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Abstract

We report on the background, current status, and current lines of development of the

octopus project. This program materializes the main equations of density-functional theory

in the ground state, and of time-dependent density-functional theory for dynamical effects.

The focus is nowadays placed on the optical (i.e. electronic) linear response properties of

nanostructures and biomolecules, and on the non-linear response to high-intensity fields of

finite systems, with particular attention to the coupled ionic-electronic motion (i.e. photo-

chemical processes). In addition, we are currently extending the code to the treatment of

periodic systems (both to one-dimensional chains, two-dimensional slabs, or fully periodic

solids), magnetic properties (ground state properties and excitations), and to the field of

quantum-mechanical transport or “molecular electronics.” In this communication, we con-

centrate on the development of the methodology: we review the essential numerical schemes

used in the code, and report on the most recent implementations, with special attention

to the introduction of adaptive coordinates, to the extension of our real-space technique to

tackle periodic systems, and on large-scale parallelization. More information on the code, as

well as the code itself, can be found at http://www.tddft.org/programs/octopus/.
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1 Introduction

Both density-functional theory (DFT) [1,2], and time-dependent density-functional theory (TDDFT) [3,

4] have enjoyed a steady increase of their popularity ever since they were born, in the sixties and

eighties respectively. The reason is that both theories achieve, for many problems, an unparal-

leled balance between accuracy and computational cost. Although the scope of applicability of

traditional Quantum Chemistry techniques, or of Quantum Monte-Carlo procedures, have also

increased in recent years [5,6], DFT/TDDFT is still the method of choice for large systems (e.g.,

molecular systems of biological interest) undergoing complex processes.

Correspondingly, numerous software packages that solve DFT/TDDFT equations are avail-

able [7]. Among them, octopus [8] is one with special focus on TDDFT. In the present newslet-

ter, we describe the current status of this project, and the aims of its developing process. In

brief, some of the key aspects that describe octopus are:

Target problems:

(i) Linear optical (i.e. electronic) response of molecules or clusters.

(ii) Non-linear response to classical high-intensity electromagnetic fields, taking into ac-

count both the ionic and electronic degrees of freedom.

(iii) Ground-state and excited state electronic properties of systems with lower dimen-

sionality, such as quantum dots.

(iv) Photo-induced reactions of molecules (e.g., photo-dissociation, photo-isomerization,

etc).

(v) In the immediate future, extension of these procedures to systems that are infinite

and periodic in one or more dimensions (polymers, slabs, nanotubes, solids), and to

electronic transport.

Theoretical base:

(i) The underlying theories are DFT and TDDFT. Also, the code may perform dynamics

by considering the classical (i.e. point-particle) approximation for the nuclei. These

dynamics may be non-adiabatic, since the system evolves following the Ehrenfest

path. It is, however, a mean-field approach.

(ii) Regarding TDDFT, we have implemented two different approaches: On the one hand,

the “standard” TDDFT-based linear-response theory, which provides us with exci-

tation energies and oscillator strengths for ground-state to excited-state transitions.

On the other hand, we have also implemented the explicit time-propagation of the

TDDFT equations, which allows for the use of large external potentials, well beyond

the range of validity of perturbation theory.

Methodology

(i) As numerical representation, we have chosen to work without a basis set, relying on

numerical meshes. Nevertheless, auxiliary basis sets (plane waves, atomic orbitals)

are used when necessary.
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Recently, we have added the possibility of working with non-uniform grids, which

adapt to the inhomogeneity of the problem, and of making use of multigrid tech-

niques to accelerate the calculations. The adaptive coordinates implementation will

be discussed in some detail in Section 4.

(ii) For most calculations, the code relies on the use of pseudopotentials [9]. We currently

allow for two types: Troullier-Martins [10], and Hartwigsen-Goedecker-Hutter [11].

(iii) In addition to being able to treat systems in the standard 3 dimensions, 2D and 1D

modes are also available. These are useful for studying, e.g., the two-dimensional

electron gas that characterizes a wide class of quantum dots.

Technical aspects

(i) The code has been designed with emphasis on parallel scalability. In consequence, it

allows for multiple task divisions. We will comment on this aspect in Section 5.

(ii) The language of most of the code is Fortran 90 (almost 50.000 lines at present). Other

languages, such as C or Perl, are also used.

(iii) We have struggled to employ only standard and portable tools. The resulting code

may run on virtually any Unix-like platform.

(iv) The package is licensed under the GNU General Public License (GPL). In conse-

quence, it is available for use, inspection, and modification for anyone, at http:

//www.tddft.programs/octopus/.

Section 2 summarizes the algorithms used for ground-state calculations, while the next section

handles response properties. Sections 4, 5 and 6 report some of the recent additions to the

package: adaptive coordinates to numerically represent the problem, support for parallel calcu-

lations (a lot of effort is being put onto the scalability of the computations to large number of

processors), and the treatment of periodic systems.

2 Ground-state DFT calculations

2.1 The Kohn-Sham equations

Kohn-Sham (KS) DFT [1, 2] provides the ground state one-particle density n0 of a system of

N electrons exposed to an external potential v(~r), by identifying it with the density of a non-

interacting system of electrons subject to the so-called KS potential, vKS(~r). This system, being

non-interacting, may be solved through a set of one-particle equations, the KS equations [1]

(atomic units will be used throughout):

hKS ϕi(~r) = εiϕi(~r) (i = 1, . . . , N) , (1)

n0(~r) =

N
∑

i=1

|ϕi(~r)|2 . (2)
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The functions ϕi and the real numbers εi are the KS orbitals and KS eigenvalues, respectively.

