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tThe ground state ele
troni
 properties of a material 
an be obtained using density fun
-tional theory as embodied by the Kohn-Sham equation. Typi
ally, one employs eigensolver-basedapproa
hes to solve this equation. These approa
hes 
an be 
omputationally demanding andhave largely limited the appli
ability of the Kohn-Sham framework to systems of no more thana few hundred atoms. Here we dis
uss a di�erent approa
h based on a nonlinear Chebyshev-�ltered subspa
e iteration, whi
h avoids 
omputing expli
it eigenve
tors ex
ept to initiate thepro
ess. Our method 
enters on solving the original nonlinear Kohn-Sham equation by a non-linear form of the subspa
e iteration te
hnique, without emphasizing the intermediate linearizedKohn-Sham eigenvalue problems. The method a
hieves self-
onsisten
y within a similar numberof self-
onsistent �eld iterations as eigensolver-based approa
hes. However, repla
ing the stan-dard diagonalization at ea
h self-
onsistent iteration by a Chebyshev subspa
e �ltering stepresults in a signi�
ant speedup over methods based on standard dagonalization, often by morethan an order of magnitude. Algorithmi
 details of a parallel implementation of this methodare dis
ussed. Numeri
al results are presented to show that the method enables one to performa 
lass of highly 
hallenging appli
ations that heretofore were not feasible.1 Introdu
tionEle
troni
 stru
ture 
al
ulations based on �rst prin
iples use often employ a very su

essful 
ombi-nation of density fun
tional theory (DFT) [1, 2℄ and pseudopotential theory [3�6℄. DFT redu
esthe original multi-ele
tron S
hrödinger equation into an e�e
tive one-ele
tron Kohn-Sham equation,where the non-
lassi
al ele
troni
 intera
tions are repla
ed by a fun
tional of the 
harge density. Pseu-dopotential theory further simpli�es the problem by repla
ing the �all ele
tron� atomi
 potential with43



an e�e
tive �pseudopotential� that is smoother, but takes into a

ount the e�e
t of 
ore ele
trons.Combining pseudopotential with DFT greatly redu
es the number of one-ele
tron wave-fun
tions tobe 
omputed, but more importantly the energy and length s
ales are set solely by the valen
e states.As su
h, spe
ies su
h as a 
arbon and lead 
an be treated on equal footing. However, even withthese simpli�
ations, solving the Kohn-Sham equation remains 
omputationally 
hallenging when thesystems of interest 
ontain a large number, e.g., more than a few hundred, atoms.Several approa
hes have been advo
ated for solving the Kohn-Sham equations. They 
an be 
lassi�edin two major groups: basis-free or basis-dependent approa
hes, a

ording to whether they use anexpli
it basis set for ele
troni
 orbitals or not. Among the basis-dependent approa
hes, plane wavemethods are frequently used in appli
ations of DFT to periodi
 systems where plane waves 
aneasily a

ommodate the boundary 
onditions [7,8℄. In 
ontrast, lo
alized basis sets su
h as Gaussianorbitals are very popular in quantum-
hemistry appli
ations [6, 9℄. Spe
ial basis sets have also beendesigned for all-ele
tron DFT 
al
ulations, whi
h do not make use of pseudopotentials. These basissets in
lude: linearized augmented plane waves, mu�n-tin orbitals, proje
tor-augmented waves. Asurvey of advantages and disadvantages of these expli
it-basis methods 
an be found in [6, 10℄.Here we will fo
us on a di�erent approa
h based on real spa
e methods, whi
h are �basis free.� Realspa
e methods have gained ground in re
ent years [11�14℄ owing in great part to their simpli
ity andease of implementation. In parti
ular, these methods are readily implemented in parallel environments.A se
ond advantage is that, in 
ontrast with a plane wave approa
h, real spa
e methods do notimpose arti�
ial periodi
ity in non-periodi
 systems. In 
ontrast, plane wave basis te
hniques 
an beapplied to 
lusters (or mole
ules) by pla
ing the system of interest in a large super
ell. Provided thesuper
ell is su�
iently large so that the 
luster of interest is removed from neighboring repli
ants, theele
troni
 stru
ture solution will 
orrespond to that of the isolated 
luster. However, the potentialsfrom neighboring 
ells 
an be an issue. This makes super
ell solutions 
onverge slowly with the size ofthe 
ell [15℄. A related, and perhaps more signi�
ant issue, is that super
ells 
ompli
ate the handlingof systems that are not ele
troni
ally neutral. Charged systems 
an be handled within plane wavemethods by in
luding a 
ompensating uniform 
harge [15℄. Real spa
e methods need not addresssu
h 
ompli
ations. A third advantage is that the appli
ation of the Hamiltonian to ele
tron wave-fun
tions is performed dire
tly in real-spa
e. Although the Hamiltonian matrix in real spa
e methodsis typi
ally mu
h larger than with plane waves, the Hamiltonians are highly sparse and never stored or
omputed expli
itly. Only matrix-ve
tor produ
ts that represent the appli
ation of the Hamiltonianson wave-fun
tions need to be 
omputed.As in plane wave methods, the 
hief impediment to solving the Kohn-Sham problem is �diagonalizing�the Hamiltonian and obtaining a self-
onsistent �eld (SCF) solution. We present examples of are
ently developed nonlinear Chebyshev-�ltered subspa
e iteration (CheFSI) method, implemented inour own DFT solution pa
kage 
alled PARSEC (Pseudopotential Algorithm for Real-Spa
e Ele
troni
Cal
ulations) [11, 12℄. Although des
ribed in the framework of real-spa
e DFT, CheFSI 
an beemployed to other SCF iterations. The subspa
e �ltering method takes advantage of the fa
t thatintermediate SCF iterations do not require a

urate eigenvalues and eigenve
tors of the Kohn-Shamequation. 44



The �standard� SCF iteration framework is used in CheFSI, and a self-
onsistent solution is obtainedas with previous work, whi
h means that CheFSI has the same a

ura
y as other standard DFTapproa
hes. Unlike, some so-
alled �order-N� methods [16,17℄ CheFSI is equally appli
able to metalsand insulators. One 
an view CheFSI as a te
hnique to ta
kle dire
tly the original nonlinear Kohn-Shameigenvalue problems by a form of nonlinear subspa
e iteration, without emphasizing the intermediatelinearized Kohn-Sham eigenvalue problems. In fa
t, within CheFSI, expli
it eigenve
tors are 
omputedonly at the �rst SCF iteration, in order to provide a suitable initial subspa
e. After the �rst SCF step,the expli
it 
omputation of eigenve
tors at ea
h SCF iteration is repla
ed by a single subspa
e �lteringstep. The method rea
hes self-
onsisten
y within a number of SCF iterations that is 
lose to thatof eigenve
tor-based approa
hes. However, sin
e eigenve
tors are not expli
itly 
omputed after the�rst step, a signi�
ant gain in exe
ution time results when 
ompared with methods based on expli
itdiagonalization.When 
ompared with 
al
ulations based on e�
ient eigenvalue pa
kages su
h as ARPACK [18℄ andTRLan [19, 20℄ an order of magnitude speed-up is usually observed.CheFSI enabled us to perform a 
lass of highly 
hallenging DFT 
al
ulations, in
luding 
lusters withover ten thousand atoms, whi
h were not feasible before without invoking additional approximationsin the Kohn-Sham problem [21�24℄.2 Eigenvalue problems in density fun
tional 
al
ulationsThe Kohn-Sham equation as de�ned in density fun
tional theory is given by
[

