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Abstract

We outline the main ideas underlying tbeNQUESTcode for first-principles modelling of sys-
tems containing many thousands of atoms, focusing on tlweitigns used to achieve linear-scaling
of the cpu and memory requirements with number of atoms, lamdttategies for implementing the
algorithms so as to achieve good parallel scaling on pa@imputers. We note that the code can
be run at different levels of precision, ranging from engatitight-binding, througlab initio tight-
binding, to fullab initio. Very recent technical developments implemented in the @wd outlined.
We give illustrations of physical systems currently beifglged with the code, ranging from biolog-
ically important molecules to Ge hut clusters on Si (0019luding structural relaxation on systems
of over 20,000 atoms using electronically self-consistmnsity-functional theory. Arrangements
for obtaining and learning to use the code are also noted.

1 Introduction

It is now over 15 years since the first proposals were madedimgdDFT calculations so that the
amount of memory and number of cpu cycles needed are propatto the number of atoms, rather
than scaling asV? or worse [1-7]. These ideas stimulated a flurry of activityd én the middle
1990’s it was more or less obligatory for every condensettenalectronic-structure conference to
include a section on ‘linear-scaling’ 0®(N)’ methods. This activity rather quickly led to efficient
practical codes for linear-scaling tight-binding caldidas, but it gradually became clear that there
were many practical difficulties in achieving the same thimgdensity functional theory. Not the
least of these difficulties was that of making the calculaioun efficiently on large parallel comput-
ers, so that they scaled linearly not only with the numbertoifrs but (inversely) with the number
of processors. The consequence was that the effort to gelieéar-scaling DFT codes died away
to rather a low level, and the subject started to disappean the conference programmes. Nev-
ertheless, the persistent efforts of a few research groays fecently started to bear fruit, so that
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practical codes for performing DFT calculations on vergéacomplex systems are now becoming
available [8—12]coNQUESTIs one of these codes.

We have published many papers over the past 12 years aboptittogples underlyingcON-
QUEST([8, 13-18], so the main purpose of this article is to give adaie about recent progress, and
particularly about the large-scale practical calculagitimat are now becoming possible. However,
to make the article self-contained, we start by recallirgniain ideas. We will then give a sum-
mary of how the computational effort is distributed acrosscpssors on parallel machines. Then we
give some recent practical examples from unpublished or paitially published work, including
exploratory calculations on the important enzyme dihyoliait reductase, and large-scale structural
relaxation calculations on Ge/Si hut clusters performedhenEarth Simulator on systems of over
20,000 atoms.

2 Principles of the CONQUESTcode

2.1 Theory

The reasons why traditional DFT calculations scale pooithr W are well known. The number of
occupied Kohn-Sham orbitals must clearly be proportionaWVt But each orbitak), (r) extends
over the entire volume of the system, which is also propodi®o N. This means that the amount
of stored information and the number of operations neededstaipulate it are proportional 2.
However, all the usual implementations require an opanativalent to calculating the scalar prod-
uct (¢, |10, of all pairs of occupied orbitals, and the cpu time for thipisportional toN3. The
prefactor is small, but for very large systems thid scaling will dominate. However, Kohn'’s ‘near-
sightedness’ principle [19] tells us that it should be plolesio do much better than this, and that
O(N) performance should be achievable. The amount of informatiored in anV-atom system
is not really proportional taV?; it is just that the usual manner of doing things incurs arremas
degree of redundancy in the way the information is represent

With DFT, the near-sightedness principle is expressed éydtality of the Kohn-Sham density
matrix p(r,r’). Recall that if the Kohn-Sham occupied orbitals (eigenfioms of the Kohn-Sham
equation) are already known, thefr, r’) is defined as:

p(I‘,I'/) = an(r)wn (I‘/)* : 1)

