, the orthogonalization cost can also be a significant

component.

For all of the reported results for CheFSl, the first step diagonalization used the Chebyshev-Davidson
method. In Tables BFHIT] the 1st CPU denotes the CPU time spent on the first step diagonalization
by Chebyshev-Davidson; the total CPU counts the total CPU time spent to reach self-consistency
by CheFSlI.

dim. of H |ngate| #MVp |#SCF|total_eV/atom|1lst CPU|total CPU

1074080 | 5843 | 1400187 | 14 -86.16790 7.83 hrs.| 19.56 hrs.

Table 4: Sio713Hgog, using 16 processors. m = 17 for Chebyshev-Davidson; m = 10 for CheFS.
(First step diagonalization by TRLan cost 8.65 hours, projecting it into a 14-steps SCF iteration

cost around 121.1 hours.)

The first example (Table B) is a relatively small silicon cluster Siso5 Hozg, which is used to compare
the performance of CheFSI with two eigenvector-based methods. All methods use the same symmetry
operations [48] in PARSEC.

method | #MVp |#SCF steps|total_eV/atom|CPU(secs)
CheFSI| 189755 11 -77.316873 542.43
TRLan | 149418 10 -77.316873 2755.49
Diagla [493612 10 -77.316873 8751.24

Table 5:  SisosHo7g, using 16 processors. The Hamiltonian dimension is 292584, where 1194
states need to be computed at each SCF step. The first step diagonalization by Chebyshev-
Davidson cost 79755 #MVp and 221.05 CPU seconds; so the total #MVp spent on CheFS in
CheFSI is 110000. The polynomial degree used is m = 17 for Chebyshev-Davidson and m = 8 for
CheFS. The fist step diagonalization by TRLan requires 14909 #MVp and 265.75 CPU seconds.

For larger clusters Sior13Hgos (Table Hl) and Siqo01 Hip12 (Table Hl), Diagla became too slow to be
practical. However, we could still apply TRLan for the first step diagonalization for comparison, but we
did not iterate until self-consistency was reached since that would cost a significant amount of our CPU
quota. Note that with the problem size increasing, Chebyshev-Davidson compares more favorably over

TRLan. This is because we employed an additional trick in Chebyshev-Davidson, which corresponds
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to allowing the last few eigenvectors not to converge to the required accuracy. The number of the
non fully converged eigenvectors is bounded above by act,,q., which is the maximum dimension of
the active subspace. Typically 30 < act;nq: < 300 for Hamiltonian size over a million where several
thousand eigenvectors are to be computed. The implementation of this trick is rather straightforward
since it corresponds to applying the CheFS method to the subspace spanned by the last few vectors

in the basis that have not converged to required accuracy.

dim. of H|ngate| #MVp |#SCF|total_eV/atom| 1st CPU |total CPU

1472440 | 8511 |1652243| 12 -89.12338 18.63 hrs.| 38.17 hrs.

Table 6: St4001 H1012, using 16 processors. m = 17 for Chebyshev-Davidson; m = 8 for CheFS.
(First step diagonalization by TRLan cost 34.99 hours, projecting it into a 12-steps SCF iteration
cost around 419.88 hours.)

For even larger clusters Sigosa7 His0s (Table Bl) and Sigos1 Higeo (Table [), it became impractical
to apply TRLan for the first step diagonalization because of too large memory requirements. For
these large systems, using an eigenvector-based method for each SCF step is clearly not feasible.
We note that the cost for the first step diagonalization by Chebyshev-Davidson is still rather high,
it took close to 50% of the total CPU. In comparison, the CheFS method (Algorithm EZ2) saves
a significant amount of CPU for SCF calculations over diagonalization-based methods, even if very

efficient eigenvalue algorithms are used.

dim. of H | ngtqte | #MVp |#SCF|total_eV/atom| 1st CPU |total CPU

2992832 19015 |4804488| 18 -92.00412 102.12 hrs. | 294.36 hrs

Table 7: Sigoa1 H1gg0, using 48 processors. m = 17 for Chebyshev-Davidson; m = 8 for CheFS.

dim. of H | ngtate | #MVp |#SCF|total_eV/atom| 1st CPU |total CPU

2144432 |12751)2682749| 14 -91.34809 45.11 hrs.[101.02 hrs.

Table 8: Sigoa7H1308, using 32 processors. m = 17 for Chebyshev-Davidson; m = 8 for CheFS.

Once the DFT problem, Eq. (), is solved, we have access to several physical quantities. One of
them is the ionization potential (IP) of the nanocrystal, defined as the energy required to remove one
electron from the system. Numerically, we use a ASC'F method: perform two separate calculations,
one for the neutral cluster and another for the ionized one, and observe the variation in total energy
between these calculations. Fig. Blshows the IP of several clusters, ranging from the smallest possible
(SiHy) to Sigoa1 Hiseo- For comparison, we also show the eigenvalue of the highest occupied Kohn-
Sham orbital, Egoao. A known fact of DFT-LDA is that the negative of the Eyono energy is
lower than the IP in clusters [6], which is confirmed in Figure In addition, the figure shows that
the IP and —Eyoao approach each other in the limit of extremely large clusters.
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Figure 5: Ionization potential, IP, (crosses) and electron afAdnity, EA, (“plus” signs), for various
clusters with diameters ranging from 0 nm (SiH4) to 7 nm (Siggs1H1s60). “Squares” denote the
negative of the highest occupied molecular orbital (—FEgoao) eigenvalue energy of the neutral
cluster. “Diamonds” denote the negative of the lowest unoccupied molecular orbitaleigenvalue

energy (_ELUMO)-

Fig. Bl also shows the electron affinity (EA) of the various clusters. The EA is defined as the energy
released by the system when one electron is added to it. Again, we calculate it by performing
SCF calculations for the neutral and the ionized systems (negatively charged instead of positively
charged now). In PARSEC, this sequence of SCF calculations can be done very easily by reusing
previous information: The initial diagonalization in the second SCF calculation is waived if we reuse
eigenvectors and eigenvalues from a previous calculation as initial guesses for the ChebFSI method.
Fig.Blshows that, as the cluster grows in size, the EA approaches the negative of the lowest-unoccupied
eigenvalue energy. A power-law analysis in Fig. Bl indicates that both the ionization potential and
the electron affinity approach their bulk values according to a power-law decay R™ with n ~ 1. The

numerical fits are:

IP = IPy + A/D° (7)

EA = EAy — B/DP (8)
with IPg = 4.50 eV, EAg =3.87 ¢V, a = 1.16, 5 =1.09, A = 3.21 eV, B = 3.13 eV. These values

for A and B assume a cluster diameter D given in nanometers. The difference between ionization
potential and electron affinity is the electronic gap of the nanocrystal. As expected, the value of the
gap extrapolated to bulk, IPg — EAy = 0.63 eV, is very close to the energy gap predicted in various
DFT calculations for silicon, which range from 0.6 €V to 0.7 eV [6,49]. Owing to the slow power-law
decay, the gap at the largest crystal studied is still 0.7 eV larger than the extrapolated value.

Other properties of large silicon clusters are also expected to be similar to the ones of bulk silicon,

which is equivalent to a nanocrystal of “infinite size”. Fig. Bl shows that the density of states already
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assumes a bulk-like profile in clusters with around ten thousand atoms. The presence of hydrogen
atoms on the surface is responsible for subtle features in the DOS at around -8 eV and -3 V. Because
of the discreteness of eigenvalues in clusters, the DOS is calculated by adding up normalized Gaussian
distributions located at each calculated energy eigenvalue. In Fig. [l we used Gaussian functions with
dispersion of 0.05 eV. More details are discussed in [50].

0.8 Si9041Hlseo -
0.6 -
0.4 —

0.2 -

0.8
0.6
0.4
0.2F
0 L | ! |

’I5 10 5 0
Energy (eV

Density of States (eV'l)

Figure 6: Density of states (DOS) of the cluster Siggs1 Higso (upper panel) compared with periodic
crystalline silicon (lower panel). As a consequence of the large size, the DOS of the Siggs1 H1s60

cluster is very close to that of bulk silicon (the inAdnite-size limit).

H size | nNstate #MVp |#SCF|total_eV/atom| 1st CPU |total CPU

2790688 | 1812 x 2|9377435| 110 -795.18064  |16.16 hrs.|112.44 hrs.

Table 9: Fesga, using 16 processors. m = 20 for Chebyshev-Davidson; m = 19 for CheFS.

H size | Ngiate #MVp |#SCF|total_eV/atom| 1st CPU |total CPU

298599211956 x 2|10241385| 119 -795.19898  |11.62 hrs.| 93.15 hrs.

Table 10: Fesoq, using 24 processors. m = 20 for Chebyshev-Davidson; m = 19 for CheFS.

We also applied PARSEC to some large iron clusters. Tables BHIT] contain three clusters with more
than 300 iron atoms. The number of states, ngqte, is multiplied by two because these clusters are
magnetized and spin degeneracy is broken. These metallic systems are well-known to be very difficult
for DFT calculations, because of the “charge sloshing” [7,8]. The LDA approximation used to get
exchange-correlation potential V.. is also known not to work well for iron atoms. However, PARSEC
was able to reach self-consistency for these large metallic clusters within reasonable time length.

Physical significance of the computed data will be discussed in [51]. It took more than 100 SCF steps
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H size | nNgiate #MVp |#SCF|total_eV/atom| 1st CPU |total CPU

32623122160 x 2]12989799 | 146 -795.22329 | 16.55 hrs. | 140.68 hrs.

Table 11: Fesq, using 24 processors. m = 20 for Chebyshev-Davidson; m = 17 for CheFS.

to reach self-consistency, which is generally considered too high for SCF calculations, but we observed
(from calculations performed on smaller iron clusters) that eigenvector-based methods also required a
similar number of SCF steps to converge, thus the slow convergence is associated with the difficulty
of DFT for metallic systems. Without CheFS, and under the same hardware conditions as listed in
Tables BHIT] over 100 SCF steps using eigenvector-based methods would have required months to

complete for each of these clusters.

7 Concluding Remarks

We developed and implemented the parallel CheFSI method for DFT SCF calculations. Within
CheFSl, only the first SCF step requires a true diagonalization, and we perform this step by the block
Chebyshev-Davidson method. No diagonalization is required after the first step; instead, Chebyshev
filters are adaptively constructed to filter the subspace from previous SCF steps so that the filtered
subspace progressively approximates the eigensubspace corresponding to occupied states of the final
Hamiltonian. The method can be viewed as a nonlinear subspace iteration method which combines
the SCF iteration and diagonalization, with the diagonalization simplified into a single step Chebyshev

subspace filtering.

Additional tests not reported here, have also shown that the subspace filtering method is robust
with respect to the initial subspace. Besides self-consistency, it can be used together with molecular
dynamics or structural optimization, provided that atoms move by a small amount. Even after atomic
displacements of a fraction of the Bohr radius, the CheFSI method was able to bring the initial subspace
to the subspace of self-consistent Kohn-Sham eigenvectors for the current position of atoms, with no

substantial increase in the number of self-consistent cycles needed.

CheFSl significantly accelerates the SCF calculations, and this enabled us to perform a class of large
DFT calculations that were not feasible before by eigenvector-based methods. As an example of
physical applications, we discuss the energetics of silicon clusters containing up to several thousand
atoms.
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