−
~

2

2m
∇2 + Vtotal(ρ(r), r)

]

Ψi(r) = EiΨi(r), (1)where Ψi(r) is a wave fun
tion, Ei is a Kohn-Sham eigenvalue, ~ is the Plan
k 
onstant, and m isthe ele
tron mass. (We will often use atomi
 units: ~ = m = e = 1 in the following dis
ussion.)The total potential Vtotal, is the sum of three terms,
Vtotal(ρ(r), r) = Vion(r) + VH(ρ(r), r) + Vxc(ρ(r), r), (2)where Vion is the ioni
 potential, VH is the Hartree potential, and Vxc is the ex
hange-
orrelationpotential. The Hartree and ex
hange-
orrelation potentials depend on the 
harge density ρ(r), whi
his de�ned as

ρ(r) = 2

nocc
∑

i=1

|Ψi(r)|
2. (3)Here nocc is the number of o

upied states, whi
h is equal to half the number of valen
e ele
trons inthe system. The fa
tor of two 
omes from spin multipli
ity, if the system is non-magneti
. Eq. (3)
an be easily generalized to situations where the highest o

upied states have fra
tional o

upan
yor when there is an imbalan
e in the number of ele
trons for ea
h spin 
omponent.The most 
omputationally expensive step of DFT is in solving the Kohn-Sham Eq. (1). Sin
e Vtotaldepends on the 
harge density ρ(r), whi
h in turn depends on the wave fun
tions Ψi, Eq. (1), 
an45



be viewed as a nonlinear eigenvalue problem. The SCF iteration is a general te
hnique used to solvethis nonlinear eigenvalue problem. The iteration pro
ess begins with an initial guess of the 
hargedensity usually 
onstru
ted from a superposition of free atomi
 
harge densities, then obtains theinitial Vtotal and solves Eq. (1) for Ψi(r)'s to update ρ(r) and Vtotal. Then the Kohn-Sham (Eq. ( 1))is solved again for the new Ψi(r)'s and the pro
ess is iterated until Vtotal (and also the wave fun
tions)be
omes stationary. The standard SCF pro
ess is des
ribed in Algorithm 2.1 and illustrated in Fig. 1Algorithm 2.1 Self-
onsistent-�eld iteration:1. Provide initial guess for ρ(r), get Vtotal(ρ(r), r).2. Solve for Ψi(r), i = 1, 2, ..., from
[

−
1

2
∇2 + Vtotal(ρ(r), r)

]

Ψi(r) = EiΨi(r). (4)3. Compute the new 
harge density ρ(r) = 2
∑nocc

i=1
|Ψi(r)|

2.4. Obtain new Hartree potential VH by solving: ∇2VH(r) = −4πρ(r).5. Update Vxc; get new Ṽtotal(ρ, r) = Vion(r) + VH(ρ, r) + Vxc(ρ, r) with a potential-mixingstep.6. If ‖Ṽtotal − Vtotal‖ < tol, stop; Else, Vtotal ← Ṽtotal, goto step 2.The number of eigenve
tors needed in Step 2 of Algorithm 2.1 is just the number of o

upied states.In pra
ti
e, a few more eigenve
tors are usually 
omputed. For 
omplex systems, i.e., when thenumber of valen
e ele
trons is large, ea
h of the linearized eigenvalue problems 
an be 
omputationallydemanding. This is 
ompounded by the fa
t that Hamiltonian matri
es 
an be of very large size.
Assume initial density:  !

Solve:  !2
V
H
= "4#e$

Form:  V
T
= V

ion

p
+V

H
+V

xc

 

Solve:  
!!2"2

2m
V
ion

p
+V

H
+V

xc

#

$
%

&

'
()n

= E
n
)

n

Form:  !=e "n

n, occup

#
2Figure 1: Flow diagram for obtaining a self-
onsistent solution of the Kohn-Sham equation.For this reason, one hopes to lessen the burden of solving Eq. 4 in the SCF iteration. There are several46



options here. One 
ould use some physi
al arguments to redu
e the matrix size or zero some existingelements. Or, one 
ould attempt to avoid diagonalization altogether, as is done in work representedby linear-s
aling or order-N methods (see e.g. [16,17℄). This approa
h, however, has other limitations.In parti
ular, the approximations involved rely heavily on some de
ay properties of the density matrixin 
ertiain fun
tion bases. In parti
ular, they 
an be di�
ult to implement in real-spa
e dis
retizationsor for systems where the de
ay properties are not optimal, e.g., in metals. Another option is to usebetter (faster) diagonalization routines. However, this approa
h is limited as most diagonalizationsoftware is quite mature.Our approa
h avoids standard diagonalizations, but otherwise makes no new approximations to theHamiltonian. We take advantage of the fa
t that a

urate eigenve
tors are unne
essary at ea
h SCFiteration, sin
e Hamiltonians are only approximate in the intermediate SCF steps, and exploit thenonlinear nature of the problem. The main point of the new algorithm is that on
e we have a goodstarting point for the Hamiltonian, it su�
es to �lter ea
h basis ve
tor at ea
h iteration. In theintermediate SCF steps, these ve
tors are no longer eigenve
tors but together they represent a goodbasis of the desired invariant subspa
e.3 Numeri
al methods for parallel platformsThe motivation and original ideas behind our real spa
e method (PARSEC) go ba
k to the early1990s, see [11, 12℄. Within PARSEC, an uniform Cartesian grid in real-spa
e is pla
ed on the regionof interest, and the Kohn-Sham equation is dis
retized by a high order �nite-di�eren
e method [25℄on this grid. Wave fun
tions are expressed as values on grid positions. Outside a spe
i�ed sphereboundary that en
loses the physi
al system, wave fun
tions are set to zero for non-periodi
 systems.In addition to the advantages mentioned in the introdu
tion, another advantage of the real-spa
eapproa
h is that periodi
 boundary 
onditions are also reasonably simple to implement [26℄.The latest version of PARSEC is written in Fortran 90/95. PARSEC has now evolved into a mature,massively parallel pa
kage, whi
h in
ludes most of the fun
tionality of 
omparable DFT 
odes [27℄.The reader is referred to [28, 29℄ for details and the rationale of the parallel implementation. ThePARSEC software 
an be obtained fromhttp://parse
.i
es.utexas.edu/The following is a brief summary of the most important points. PARSEC allows for either parallel orsequential ex
e
utions. When run in the parallel mode, PARSEC uses the standard Message PassingInterfa
e (MPI) library for 
ommuni
ation. Parallelization is a
hieved by partitioning the physi
aldomain whi
h 
an have various shapes depending on boundary 
onditions and symmetry operations.Fig. 2 illustrates four 
ube-shaped neighboring sub-domains. For a generi
, 
on�ned system withoutsymmetry, the physi
al domain is a sphere whi
h 
ontains all atoms plus some additional spa
e (owingto delo
alization of ele
tron 
harge).In re
ent years, PARSEC has been enhan
ed to take advantage of physi
al symmetry. If the systemis invariant upon 
ertain symmetry operations, the physi
al domain is repla
ed with an irredu
iblewedge 
onstru
ted a