The nearsightedness principle says that there is quanthereoace only between nearby positions,
or, more exactly:p(r,r’) — 0 as|r — r'| — oo. But the variational principle of DFT can be
formulated in terms of the density matrix [7]: the DFT groustdte is obtained by minimising
the total energyF:,« with respect tgo(r,r’), subject to the ‘weak idempotency’ condition that the
eigenvalues op should all lie between 0 and 1. Linear scaling is then obtalmeminimising E ¢
with respect tg, subject to the constraint thafr, r') = 0 for [r —r’| > r., wherer. is a chosen cut-
off distance. The amount of information storedifr, ') is then manifestiyO(N). These ideas are
implemented inCONQUEST, with the additional constraint tha{r, r’) be ‘separable’ (the number
of its non-zero eigenvalues is finite), so that:

p(r, ') =Y $ia(0)Kia, jndin(r') - )
io,jf
The functionsp;,, (r), which we refer to as ‘support functions’, are chosen to e rero only within
spherical regions of radiuB,., centred on the atoms/{, (r) is theath support function on ator).
Effectively, the matrix;, ;s is the density matrix in the (non-orthogonal) basis of supfpmctions.
In practice, then, the idea is to express the total energgring of the density matrix given by
eqn (2), and to minimise it with respect to thematrix and thep;,, (r) support functions, subject to
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the conditions of (i) weak idempotency, and (ii) constaet&lbn number. In doing this, the support
functions should in principle be freely varied within thepherical regions, and for this purpose they
need to be represented in terms of some chosen basis fusicBefore discussing that, though, we
address the more difficult question of how to ensure weak ademcy. It goes without saying that
we are not allowed to diagonalise the density matrix, beethat would be aw(N?3) operation, and
we would have achieved nothing. There are several ways of&nfy weak idempotency, but the
present implementation lONQUESTIS a combination of the technique of Li, Nunes and Vanderbilt
(LNV) [33] and Palser and Manolopoulos [34], both of whick aglated to McWeeny's ‘purification’
scheme [35]. In the LNV technique, the matiik is represented in terms of an ‘auxiliary’ density
matrix L as:

K =3LSL —2LSLSL , (3)

whereS is the overlap matrix of support functionS;,_js = (¢ia|¢;s). In order to ensur®(N)
scaling, a spatial cut-off is imposed on thematrix, so thatl;, ;s = 0 when the distance between
atoms and andj exceeds a chosen cut-@tf, . Alternative methods for enforcing weak idempotency
could, of course, also be used.

In order to obtain a scheme that is equivalent to standard BETmust allow the support func-
tions ¢, (r) to be freely varied within their spherical regions. This me¢hat they must be repre-
sented in terms of some basis set. We have two completegrelift ways of doing this iIBONQUEST,
and which basis set one chooses depends on what one is toyaufpieve. If plane-wave precision
is desired, then it is essential to use a basis set that ise sense equivalent to plane waves. The
obvious difficulty is that the support functions are locadisso if one literally uses plane waves, then
it is undesirable that they should extend over the entiréesys The solution we have adopted is
to use a finite-element basis that is quite closely equivateplane waves. (It is interesting here to
compare with the plane-wave methods that have been uselyéasis same problem in theNETEP
CODE[10].) On the other hand, if plane-wave precision is not ek the other option 0OOONQUEST
is to use numerical pseudo-atomic orbitals, as is done iresaiimer codes, notably1ESTA [9, 29]
andPLATO [39, 40].

The finite-element scheme we use to obtain plane-wave weaspresents the;, (r) in terms
of piecewise continuous polynomials, using a techniqueetones referred to a8-splines. Full
details of the scheme, with demonstrations of its effecss, are presented in a published report
[20], so here we give only a brief summary. Suppose first tteahewve a continuous functiof(z)
in one dimension, which we wish to represent. TBspline basis consists of localised functions
0s(x), centred on the points of a grid, whose nodes are at posifians: sa, wherea is the grid
spacing. The basis functions are all images of each othglatied by an integer number of grid
spacings, so that;(z) = 6o(x — X;). The basis functioy(z) vanishes identically outside the
range—2a < x < 2a. Inside this range, it is assembled from cubic polynomials:

1-3(z/a)*+ 3|z/al®* if 0<|z[<a
Oo(x) = 12— |z|/a)® it a<l|z|<2a )
0 if 2a < |z|

and has the property that it and its first two derivatives arginuous everywhere. In fact, the only
discontinuities are in the third derivative at the poipts = 0, « and2a. The representation of a
continuous function