ording to those operations. For example, if the system has mirror symmetry47



Figure 2: Sample de
omposition of a physi
al domain used in the PARSEC pa
kage.on the xy plane, the irredu
ible wedge 
overs only one hemisphere, either above or below the mirrorplane. For periodi
 systems, the physi
al domain is the periodi
 
ell, or an irredu
ible wedge of it ifsymmetry operations are present. In any 
ir
umstan
e, the physi
al domain is partitioned in 
ompa
tregions, ea
h assigned to one pro
essor only. Good load balan
e is ensured by enfor
ing that the
ompa
t regions have approximately the same number of grid points.On
e the physi
al domain is partitioned, the physi
al problem is mapped onto the pro
essors in adata-parallel way: ea
h pro
essor is in 
harge of a blo
k of rows of the Hamiltonian 
orrespondingto the blo
k of grid points assigned to it. The eigenve
tor and potential ve
tor arrays are row-wisedistributed in the same fashion. The program only requires an index fun
tion indx(i, j, k) whi
hreturns the number of the pro
essor in whi
h the grid point (i, j, k) resides.Be
ause the Hamiltonian matrix is never stored, we need an expli
it reordering s
heme whi
h renum-bers rows 
onse
utively from one pro
essor to the next one. For this purpose we use a list of pointersthat gives for ea
h pro
essor, the row with whi
h it starts.Sin
e �nite di�eren
e dis
retizetion is used, when performing an operation su
h as a matrix-ve
torprodu
t, 
ommuni
ation will be required between nearest neighbor pro
essors. For 
ommuni
ation weuse two index arrays, one to 
ount how many and whi
h rows are needed from neighbors, the otherto 
ount the number of lo
al rows needed by neighbors. With this de
omposition and mapping, thedata required by the program is 
ompletely distributed. In other words, the 
ode runs in the so-
alled�Single Program Multiple Data� approa
h. For large problems it is quite important to be able todistribute memory loads among pro
essors on high performan
e 
omputers. For example, 
ertainlarge jobs 
an simply not be run on a small number of pro
essors on good-size distributed memoryma
hines.Parallelizing subspa
e methods for the linearized eigenvalue problems (represented as Eq. 4) be
omesquite straightforward with the above mentioned de
omposition and mapping. Note that the subspa
ebasis ve
tors 
ontain approximations to eigenve
tors, therefore the rows of the basis ve
tors aredistributed in the same way as the rows of the Hamiltonian. In this way, all ve
tor updates (e.g.,linear 
ombinations of ve
tors), 
an be exe
uted lo
ally (i.e., without 
ommuni
ation). Matrix-ve
tor produ
ts, and matrix-matrix produ
ts, 
an be easily exe
uted in parallel but may require some
ommuni
ation with a few neighbors. Redu
tion operations, e.g., 
omputing inner produ
ts andmaking the result available in ea
h pro
essor, are e�
iently handled by the MPI redu
tion fun
tion48



MPI_ALLREDUCE().4 The nonlinear Chebyshev-�ltered subspa
e iterationSin
e the Hamiltonians of the intermediate SCF steps are approximate, there is no need to 
omputeeigenve
tors of the intermediate Hamiltonians to a high a

ura
y. Moreover, as observed in Refs. [13,17, 22, 30�32℄, the (dis
retized) 
harge density is the diagonal of the �fun
tional� 
harge densitymatrix de�ned as P = ΦΦT , where the 
olumns of the matrix Φ are dis
retized wave fun
tions
orresponding to o

upied states. Noti
e that for any orthonormal matrix Q of a suitable dimension,
P = (ΦQ)(ΦQ)T . Therefore, expli
it eigenve
tors are not needed to 
al
ulate the 
harge density.Any orthonormal basis of the eigensubspa
e 
orresponding to o

upied states 
an give the desiredintermediate 
harge density.The proposed method 
ombines the outer SCF iteration and the inner iteration required for diagonal-ization at ea
h SCF step into one nonlinear subspa
e iteration. In this approa
h an initial subspa
eis progressively re�ned by a low degree Chebyshev polynomials �ltering. This means that ea
h basisve
tor ui is pro
essed as follows:

ui,new := pm(H)uiwhere pm is some shifted and s
aled Chebyshev poynomial whose goal is to enhan
e eigen
omponentsof ui asso
iated with the o

upied states. Throughout the arti
le the integer m denotes the degreeof the polynomial pm whi
h is used for �ltering.If it were not for the nonlinear nature of the SCF loop, i.e., if H were a �xed operator, this approa
hwould be equivalent to the well-known Chebyshev a

elerated subspa
e iteration proposed by Bauer[33℄, and later re�ned by Rutishauser [34, 35℄4.Chebyshev polynomial �ltering has long been utilized in ele
troni
 stru
ture 
al
ulations (see e.g.[30, 36�40℄), fo
ussing primarily on approximating the Fermi-Dira
 operator.Chebyshev polynomials of rather high degree were ne
essary and additional te
hniques were requiredto suppress the Gibbs phenomena. In 
ontrast, the polynomials used in our approa
h are of relativelylow degree (say < 20). They exploit the fast growth property of Chebyshev polynomials outside theinterval [−1, 1] to �lter out undesired eigen
omponents.The main idea of CheFSI is to start with a good initial subspa
e V 
orresponding to o

upied states ofthe initial Hamiltonian, this initial V is usually obtained by a diagonalization step. No diagonalizationsare ne
essary after the �rst SCF step. Instead, the subspa
e from the previous iteration is �ltered bya degree-m polynomial, pm(t), 
onstru
ted for the 
urrent Hamiltonian H. The polynomial di�ersat ea
h SCF step sin
e H 
hanges. Note that the goal of the �lter is to make the subspa
e spannedby pm(H)V approximate the eigensubspa
e 
orresponding to the o

upied states of the �nal H.At the intermediate SCF steps, the basis need not be an a

urate eigenbasis sin
e the intermediate4Rutishauser published an Algol routine 
alled ritzit in the volume: �Handbook for automati
 
omputations:linear algebra�, see [35℄. This volume was largely at the origin of the EISPACK pa
kage (whi
h later be
ame apart of LAPACK), but Rutishauser's ritzit Algol routine was not translated into EISPACK.49



Hamiltonians are not exa
t. The �ltering is designed so that the resulting sequen
e of subspa
es willprogressively approximate the desired eigensubspa
e of the �nal Hamiltonian when self-
onsisten
yis rea
hed. At ea
h SCF step, only two parameters are required to 
onstru
t an e�
ient Chebyshev�lter, namely, a lower bound and an upper bound of the higher portion of the spe
trum of the 
urrentHamiltonian H in whi
h we want pm(t) to be small. These bounds 
an be obtained with littleadditional 
ost, as will be seen in Se
tion 4.2.After self-
onsisten
y is rea
hed, the Chebyshev �ltered subspa
e in
ludes the eigensubspa
e 
or-responding to o

upied states. Expli
it eigenve
tors 
an be readily obtained by a Rayleigh-Ritzre�nement [41℄ (also 
alled subspa
e rotation) step.4.1 Chebyshev-�ltered subspa
e iterationThe main stru
ture of CheFSI, whi
h is given in Algorithm 4.1, is quite similar to that of the standardSCF iteration (Algorithm 2.1). One major di�eren
e is that the inner iteration for diagonalization atStep 2 is now performed only at the �rst SCF step. Thereafter, diagonalization is repla
ed by a singleChebyshev subspa
e �ltering step, performed by 
alling Algorithm 4.2.Although the 
harge density (Eq. (3)) requires only the lowest nocc states, the number of 
omputedstates, whi
h is the integer s in Algorithm 4.1, is typi
ally set to a value larger than nocc, in order toavoid missing any o

upied states. In pra
ti
e we �x an integer nstate whi
h is slightly larger than
nocc, and set s = nstate + nadd with nadd ≤ 10.The parallel implementations of Algorithms 4.1 and 4.2 are quite straightforward with the parallelparadigm dis
ussed in Se
tion 3. We only mention that the matrix-ve
tor produ
ts related to �l-tering, 
omputing upper bounds, and Rayleigh-Ritz re�nement, 
an easily exe
ute in parallel. There-orthogonalization at Step 4 of Algorithm 4.2 uses a parallel version of the iterated Gram-S
hmidtDGKS method [42℄, whi
h s
ales better than the standard modi�ed Gram-S
hmidt algorithm. Thispro
ess is illustrated in Fig. 3.The estimated 
omplexity of the algorithm is similar to that of the sequential CheFSI method in [22℄.For parallel 
omputation it su�
es to estimate the 
omplexity on a single pro
essor. Assume that ppro
essors are used, i.e., ea
h pro
essor shares N/p rows of the full Hamiltonian. The estimated 
ostof Algorithm 4.2 on ea
h pro
essor with respe
t to the dimension of the Hamiltonian denoted by N ,and the number of 
omputed states s, is as follows:� The Chebyshev �ltering in Step 3 
osts O(s∗N/p) �ops. The dis
retized Hamiltonian is sparseand ea
h matrix-ve
tor produ
t on one pro
essor 
osts O(N/p) �ops. Step 3 requires m ∗ smatrix-ve
tor produ
ts, at a total 
ost of O(s∗m∗N/p) where the degree m of the polynomialis small (typi
ally between 8 and 20).� The ortho-normalization in Step 4 
osts O(s2∗N/p) �ops. There are additional 
ommuni
ation
osts be
ause of the global redu
tions.� The eigen-de
omposition at Step 5 
osts O(s3) �ops.� The �nal basis re�nement step (Φ := ΦQ) 
osts O(s2 ∗N/p).50



If a standard iterative diagonalization method is used to solve the linearized eigenproblem (Eq. 4)at ea
h SCF step, then it also requires (i) the orthonormalization of a (typi
ally larger) basis; (ii)the eigen-de
omposition of the proje
ted Rayleigh-quotient matrix; and (iii) the basis re�nement(rotation). These operations need to be performed several times within this single diagonalization.But Algorithm 4.2 performs ea
h of these operations only on
e per SCF step. Therefore, althoughAlgorithm 4.2 s
ales in a similar way to standard diagonalization-based methods, the s
aling 
onstantis mu
h smaller. For large problems, CheFS 
an a
hieve a tenfold or more speedup per SCF step,over using the well-know e�
ient eigenvalue pa
kages su
h as ARPACK [18℄ and TRLan [19, 20℄.S e l e c t i n i t i a l P o t e n t i a l ( e . g . , s u p e r p o s e a t o m i cc h a r g e d e n s i t i e s )G e t i n i t i a l b a s i s : { ψ n } f r o m d i a g o n a l i z a t i o nF i n d t h e c h a r g e d e n s i t y f r o m t h e b a s i s :ρ = ψ nn , o c c u p∑ 2S o l v e f o r V H a n d a n d c o m p u t e V x c :∇ 2 V H = − 4 π ρ V x c = V x c [ ρ ]C o n s t r u c t H a m i l t o n i a n :H = − 12 ∇ 2 + V i o nP + V H + V x cA p p l y C h e b y s h e v fi l t e r t o t h e b a s i s :ψ n{ } = m ( ) ψ n{ }Figure 3: Flow diagram for obtaining a self-
onsistent solution of the Kohn-Sham equation usingdamped Chebyshev subspa
e �ltering.In summary, a standard SCF method has an outer SCF loop�the usual nonlinear SCF loop, andan inner diagonalization loop, whi
h iterates until eigenve
tors are within spe
i�ed a

ura
y. Algo-rithm 4.1 essentially bypasses the se
ond loop, or rather it merges it into a single outer loop, whi
h
an be 
onsidered as a nonlinear subspa
e iteration algorithm. The inner diagonalization loop isrepla
ed by a single Chebyshev subspa
e �ltering step.4.2 Chebyshev �lters and estimation of boundsChebyshev polynomials of the �rst kind are de�ned, for k = 0, 1, · · · , by (see e.g., [41, p.371℄,or [43, p.142℄):
Ck(t) =







cos(k cos−1(t)), −1 ≤ t ≤ 1,

cosh(k cosh−1(t)), |t| > 1.51



Algorithm 4.1 CheFSI for SCF 
al
ulation:1. Start from an initial guess of ρ(r), get Vtotal(ρ(r), r).2. Solve [

−1

2
∇2 + Vtotal(ρ(r), r)

]

Ψi(r) = EiΨi(r) for Ψi(r), i = 1, 2, ..., s.3. Compute new 
harge density ρ(r) = 2
∑nocc

i=1
|Ψi(r)|

2.4. Solve for new Hartree potential VH from ∇2VH(r) = −4πρ(r).5. Update Vxc; get new Ṽtotal(ρ, r) = Vion(r) + VH(ρ, r) + Vxc(ρ, r) with a potential-mixingstep.6. If ‖Ṽtotal − Vtotal‖ < tol, stop; Else, Vtotal ← Ṽtotal (update H impli
itly),
all the Chebyshev-�ltered subspa
e method (Algorithm 4.2) to get s approximate wave fun
-tions; goto step 3.
Algorithm 4.2 Chebyshev-�ltered Subspa
e (CheFS) method:1. Get the lower bounds blow and γ from previous Ritz values (use the largest one and thesmallest one, respe
tively).2. Compute the upper bound bup of the spe
trum of the 
urrent dis
retizedHamiltonian H (
all Algorithm 4.4 in Se
tion 4.2).3. Perform Chebyshev �ltering (
all Algorithm 4.3 in Se
tion 4.2) on the previous basis Φ,where Φ 
ontains the dis
retized wave fun
tions of Ψi(r), i = 1, ..., s:

Φ = Chebyshev_filter(Φ, m, blow, bup, γ).4. Ortho-normalize the basis Φ by iterated Gram-S
hmidt.5. Perform the Rayleigh-Ritz step:(a) Compute Ĥ = ΦTHΦ;(b) Compute the eigende
omposition of Ĥ: ĤQ = QD,where D 
ontains non-in
reasingly ordered eigenvalues of Ĥ, and Q 
ontains the 
or-responding eigenve
tors;(
) 'Rotate' the basis as Φ := ΦQ; return Φ and D.
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Figure 4: Degree 8 Chebyshev polynomial on the interval [-1, 1℄ s
aled to one at γ = −0.2.The shaded area 
orresponds to eigen-
omponents that will be ampli�ed relative to the othereigen
omponents, those 
orresponding to the interval [−1, 1], whi
h will be dampened.Note that C0(t) = 1, C1(t) = t. The following important 3-term re
urren
e is easy to derive fromproperties of the 
osine fun
tion,
Ck+1(t) = 2t Ck(t)− Ck−1(t), t ∈ R. (5)By �ltering we mean a pro
ess applied to a ve
tor that has the e�e
t of magni�ant desired eigen-
omponents of this ve
tor relative to other, undesirable, 
omponents. If the pro
ess is repeatedinde�nitely, the resulting ve
tor will have zero 
omponents in the undesirable part of the spe
trum.In our 
ontext, we need to �lter out all 
omponents asso
iated with the non-o

upied states, or,equivalently to enhan
e the 
omponents asso
iated with o

upied states, relative to other 
omponents.Filtering 
an be readily a
hieved by exploiting well-known properties of Chebyshev polynomials. It isknown that among all polynomials of degree k, whi
h have value one at a 
ertain point |γ| > 1, thepolynomial Ck(t)/Ck(γ) is the one whose maximum absolute value in the interval [−1, 1] is minimal.Thus, Ck(t)/Ck(γ) 
an be viewed as an optimal polynomial if one wishes to dampen values of thepolynomial in [−1, 1] among all polynomials p of degree k, s
aled so that p(γ) = 1. The 8th degreeChebyshev polynomial s
aled at γ = −0.2 is shown in Figure 4.Assume that the full spe
trum of H (denoted by Λ(H)) is 
ontained in [γ, b]. Then, in orderto approximate the eigensubspa
e asso
iated with the lower end of the spe
trum, say [γ, a] with

γ < a < b, it is ne
essary to map [a, b] into [−1, 1] before applying the Chebyshev polynomnial. This
an be easily realized by an a�ne mapping de�ned as
L(t) :=

t− c

e
; c =

a + b

2
, e =

b− a

2where c denotes the 
enter and e the half-width of the interval [a, b]. The Chebyshev iteration utilizingthe three-term re
urren
e (5) to dampen values on the interval [a, b] is listed in Algorithm 4.3, see53



also [22℄. The algorithm 
omputes
Y = pm(H)X where pm(t) = Cm [L(t)] . (6)This yields the iteration

Xj+1 =
2

e
(H − cI)Xj −Xj−1, j = 1, 2, ...,m − 1.with X0 given and X1 = (H − cI)X0.The above iteration is without any s
aling. In the 
ase of the interval [−1, 1] we s
aled the polynomialby Ck(γ) in order to ensure that the value of the polynomial at γ equals one. For general intervals,this leads to the s
aled sequen
e of polynomials [43℄

X̃j =
Cj [

2

e
(H − cI)]

Cj [
2

e
(γ − cI)]

X0.Thus, the s
aling fa
tor is ρj = Cj[
2

e
(γ − cI)]. Clearly this requires an estimate for γ whi
h, in our
ase, is the smallest eigenvalue of the Hamiltonian. However, sin
e this is used for s
aling, for thepurpose of avoiding over�ow, only a rough value is needed. For the �rst SCF iteration, we 
an usethe smallest Ritz value of T from the same Lan
zos run (Algorithm 4.4 below) as used to obtain theupper bound b for γ. For the latter SCF steps, the smallest Ritz value from the previous SCF step
an be used. Clearly, the ve
tor sequen
e is not 
omputed as shown above be
ause ρj itself 
an belarge and this would defeat the purpose of s
aling. Instead, ea
h X̃j+1 is updated using the s
aledve
tors X̃j and X̃j−1. The 
orresponding algorithm, dis
ussed in [43℄ is shown in Algorithm 4.3 (thetildes and ve
tor subs
ripts are omitted).The eigen-
omponents asso
iated with eigenvalues in [a, b] will be transformed to small values whilethose to the left of [a, b] will be around unity owing to the properties of the Chebyshev polynomials.This is the desired �ltering property when 
omputing an approximation to the eigensubspa
e asso
iatedwith the lower end of Λ(H). As seen in Algorithm 4.3, a desired �lter 
an be easily 
ontrolled byadjusting two endpoints that bound the higher portion of Λ(H).The wanted lower bound 
an be any value whi
h is larger than the Fermi-level but smaller than theupper bound. It 
an also be a value slightly smaller than the Fermi-level; thanks to the monotoni
ityof the shifted and s
aled Chebyshev polynomial on the spe
trum of H, and the fa
t that we 
ompute

s > nocc number of Ritz values, the desired lowered end of the spe
trum will still be magni�edproperly with this 
hoi
e of lower bound.Sin
e the previous SCF iteration performs a Rayleigh-Ritz re�nement step, it provides naturally anapproximation for the lower bound a. Indeed, we 
an simply take the largest Rayleigh-quotient fromthe previous SCF iteration step as an approximation to the lower bound for the 
urrent Hamiltonian.In other words, a is taken to be the largest eigenvalue 
omputed in step 5-(b) of Algorithm 4.2 fromthe previous SCF iteration, with no extra 
omputation.The upper bound for the spe
trum (denoted by b) 
an be estimated by a k-step standard Lan
zosmethod. As pointed out in [23℄, the higher endpoint b must be a bound for the full spe
trum of
H. This is be
ause the Chebyshev polynomial also grows fast to the right of [−1, 1]. So if [a, b]54