F@) =) bybs(w) (5)

can be made arbitrarily precise by systematically reduthieggrid spacing. This is exactly anal-
ogous to increasing the plane-wave cut@ff.. when taking a plane-wave calculations to conver-
gence.
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In fact, there is a close relationship betwdesspline and plane-wave basis sets. Pher) basis
functions can be used to form Bloch-like functiopg(x) by the unitary transformation:

Xi(z) = e* o0 () . (6)

To obtain the full set of distinct,, functions,k should be restricted to the ranger/a < k < 7/a.
As |k| — 0, the functions become identical to plane waves, and in fest tather precisely reproduce
plane waves except near the ends of the interval/a, 7/a). This means thaB-splines with grid
spacinge are nearly equivalent to plane waves with cut@ff.. = 7/a.

In practice, of course, we work in three dimensions, andhheetdimensionaB-splinesO(r)
are defined as Cartesian products:

@(I‘—RS) :e(x_Xs)o(y_}/s)o(z_Zs) ) (7)

where(X;, Y, Z,) are the Cartesian componentsRf, and the support functions are represented
as:

¢io¢ (I‘) = Z biasgs(r - st) . (8)

In the current scheme, the blip-grid on which the(r) are sited is defined separately for each atom,
and moves with that atom. To enforce the vanishing,qfr) outside the support region, we include
in eqn (8) only thos®(r) that are non-zero only for points within the region. The oeef®r making
the blip-grid move with the atom is that this ensures thaheag(r) is represented always in terms
of the same set of basis functions.

Blip functions therefore give us a scheme that is closelgteel to plane waves, but at the same
time respects the strict localisation of the support fuorei It also shares another feature with plane
waves, and that is that as the blip spacing is decreasedothputational effort grows linearly only
with the number of blip functions. This is because the nunab®lip functions that are non-zero at
each point in space does not increase dscreases.

The alternative basis set of numerical pseudo-atomicalgbfirovided inCONQUESTIs similar
in spirit to the ones used in tl@ESTA[9, 29] andPLATO [39, 40] codes.

2.2 Implementation

In CONQUEST, the search for the ground-state is organised into thrgeslda the innermost loop, the
support functions and electron density are fixed and thergtatiate density matrix is found, either
by varyingL or by diagonalisation. In the middle loop, self-consisteis@chieved by systematically
reducing the electron-density residual, i.e. the diffeeebetween the input and output density in a
given self-consistency cycle. In the outer loop, the enégyinimised with respect to the support
functions,p;,. This organisation corresponds to a hierarchy of approttans: when the inner loop
alone is used, we get the scheme known as non-self-cortsagtamitio tight binding (NSC-AITB),
which is a form of the Harris-Foulkes approximation [22-2Bhen the inner two loops are used,
we get self-consisterab initio tight binding (SC-AITB); finally, if all loops are used, we &full

ab initio. In this last case, we recover the exact DFT ground stateeaetfion radius?,., and the
L-matrix cut-off Ry, are increased. For non-metallic systems, the evidencerse that accurate
approximations to the ground state are obtained with quidest values of the cut-offs [9, 13]. For
the non-self-consistent ground-state search of the iromr, las well as operating i@ (V) mode,
CONQUEsTcan find the ground state directly by diagonalisation, usigSTALAPACK package,
which allows efficient parallelisation of the diagonalieat Since this scales a3(N?), this will
only be appropriate for relatively small systems, but ityides an important tool for testing the outer
parts of the ground-state search, and for exploring theergience of the (V) algorithm with the
cut-off on theL-matrix.
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For calculations at the level of fuldb initio accuracy, the convergence of the outer loop (op-
timising the support functions with respect to their basisctions) is well-conditioned provided
appropriate pre-conditioning measures are taken; theselie®en discussed both for blips in the con-
text of CONQUEST[26, 27] and for psinc functions in the context oNETEP [28]. We note that
CONQUESTcan be run in a mode analagoussi@STA, where pseudo-atomic orbitals are used and
no optimisation is performed; in this case, the outer loamisperformed.