Algorithm 4.3 [Y ] = Chebyshev_filter(X,m, a, b, γ).Purpose: Filter 
olumn ve
tors of X by an m degree Chebyshev polynomial in H that dampenson the interval [a, b]. Output the �ltered ve
tors in Y .1. e = (b− a)/2; c = (b + a)/2;2. σ = e/(γ − c); σ1 = σ; γ = 2/σ1.3. Y = σ1

e
(HX − cX);4. For i = 2 : m5. σ2 = 1/(γ − σ);6. Ynew = 2σ2

e
(HY − cY )− σσ2X;7. X = Y ;8. Y = Ynew;9. σ = σ2;10. End Forwith b < λmax(H) is mapped into [−1, 1], then the [b, λmax(H)] portion of the spe
trum will alsobe magni�ed, whi
h will 
ause the pro
edure to fail. Therefore, it is imperative that the bound bbe larger than λmax(H). On the other hand it should not be too large as this would result in slow
onvergen
e. The simplest strategy whi
h 
an be used for this is to use Gers
hgorin's Cir
le Theorem.Bounds obtained this way 
an, however, overestimate λmax(H).An inexpensive way to estimate an upper bound of Λ(H) by the standard Lan
zos [44℄ method isdes
ribed in Algorithm 4.4, to whi
h a safeguard step is added. The largest eigenvalue λ̃ of thetridiagonal matrix T is known to be below the largest eigenvalue λ of the Hamiltonian. If ũ isthe 
orresponding Ritz ve
tor and r = (H − λ̃I)ũ then there is an eigenvalue of H in the interval

[λ̃−‖r‖, λ̃ + ‖r‖] (see e.g. [41℄). Algorithm 4.4 estimates λmax by max(λ̃) + ‖f‖, sin
e it is knownthat ‖r‖ ≤ ‖f‖. This is not theoreti
ally guaranteed to return an upper bound for λmax - but it isgenerally observed to yield an e�e
tive upper bound. The algorithm for estimating b is presented inAlgorithm 4.4 below. Note that the algorithm is easily parallelizable as it relies mostly on matrix-ve
tor produ
ts. In pra
ti
e, we found that k = 4 or 5 is su�
ient to yield an e�e
tive upper boundof Λ(H). Larger k values (e.g., k > 10) are not ne
essary in general.In the end we 
an see that the extra work asso
iated with 
omputing bounds for 
onstru
ting theChebyshev polynomials is negligible. The major 
ost of �ltering is in the three-term re
urren
esin Algorithm 4.3, whi
h involve matrix-ve
tor produ
ts. The polynomial degree m is left as a freeparameter. Our experien
e indi
ates that an m between 8 and 20 is good enough to a
hieve overallfast 
onvergen
e in the SCF loop.
55



Algorithm 4.4 Estimating an upper bound of Λ(H) by k-step Lan
zos:1. Generate a random ve
tor v, set v ← v/‖v2‖;2. Compute f = Hv; α = fTv; f ← f − αv; T (1, 1) = α;3. Do j = 2 to min(k, 10)4. β = ‖f2‖;5. v0 ← v; v ← f/β;6. f = Hv; f ← f − βv0;7. α = fTv; f ← f − αv;8. T (j, j − 1) = β; T (j − 1, j) = β; T (j, j) = α;9. End Do10. Return ‖T2‖+ ‖f2‖ as the upper bound.
5 Diagonalization in the �rst SCF iterationWithin CheFSI, the most expensive SCF step is the �rst one, as it involves a diagonalization in order to
ompute a good subspa
e to initiate the nonlinear SCF loop. This se
tion dis
usses options availablefor this task.In prin
iple, any e�e
tive eigenvalue algorithms 
an be used for the �rst SCF step. PARSEC originallyhad three diagonalization methods: Diagla, whi
h is a pre
onditioned Davidson method [28, 29℄; thesymmetri
 eigensolver in ARPACK [18, 45℄; and the Thi
k-Restart Lan
zos algorithm 
alled TRLan[19,20℄. For systems of moderate sizes, Diagla works well, and then be
omes less 
ompetitive relativeto ARPACK or TRLan for larger systems when a large number of eigenvalues are required. TRLanis about twi
e as fast as the symmetri
 eigensolver in ARPACK, be
ause of its redu
ed need forre-orthogonalization. In [22℄, TRLan was used for the diagonalization at the �rst SCF step.Another option suggested and tested in [32℄ but not implemented in PARSEC, is to resort to theLan
zos algorithm with partial reorthogonalization. Partial reorthogonalization Lan
zos would runthe Lan
zos algorithm without restarting, reorthogonalizing the ve
tors only when needed, see [41℄.This is a very e�e
tive pro
edure, some would even say optimal in some sense, ex
ept that it typi
allyrequires an enormous amount of memory. As illustrated in [32℄ the method 
an be 5 to 7 times fasterthan ARPACK for moderate size problems. It is possible to address the memory problem by resortingto se
ondary storage, though parallel implementations would be tedious.At the other extreme when 
onsidering memory usage, one 
an use the Chebyshev �ltered subspa
eiteration in its linear implementation. This means that we will now add an outer loop to the pro-
edure des
ribed by Algorithm 4.2 and test 
onvergen
e for the same Hamiltonian (the initial one)without updating potential from one outer loop to the next. Pra
ti
ally, this is simply as a variant of56



Algorithm 4.1, whereby step 2 is repla
ed by as many �ltering steps of Algorithm 4.2 as are requiredfor the subspa
e to 
onverge. This pro
edure is the most e
onomi
al in terms of memory, so it is re
-ommended if memory is an issue. However, it is well-known that subspa
e iteration methods (linear)are not as e�e
tive as the Lan
zos algorithm, and other Krylov-based methods, see, e.g., [41, Chap.14℄.Even with standard restart methods su
h as ARPACK and TRLan, the memory demand 
an stillremain too high in some 
ases. Hen
e, it is important to develop a diagonalization method that isless memory demanding but whose e�
ien
y is 
omparable to ARPACK and TRLan. The Chebyshev-Davidson method [23, 24℄ was developed with these two goals in mind. Details 
an be found in [23,24℄. The prin
iple of the method is to simply build a subspa
e by a pro
edure based on a form ofBlo
k-Davidson approa
h. The Blo
k-Davidson approa
h builds a subspa
e by adding a 'window' ofpre
onditioned ve
tors. In the Chebyshev-Davidson approa
h, these ve
tors are built by exploitingChebyshev polynomials.The �rst step diagonalization by the blo
k Chebyshev-Davidson method, together with the Chebyshev-�ltered subspa
e method (Algorithm 4.2), enabled us to perform SCF 
al
ulations for a 
lass of largesystems, in
luding the sili
on 
luster Si9041H1860 for whi
h over 19,000 eigenve
tors of a Hamiltonianwith dimension around 3 million were to be 
omputed. These systems are pra
ti
ally infeasible with theother three eigensolvers (ARPACK, TRLan and Diagla) in PARSEC, using the 
urrent super
omputerresour
es available to us at the Minnesota Super
omputing Institute (MSI).Though results obtained with the Chebyshev-Davidson method in the �rst step diagonalization aresatisfa
tory, there is still mu
h work to be done in this area. We do not know for example how a

uratethe subspa
e must be in order to be a good initial guess to ensure 
onvergen
e. It may possible tofurther redu
e exe
ution times by 
hanging the stopping 
riterion needed in the �rst SCF step. It maybe also possible to exploit well-known �global 
onvergen
e� strategies utilized for non-linear iterations(su
h as 
ontinuation, or damping) to avoid 
ompletely the �rst step diagonalization.6 Numeri
al ResultsPARSEC has been applied to study a wide range of material systems (e.g. [12,26,27℄). The fo
us ofthis se
tion is on large systems where relatively few numeri
al results exist be
ause of the infeasibilityof eigenve
tor-based methods. We mention that Ref. [46℄ 
ontains very interesting studies on 
lusters
ontaining up to 1100 sili
on atoms, using the well-known e�
ient plane wave DFT pa
kage VASP[8,47℄; however, it is stated in Ref. [46℄ that a 
luster with 1201 sili
on atoms is �too 
omputationallyintensive.� As a 
omparison, PARSEC using CheFSI, together with the 
urrently developed symmetri
operations of real-spa
e pseudopotential methods [48℄, 
an now routinely solve sili
on 
lusters withseveral thousands of atoms.The hardware used for the 
omputations is the SGI Altix 
luster at MSI, it 
onsists of 256 IntelItanium pro
essors at CPU rates of 1.6 GHz, sharing 512 GB of memory (but a single job is allowedto request at most 250 GB memory).The goal of the 
omputations is not to study the parallel s
alability of PARSEC, but rather to use57



PARSEC to do SCF 
al
ulation for large systems that were not studied before. Therefore, we donot use di�erent pro
essor numbers to solve the same problem. S
alability is studied in [29℄ forthe pre
onditioned Davidson method, we mentioned that the s
alability of CheFSI is better thaneigenve
tor-based methods be
ause of the redu
ed reorthogonalizations.In the reported numeri
al results, the total_eV/atom is the total energy per atom in ele
tron-volts,this value 
an be used to assess a

ura
y of the �nal result; the #SCF is the iteration steps neededto rea
h self-
onsisten
y; and the #MVp 
ounts the number of matrix-ve
tor produ
ts. Clearly #MVpis not the only fa
tor that determines CPU time, the orthogonalization 
ost 
an also be a signi�
ant
omponent.For all of the reported results for CheFSI, the �rst step diagonalization used the Chebyshev-Davidsonmethod. In Tables 4�11, the 1st CPU denotes the CPU time spent on the �rst step diagonalizationby Chebyshev-Davidson; the total CPU 
ounts the total CPU time spent to rea
h self-
onsisten
yby CheFSI. dim. of H nstate #MVp #SCF total_eV/atom 1st CPU total CPU1074080 5843 1400187 14 -86.16790 7.83 hrs. 19.56 hrs.Table 4: Si2713H828, using 16 pro
essors. m = 17 for Chebyshev-Davidson; m = 10 for CheFS.(First step diagonalization by TRLan 
ost 8.65 hours, proje
ting it into a 14-steps SCF iteration
ost around 121.1 hours.)The �rst example (Table 5) is a relatively small sili
on 
luster Si525H276, whi
h is used to 
omparethe performan
e of CheFSI with two eigenve
tor-based methods. All methods use the same symmetryoperations [48℄ in PARSEC.method #MVp #SCF steps total_eV/atom CPU(se
s)CheFSI 189755 11 -77.316873 542.43TRLan 149418 10 -77.316873 2755.49Diagla 493612 10 -77.316873 8751.24Table 5: Si525H276, using 16 pro
essors. The Hamiltonian dimension is 292584, where 1194states need to be 
omputed at ea
h SCF step. The �rst step diagonalization by Chebyshev-Davidson 
ost 79755 #MVp and 221.05 CPU se
onds; so the total #MVp spent on CheFS inCheFSI is 110000. The polynomial degree used is m = 17 for Chebyshev-Davidson and m = 8 forCheFS. The �st step diagonalization by TRLan requires 14909 #MVp and 265.75 CPU se
onds.For larger 
lusters Si2713H828 (Table 4) and Si4001H1012 (Table 6), Diagla be
ame too slow to bepra
ti
al. However, we 
ould still apply TRLan for the �rst step diagonalization for 
omparison, but wedid not iterate until self-
onsisten
y was rea
hed sin
e that would 
ost a signi�
ant amount of our CPUquota. Note that with the problem size in
reasing, Chebyshev-Davidson 
ompares more favorably overTRLan. This is be
ause we employed an additional tri
k in Chebyshev-Davidson, whi
h 
orresponds58



to allowing the last few eigenve
tors not to 
onverge to the required a

ura
y. The number of thenon fully 
onverged eigenve
tors is bounded above by actmax, whi
h is the maximum dimension ofthe a
tive subspa
e. Typi
ally 30 ≤ actmax ≤ 300 for Hamiltonian size over a million where severalthousand eigenve
tors are to be 
omputed. The implementation of this tri
k is rather straightforwardsin
e it 
orresponds to applying the CheFS method to the subspa
e spanned by the last few ve
torsin the basis that have not 
onverged to required a

ura
y.dim. of H nstate #MVp #SCF total_eV/atom 1st CPU total CPU1472440 8511 1652243 12 -89.12338 18.63 hrs. 38.17 hrs.Table 6: Si4001H1012, using 16 pro
essors. m = 17 for Chebyshev-Davidson; m = 8 for CheFS.(First step diagonalization by TRLan 
ost 34.99 hours, proje
ting it into a 12-steps SCF iteration
ost around 419.88 hours.)For even larger 
lusters Si6047H1308 (Table 8) and Si9041H1860 (Table 7), it be
ame impra
ti
alto apply TRLan for the �rst step diagonalization be
ause of too large memory requirements. Forthese large systems, using an eigenve
tor-based method for ea
h SCF step is 
learly not feasible.We note that the 
ost for the �rst step diagonalization by Chebyshev-Davidson is still rather high,it took 
lose to 50% of the total CPU. In 
omparison, the CheFS method (Algorithm 4.2) savesa signi�
ant amount of CPU for SCF 
al
ulations over diagonalization-based methods, even if verye�
ient eigenvalue algorithms are used.dim. of H nstate #MVp #SCF total_eV/atom 1st CPU total CPU2992832 19015 4804488 18 -92.00412 102.12 hrs. 294.36 hrsTable 7: Si9041H1860, using 48 pro
essors. m = 17 for Chebyshev-Davidson; m = 8 for CheFS.dim. of H nstate #MVp #SCF total_eV/atom 1st CPU total CPU2144432 12751 2682749 14 -91.34809 45.11 hrs. 101.02 hrs.Table 8: Si6047H1308, using 32 pro
essors. m = 17 for Chebyshev-Davidson; m = 8 for CheFS.On
e the DFT problem, Eq. (1), is solved, we have a

ess to several physi
al quantities. One ofthem is the ionization potential (IP) of the nano
rystal, de�ned as the energy required to remove oneele
tron from the system. Numeri
ally, we use a ∆SCF method: perform two separate 
al
ulations,one for the neutral 
luster and another for the ionized one, and observe the variation in total energybetween these 
al
ulations. Fig. 5 shows the IP of several 
lusters, ranging from the smallest possible(SiH4) to Si9041H1860. For 
omparison, we also show the eigenvalue of the highest o