We have recently found that the self-consistency searem(ilddle loop described above) can be
accelerated by use of the Kerker preconditioning. This,iddach is well-known in the plane-wave
community, removes long wavelength changes in the changgitgeduring mixing. It is applied in

reciprocal space, as a prefactor:
2

_ 4

Then the charge is mixed using a Pulay or Broyden (or relasedgme [21] with the prefactor
applied to the residual or output charge after transforondt reciprocal space. The mixing includes
a parameter, A, which determines how aggressive the migrfwith the input charge density for
iterationn + 1 given byp!"™ = p + Af(q)R,, with R,, the residual from iteration).

While performing the search for self-consistency, we mushitor the residual. We define the
following dimensionless parameter which is used to moriftersearch:

(|R(x)*)"/

d (10)

p )
(RO = 3 [ arirw)P. (1)

whereV is the simulation cell volume and we use the usual definitfmesidual,R(r) = pout(r) —
pin (1), the difference between the output and input charge dessifihe quantityl is then the RMS
value of R(r) normalised by dividing by thaverage charge density in the system, Note that, for
systems containing large amounts of vacuum, the criteordnvergence will need to be altered
when compared to bulk-like environments. This criterionyrba coupled with a monitor on the
largest value of residual on an individual grid poipt Riax = max; |R(r;)]

The scheme we have outlined is closely related to the metheel$inSIESTA[9, 29], OpenMX
[11] andoNETEP[10]. The main differences are: (i) the basis sets chosexs(A uses fixed PAOSs,
while OpenMX uses optimized orbitals amNETEP psinc functions); (ii) the method of finding
the ground state density matrix (Siesta uses the consttraearch technique [3-5], OpenMX the
divide-and-conquer [30] or BOP [31] armNETEPeither penalty functional [19, 32] or LNV [33]);
(i) the technique of ‘neutral-atom potentials’ [9, 29ked bysiEsTA and OpenMX, which allows
calculation of matrix elements to be performed very effitliefor localised, atomic-like basis sets.

2.3 Forces on the ions

In order to perform structural relaxation or molecular dynas of materials with an electronic struc-
ture technique, the algorithms for calculating the forEge®n the ions must be the exact derivatives
of the total ground state energyggs, with respect to the positions;, such thalF; = —V; Egs. One
of the advantages of DFT, within the pseudopotential agpration, is that it is easy, in principle, to
achieve this relationship between the forces and the enSrgge the ©NQUESTformalism allows
the calculation of the total energy at different levels afacy, some care is needed in the formula-
tion of the forces to develop a scheme that works at all levilsis hierarchy. It is also important to
ensure that it works equally well (and accurately) for bt diagonalisation an@(N) modes of
operation implemented iINn@NQUEST.

We recall the Harris-Foulkes expression [22, 23] for thaltehergy, which is often applied when
self-consistency is not sought, but which at self-consistés identical to the standard Kohn-Sham
expression for total energy. The expression is:
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EGS = EBS + AE1H211r + AEﬂxc + EC, (12)

with Ec the Coulomb energy between the ionic cores, and the banduste energy, the double-
counting Hartree and exchange-correlation energies akéise

EBS = 2 Z fnen (13)
= 2T:[KH] (14)

A-EHaur = _% /dr nin (r)VPlII;r (I‘)
AE, = /dr nin(r) (exc(nin(r)) — ,uxc(nin(r))) ) (15)

Here,n!®(r) is theinput charge density used (normally a superposition of atomicgehdensities if a
non-self-consistent scheme is used, or the self-consistemge density if self-consistency is used).
This expression is very useful when comparing forces agudfit levels of approximation.

At the empirical TB level, the ionic force is a sum of the bastdicture parFPS and the pair-
potential parf?*", the former being given by [24]:

FPS = 9Ty [KV,H — JV,S], (16)

whereK andJ are the density matrix and energy matrix respectively [#4$. readily shown that in
the O(N) scheme of LNV, and in some othéX{ N') schemes, the same formula 8 is the exact
derivative of theD(N) total energy.

In NSC-AITB (Harris-Foulkes), the forces can be writtenwotequivalent ways. The way that
corresponds most closely to empirical TB is:

Fi _ F?S + FiAHar + FiAXC + F;OH ’ (17)

whereFPS is given by exactly the same formula as in empirical TB. ThetdbutionsF2H2" and
F2*¢, which arise from the double-counting Hartree and exchamgeelation parts of the NSC-
AITB total energy, have been discussed elsewhere [24]. Tia¢termFi°® come from the ion-ion
Coulomb energy. This way of writind"; expresses the well-known relationship between NSC-
AITB and empirical TB that in the latter the pair term reprgise¢he sum of the three contributions
AHar + Axc + ion — ion. The alternative, and exactly equivalent, way of writiigin NSC-AITB
is:

F; = FP 4 FJU L FNSC | pion (18)

Here,F is the “Hellmann-Feynman” force exerted by the valencetedes on the ion core®; "

is the Pulay force that arises in any method where the basttepends on ionic positionE,N5¢ is
a force contribution associated with non-self-consisgeaid is expressed in terms of the difference
between output and input electron densitiB$", as before, is the ion-ion Coulomb force. Exactly
the same formulas represent the exact derivativi,gf in both diagonalisation an@ (V) modes.

In both SC-AITB and full Al, the force formula is:

Fi= F 4+ B B (19)

which differs from the second version of the NSC-AITB formelgn (18) only by the absence of the
non-self- consistent contributid¥>, as expected.

The above hierarchy of force formulas has been implement€@NQUEST, and extensive tests
have ensured that the total energy and the forces are exactsystent within rounding-error preci-
sion [17].

60



2.4 Parallel operation

The principle of near-sightedness and the idea of parall@lputation fit each other as a glove fits a
hand. Since different regions of space are independentbf @her as far as quantum coherence is
concerned, there is a natural mappingXfV) calculations onto an array of processor&NQUEST
was written from the outset as parallel code, and a largegiatte development effort has been
concerned with techniques for achieving good parallelisgalThe parallelisation techniques have
been described in detail elsewhere [8, 14, 36], so we giweahbtief summary. There are three main
types of operation that must be distributed across procgsso

e the storage and manipulation of support functions, e.g.c#heulation of¢;, (r) on the inte-
gration grid starting from blip- or PAO-coefficients, ancttbalculation of the derivatives of
FEo With respect to these coefficients, which are needed forthergl-state search;

e the storage and manipulation of elements of the variousiceat(, S, K, L, etc...);

e the calculation of matrix elements by summation over domaihpoints on the integration
grid, or by analytic operations (for certain integrals ilwing PAOs and blips).

Efficient parallelisation of these operations, and the ielation of unnecessary communication
between processors, depend heavily on the organisationtbfdioms and grid points into small
compact sets, which are assigned to processors [36]. Wieecoithe runs irO(N) mode, matrix
multiplication takes a large part of the computer efforg are have developed parallel multiplication
techniques [36] that exploit the specific patterns of spami whichO(N) operation depends.

2.5 Recent technical progress

The implementation outlined above was already in place,thagracticalO(/N) performance of
the code was demonstrated several years ago. Howeverfairilrecently the range of systems
to which the code could easily be applied was rather limiteldwever, in the past two years we
have greatly enhanced its functionality and ease of usetdpgpation for public release later this
year. We have now standardized the pseudopotentials usin@ icode on the Troullier-Martins
form [37]. The reason for this choice is that these pseudhiais are used in a number of plane-
wave/pseudopotential codes, suchaasNiT [38]. This makes it rather convenient to cross-check
CONQUESTresults against standard plane-wave calculations. If bneses to use PAO basis sets in
CONQUEST, it is necessary to generate the PAO’s using the standataippetentials. The code for
doing this has been adapted from thextTo code [39, 40]

Any practical DFT code needs to be able to use a range of alaixchange-correlation func-
tionals. To make this possible, we have recently implentetite PBE form of generalized-gradient
approximation (GGA) [41], with PW92 parameterization [4@] the local part. The gradient calcu-
lations are done following the scheme of White and Bird [48]ich is formally exact on a grid, and
involves the computational of only four Fast Fourier Tramsfs (FFT'’s). The linearity of the scheme
preserve$)(N) operation. In order to keep the ability of the code to perfstrctural relaxation
with non-self-consistent Harris-Foulkes calculatiorse original computation of forces had to be
adapted to the newly implemented GGA functional. As we vapart elsewhere [44], we are able
to maintain the condition that the forces are exact dexigatof the total energy, and the number of
FFT’s remains equal to four.