upied Kohn-Sham orbital, EHOMO. A known fa
t of DFT-LDA is that the negative of the EHOMO energy islower than the IP in 
lusters [6℄, whi
h is 
on�rmed in Figure 5. In addition, the �gure shows thatthe IP and −EHOMO approa
h ea
h other in the limit of extremely large 
lusters.59
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Figure 5: Ionization potential, IP, (
rosses) and ele
tron af��nity, EA, (�plus� signs), for various
lusters with diameters ranging from 0 nm (SiH4) to 7 nm (Si9041H1860). �Squares� denote thenegative of the highest o

upied mole
ular orbital (−EHOMO) eigenvalue energy of the neutral
luster. �Diamonds� denote the negative of the lowest uno

upied mole
ular orbitaleigenvalueenergy (−ELUMO).Fig. 5 also shows the ele
tron a�nity (EA) of the various 
lusters. The EA is de�ned as the energyreleased by the system when one ele
tron is added to it. Again, we 
al
ulate it by performingSCF 
al
ulations for the neutral and the ionized systems (negatively 
harged instead of positively
harged now). In PARSEC, this sequen
e of SCF 
al
ulations 
an be done very easily by reusingprevious information: The initial diagonalization in the se
ond SCF 
al
ulation is waived if we reuseeigenve
tors and eigenvalues from a previous 
al
ulation as initial guesses for the ChebFSI method.Fig. 5 shows that, as the 
luster grows in size, the EA approa
hes the negative of the lowest-uno

upiedeigenvalue energy. A power-law analysis in Fig. 5 indi
ates that both the ionization potential andthe ele
tron a�nity approa
h their bulk values a

ording to a power-law de
ay Rn with n ≈ 1. Thenumeri
al �ts are:
IP = IP0 + A/Dα (7)

EA = EA0 −B/Dβ (8)with IP0 = 4.50 eV, EA0 = 3.87 eV, α = 1.16, β = 1.09, A = 3.21 eV, B = 3.13 eV. These valuesfor A and B assume a 
luster diameter D given in nanometers. The di�eren
e between ionizationpotential and ele
tron a�nity is the ele
troni
 gap of the nano
rystal. As expe
ted, the value of thegap extrapolated to bulk, IP0 − EA0 = 0.63 eV, is very 
lose to the energy gap predi
ted in variousDFT 
al
ulations for sili
on, whi
h range from 0.6 eV to 0.7 eV [6,49℄. Owing to the slow power-lawde
ay, the gap at the largest 
rystal studied is still 0.7 eV larger than the extrapolated value.Other properties of large sili
on 
lusters are also expe
ted to be similar to the ones of bulk sili
on,whi
h is equivalent to a nano
rystal of �in�nite size�. Fig. 6 shows that the density of states already60



assumes a bulk-like pro�le in 
lusters with around ten thousand atoms. The presen
e of hydrogenatoms on the surfa
e is responsible for subtle features in the DOS at around -8 eV and -3 eV. Be
auseof the dis
reteness of eigenvalues in 
lusters, the DOS is 
al
ulated by adding up normalized Gaussiandistributions lo
ated at ea
h 
al
ulated energy eigenvalue. In Fig. 6, we used Gaussian fun
tions withdispersion of 0.05 eV. More details are dis
ussed in [50℄.
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Figure 6: Density of states (DOS) of the 
luster Si9041H1860 (upper panel) 
ompared with periodi

rystalline sili
on (lower panel). As a 
onsequen
e of the large size, the DOS of the Si9041H1860
luster is very 
lose to that of bulk sili
on (the in��nite-size limit).
H size nstate #MVp #SCF total_eV/atom 1st CPU total CPU2790688 1812 × 2 9377435 110 -795.18064 16.16 hrs. 112.44 hrs.Table 9: Fe302, using 16 pro
essors. m = 20 for Chebyshev-Davidson; m = 19 for CheFS.
H size nstate #MVp #SCF total_eV/atom 1st CPU total CPU2985992 1956 × 2 10241385 119 -795.19898 11.62 hrs. 93.15 hrs.Table 10: Fe326, using 24 pro
essors. m = 20 for Chebyshev-Davidson; m = 19 for CheFS.We also applied PARSEC to some large iron 
lusters. Tables 9�11 
ontain three 
lusters with morethan 300 iron atoms. The number of states, nstate, is multiplied by two be
ause these 
lusters aremagnetized and spin degenera
y is broken. These metalli
 systems are well-known to be very di�
ultfor DFT 
al
ulations, be
ause of the �
harge sloshing� [7, 8℄. The LDA approximation used to getex
hange-
orrelation potential Vxc is also known not to work well for iron atoms. However, PARSECwas able to rea
h self-
onsisten
y for these large metalli
 
lusters within reasonable time length.Physi
al signi�
an
e of the 
omputed data will be dis
ussed in [51℄. It took more than 100 SCF steps61



H size nstate #MVp #SCF total_eV/atom 1st CPU total CPU3262312 2160 × 2 12989799 146 -795.22329 16.55 hrs. 140.68 hrs.Table 11: Fe360, using 24 pro
essors. m = 20 for Chebyshev-Davidson; m = 17 for CheFS.to rea
h self-
onsisten
y, whi
h is generally 
onsidered too high for SCF 
al
ulations, but we observed(from 
al
ulations performed on smaller iron 
lusters) that eigenve
tor-based methods also required asimilar number of SCF steps to 
onverge, thus the slow 
onvergen
e is asso
iated with the di�
ultyof DFT for metalli
 systems. Without CheFS, and under the same hardware 
onditions as listed inTables 9�11, over 100 SCF steps using eigenve
tor-based methods would have required months to
omplete for ea
h of these 
lusters.7 Con
luding RemarksWe developed and implemented the parallel CheFSI method for DFT SCF 
al
ulations. WithinCheFSI, only the �rst SCF step requires a true diagonalization, and we perform this step by the blo
kChebyshev-Davidson method. No diagonalization is required after the �rst step; instead, Chebyshev�lters are adaptively 
onstru
ted to �lter the subspa
e from previous SCF steps so that the �lteredsubspa
e progressively approximates the eigensubspa
e 
orresponding to o

upied states of the �nalHamiltonian. The method 
an be viewed as a nonlinear subspa
e iteration method whi
h 
ombinesthe SCF iteration and diagonalization, with the diagonalization simpli�ed into a single step Chebyshevsubspa
e �ltering.Additional tests not reported here, have also shown that the subspa
e �ltering method is robustwith respe
t to the initial subspa
e. Besides self-
onsisten
y, it 
an be used together with mole
ulardynami
s or stru
tural optimization, provided that atoms move by a small amount. Even after atomi
displa
ements of a fra
tion of the Bohr radius, the CheFSI method was able to bring the initial subspa
eto the subspa
e of self-
onsistent Kohn-Sham eigenve
tors for the 
urrent position of atoms, with nosubstantial in
rease in the number of self-
onsistent 
y
les needed.CheFSI signi�
antly a

elerates the SCF 
al
ulations, and this enabled us to perform a 
lass of largeDFT 
al
ulations that were not feasible before by eigenve
tor-based methods. As an example ofphysi
al appli
ations, we dis
uss the energeti
s of sili
on 
lusters 
ontaining up to several thousandatoms.8 A
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