We mentioned above that the division of atoms and grid pairitscompact groups is impor-
tant in achieving good parallel efficiency. The way this waselin early versions of the code is
summarised above. However, those methods turned out teficiant for problems in which a sig-
nificant part of the system consists of empty space — a commatien when dealing with surface
problems. We have now been able to develop more sophistigaiteedures, which significantly
improve the efficiency.
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In applications of nano-devices, a crucial physical effeaiften the transport of electrons, and
the exchange of energy between the ionic and electronicgsiems. These are effects that are not
included in conventional first-principles molecular dynesnm.d.) techniques, which explicitly or
implicitly enforce the Born-Oppenheimer approximatidrattthe electronic sub-system adiabatically
follows the motion of the ions. Recently, an important esten of m.d. has been developed, known
as “correlated electron-ion dynamics” (CEID) [45], in whithe quantum spread of the ions is in-
cludedvia a small-amplitude moment expansion. With CEID, it is pogsib make direct numerical
simulations of, for example, inelastic current-voltageaposcopy in atomic wires. An ambition for
the future is to implement CEID within theoNQUESTcode, and we are currently formulating the
strategies needed to do this.

3 Technical tests

Much of the hard work involved in developing any large codegjimto demonstrating that it really
achieves what it is intended to achieve, that it is reasgnatdiiust, and that it runs efficiently on
appropriate platforms. In the case of a linear-scaling DBdleclike CONQUEST, the issues that
must be addressed include the following: (i) does the cotieallg achieve parallel scaling with
respect to the number of atoms? (ii) does it achieve goodlpbsaaling on parallel computers,
and at what typical numbers of processors does the qualityeascaling start to deteriorate? (iii) if
we go to basis-set convergence, and if we go to the limit @fdaupport-region radiug,., and
large L-matrix cut-off, does it recover standard plane-wave tteguking the same pseudopotentials,
obviously)? (iv) how rapid is the convergence with respecii., and R;? (v) how rapid is the
ground-state search for large systems? (vi) how rapid is#aech for self-consistency for large
systems? (vii) how rapid is structural relaxation for lasgstems?

The issue of scaling with respect to number of atoms and nuofl@rocessors on large parallel
computers was studied already 10 years ago, when we demtuséxcellent scaling of both kinds
on systems of up te- 15,000 atoms using computers having up+o512 processors [14]. More
recently, we have done extensive tests on the Earth simmutheoresults of which will be published
soon. We have also presented the results of test on conwergéth respect t®,., andRy. As an
illustration of the search for self-consistency, we showim 1 the decrease of the self-consistency
residual as a function of iteration number for an amorphaduslter of 343 atoms, which was
specifically designed as a challenge to self consistencguse it is close to being metallic. The
results show rather rapid monotonic convergence to selistancy, and generally we find similar
behaviour also for much larger systems. As an illustratibthe ground-state search for very large
systems, we show in Fig. 2 the deviation of the energy froneaet ground-state value as a function
of iteration number for a 23,000-atom Ge hut cluster on SL{@8ee below for more details of this
system). For fuller discussion of the many other technissliés referred to above, our published
papers should be consulted.

4  Scientific applications

In the immediate future, we expect the most important apfibos ofCONQUESTto be in the area
of biomolecular systems and nano-systems (there are, e$epoclose links between the two types
of systems). In all cases, it is clearly essential to buildexyperience wittO(N) methods, starting
with relatively small systems, where we can cross-checknagthe results of more standard codes.
For nano-systems, we started this learning process witplsitasts on semiconductor surfaces [17],
and we are now making exploratory calculations on much taagd more complex systems. For
biomolecules, we are still at the stage of tests on systeraged hundred atoms.
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Figure 1: Residual during self-consistency search foediffitR,.,. System treated is an amorphous Si
cluster (see text).

In preparation for large-scale calculations on DNA systewesare currently making extensive
tests withcoNQUESTON single DNA bases and on DNA base pairs, and comparing w#hlts
obtained with other codes, includisyeSTA, VASP andGAUSSIAN. As expected, we find excellent
agreement for the equilibrium bond lengths of covalentlpded atoms. Results of these tests will
be published in the near future [46].

We are also performing tests on the important enzyme diligtiie reductase (DHFR), whose
function in living organisms is to catalyze the reductiomisfydrofolate to produce tetrahydrofolate.
The latter is an important molecule in metabolism. In pattg, it is an essential cofactor in one-
carbon transfer reactions. As a consequence, DHFR, whihbk snly enzyme that synthesizes it, has
receive much attention, for example as a target for antarmaldrugs. Although the specific substrate
for DHFR is dihydrofolate (DHF), in some species the enzyige aatalyzes, very inefficiently and
less specifically, the reduction of folate, a precursor ofDH

The reasons why DHFR is specific for DHF remain unclear. LDATBIculations of the active
site suggested that enzyme-induced polarization of thetstks may be a cause for the preference, at
least in theEscherichia coli enzyme. Indeed, one study [47] found large electron dedgfigrences
(EDD) between the density of DHF when bound to the enzyme vé#ipect to that in vacuum.
However, results from MP2 calculations, although qualiedy supportive for a role of polarization,
are less conclusive [48,49].

All existing studies used a point-charge model for the butktgin, restricting the quantum me-
chanical (QM) calculations to a few atoms at the active sifence, the quantitative discrepances
between different studies may be due to that limitation efrtfodels, rather than to the different QM
methods employed. Since DHFR is a relatively small prot&sB(amino acids ifEscherichia coli,
or about 3000 atoms), we decided to assess such posibilitging Conquest to perform LDA DFT
calculations in extended models of the active site, withutienate goal of including the whole of
the protein. Thus, we did not model bulk protein in any waygsiits effect was expected to become
obvious as the size of the model increased.

Our preliminary results on portions of the protein of up t@ 3@ ms show that indeed larger mod-
els are quantitatively closer to MP2 results than to theioaig DA calculations. We found larger
polarization on DHF than on folate, and only DHF displayethp@ation on the bond susceptible
of hydrogenation, consistent with the observed specifisige Fig. 3). Furthermore, calculations on
different conformations of the protein agree with experitaéevidence regarding the mechanism.
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Figure 2: Convergence during energy minimisation with eespo density matrix elements (inner loop
of ground-state search) for 23,000-atom Ge hut cluster ¢acgi).

In particular, the presence of some amino acids of the deetdlet20 loop seems to be essential
for catalysis, as represented by polarization on the hyehrable bond of the substrate. Moreover,
those amino acids must be occluding the active site for {zalton to be observed, as expected in
the proposed mechanism [50].

Turning now to the application @ONQUESTt0 nano-systems, we summarise our recent progress
in investigating the three-dimensional (3D) structurasiied when Ge is deposited on the Si (001)
surface. The Ge/Si (001) has been extensively studiedubedtis a prototypical example of hetero-
epitaxial Stranski-Krastanov growth. When Ge atoms areosiégd on Si (001), growth initially
occurs layer by layer, up to a critical thickness of abou¢¢hmonolayers (ML). Strain due to the
lattice mismatch is relieved by the formation of regulanbased rows of dimer vacancies in the
two-dimensional (2D) structure, resulting in the< N structure. Deposition of further Ge leads to
another strain-relief structure, 3D pyramid-like strueiknown as “hut clusters” [51]. Recently, we
have studied this transition from 2D to 3D structures, USIDQIQUEST.

Usually, the stability of 3D structures is governed by (8 tbwering of strain energy in the clus-
ters and the underlying substrate, and (ii) the energy asararising from the formation of facets.
Theoretical approaches used so far have used continuutic#&jatheory to describe the strain en-
ergy, with DFT being used only for the surface energies [32, 3-or the Ge/Si system, the four
facets of the hut cluster are well established td b&5} surfaces, and the structure of these surfaces
has recently been clarified by DFT calculations [54, 55]. eNittat the typical side-length of hut
clusters is about 150 A, and deposition of additional Gede¢adhe formation of other 3D structures
called “domes”, having steeper facets. Interestingly amglbrtantly, the DFT calculations show that
the strained Ge (105) surface is more stable than straine(@@g. This means that the surface
energy may actuallgtabilise the structure. If the surface contribution to the overaéirgry is small
or favours the 3D structure, contributions from the edgesrwlthe facets meet each other and the
wetting layer may also affect the stability of the 3D struetuln addition, as the area of the facets
of the experimentally observed Ge hut cluster is not lafdge eivaluation of the surface part itself is
doubtful. For these reasons, the validity of previous thgoal approaches is uncertain, especially
for small hut clusters. To overcome these problems, we ang c®NQUESTto model the entire hut
cluster, together with the wetting layer and the Si substrat

In preparation forcONQUEST calculations on the full system, we first performed DFT calcu
lations on the Ge (105) surface, including test calculatialso on the unstrained and strained Ge
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Figure 3: Electronic density difference plot for dihydriafie (DHF) upon binding to the enzyme dihy-
drofolate reductaset0.001 electron/bohr). Charge deficiency (with respect to the itheio§ DHF in
vacuum) is shown in blue; charge excess is red. The enzynueasdoolarization on N5 and C6 atoms
(marked with arrows), and electronic density withdrawahirthe bond linking them. These effects are
consistent with the catalyzed reaction, namely, protonatif N and hydride transfer to the bond, and
are much weaker for the very inefficient reduction of fola@egcondary substrate (not shown).

bulk [56]. Since the size of this system is relatively smaié can employ diagonalisation in this
case. We have clarified the accuracy of the various DFT metbrplained above for the unstrained
and strained Ge systems. We have also confirmed that full Ri€Ukations performed witlkoON-
QUESTusIng cubic-spline basis sets are accurate enough forudg sf the strained Ge (105) sur-
face. The conditions need fal(V) calculations to achieve good accuracy for this system hisee a
been established.

Using these results, we have perform@dV) DFT calculations on the entire Ge/Si (001) hut
clusters. At the non-self-consistent level, we have peréat structual optimisation on systems of
different sizes. The largest system treated so far, showkign4, contains~ 23000 atoms, and
we found that structure optimisation is robust even for daofje systems. We have examined three
structural models of the Ge hut cluster having differenefanr edge structures, and we have com-
pared their energies with those of thex N reconstructions withv. = 4, 6 and 8. The results, to be
reported in detail elsewhere [56,57], show that the 2D stineds more stable for small coverages of
Ge atoms, but the 3D hut structure becomes more stable wheoterage exceeds 2.6 monolayers,
in agreement with experimental observation.

5 Distribution of the CONQUESTCode

We plan that theconQUESTcode will be released under a GNU General Public License &ytid

of 2007. At the time of writing (end of May 2007), we are in thetd-testing phase, and the code
has been released to a small set of carefully chosen usevsyillvork with us to apply the code to
their own scientific problems. A short tutorial course onphactical use oEoNQUESTwWiIll be held

at CECAM7 — 8 September 2007, and there is funding to support the atteedzrparticipants. For
more details, please go taw. cecam f r and click on ‘tutorials’.
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Figure 4: Atomic geometry of largest Ge/Si (001) hut clusteed for structural relaxation withon-
QUEST DFT calculations. Upper and lower panels shows plan andsales, respectively. Pink and
green spheres represent Si and Ge atoms. Dimensions oflipalip repeated cell in surface plane and
normal to surface are marked.

6 Summary

The main ideas underlying linear-scaling DFT were esthbltisin the early 1990's. However, the
realisation of these ideas in practical codes has requiredsolution of a large number of tech-
nical problems concerning basis sets, the enforcemenneéliscaling in the calculation of the
ground-state density matrix, efficient manipulation ofrsgamatrices having the patterns of sparsity
associated with spatial locality in three dimensions, anplémentation of the algorithms on large
parallel computers. Some of these problems admit of mone dm& solution, and the codes that
have appeared so far, includim@dNQUEST, SIESTA ONETEP and oPEN-MX, differ in important
ways. We have tried to show here how theNQUESTcode has now passed beyond the stage of
feasibility studies, and can now be applied to real sciengifoblems concerning biomolecular and
nanoscale systems. Comparisons with the results of stéueddes for relatively small systems of a
few hundred atoms are demonstrating the realibility of tkethrads. At the same time, it is clear that
structural relaxation at different levels of precisionngsboth self-consistent and non-self-consistent
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calculations, is becoming a practical proposition for egsd containing more than 20,000 atoms.
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