The KS state is the single Slater determinant built from those orbitals. The KS Hamiltonian is

given by

hKS[n] = −1

2
∇2 + vKS(~r) . (3)

The first term, the kinetic operator, is approximated in a real-space formulation by a finite

difference formula – details about this will be given in Section 4. The KS potential is usually

separated as follows:

vKS(~r) = v(~r) + vHartree[n](~r) + vxc[n](~r) . (4)

External potential. The external potential v(~r) is typically the sum of the Coulomb potential

generated by each of the nuclei. In a pseudopotential formulation, this includes both local and

non-local components. For an atom α positioned at ~Rα, the pseudopotential v̂α(~Rα) is the sum

of a local operator vlocal
α and a set of non-local projectors described by atom-centered functions

ξκ
α:

〈~r|v̂α(~Rα)|ϕ〉 = vlocal
α (~r − ~Rα)ϕ(~r) +

∑

κ

〈ξκ
α(~Rα)|ϕ〉ξκ

α(~r − ~Rα) . (5)

Note that these projectors are typically well localized in real space, so their action is computa-

tionally feasible and faster than in a plane wave formulation.

The code also allows for other “user-defined” external potentials. For example, one can attempt

to model the solvent environment of a given system with the electrostatic potential generated by a

set of point charges and/or dipoles (e.g. to model a chromophore in its protein environment [12]).

This is the basic principle of the so-called QM/MM techniques [13]. Also, the user may define a

model potential describing a two-dimensional quantum dot, and can specify it simply by writing

down its mathematical function in the input file.

Hartree potential. The second term of (4), vHartree[n](~r) is more time-consuming. There are

various ways of obtaining this potential numerically, and we have investigated and implemented

some of them [14]. These are explained in more detail in Section 2.2.

Exchange-correlation potential. The exchange-correlation (xc) potential, vxc[n0], is an un-

known functional of the density, and has to be approximated. It is the first functional derivative

of the exchange-correlation energy functional:

vxc[n](~r) =
δExc

δn(~r)
. (6)

We have incorporated in octopus a wide variety of possible functionals, ranging from the stan-

dard local density approximation (LDA) [15] and generalized gradient approximations [16], to

the state-of-the-art orbital-dependent functionals [17–19]. “Traditional” LDAs and GGAs are

easy, since they are explicit functionals of the density and its gradient. The more recent orbital-

dependent functionals, however, are explicit functionals of the KS orbitals (and so they are

implicit functionals of the density through the orbitals) and require the use of the optimized

effective potential method (OEP) [17, 18]. We have implemented these functionals in octopus.
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Both the Krieger, Li and Iafrate (KLI) [19] approximation and the full solution of the OEP

equation [20] (still in experimental phase) are available.

We are now extending the set of functionals to cope with current-density functionals [21]. At this

point, we emphasize that along with the octopus distribution we provide a standard “exchange

and correlation library,” written in C. All (TD)DFT codes require an equivalent piece of software,

and in our opinion, it would be mutually beneficial to share an open, reliable library. We expect

that this may be a first step towards this goal.

Eigensolvers. Once we know how to construct the real-space representation of the Hamilto-

nian for a “trial” density n (or, in fact, for a trial set of KS orbitals ϕi from which the density

is generated), we are faced with the problem of solving the Kohn-Sham equations (1) for the N

lowest lying eigenpairs of this Hamiltonian operator. In real space this amounts to the solution

of an eigenproblem for large sparse matrices. The literature in this field is abundant [22], and

we have tried several schemes in octopus. The following are available in the current version

of the code: conjugate-gradients based schemes [23], Lanczos-based algorithms [24] and the

Jacobi-Davidson procedure [25].

Mixing. We are left with the mixing of the density, which is essential for the convergence of the

self-consistent procedure. For that purpose, we employ some standard techniques. Essentially,

one has to build recursively a series of densities n(i) that converges to the solution density n0.

Each new density is generated through a prescription of the form:

n(i+1) = G[ñ(i+1), n(i), n(i−1), . . . , n(i−s)] , (7)

where ñ(i+1) is the density obtained from Eq. (2) using the Kohn-Sham orbitals of step i+1. The

simplest example of such a prescription is the so-called “linear mixing” [26], for which Eq. (7)

takes the form: n(i+1) = (1 − α)ñ(i+1) + αn(i) . However, octopus allows for more sophisticated

procedures – we refer the reader to the original references: the generalized Broyden algorithm

of Johnson [27], and the “guaranteed reduction” Pulay algorithm [28].

Spin. All the previous equations were written considering no spin polarization. However,

octopus is also able to perform calculations using spin-density functional theory, either con-

sidering complete spin alignment throughout the system or not. This latter case requires the

use of the generalized local spin-density theory [29]. The wave functions are then described as

two-component spinors Φ(~r) = (ϕ1(~r), ϕ2(~r)) where the components are complex wave functions.

Finally we also mention the possibility to perform calculations including external magnetic fields.

As noted above, current-density functionals are being implemented, but it is already possible to

perform calculations including a static uniform magnetic field.
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2.2 The Hartree potential

In 3 dimensions, the Hartree potential may be represented in two equivalent forms: as the

integral:

vHartree[n](~r) =

∫

d3r′
n(~r′)

|~r − ~r′| , (8)

or as the solution of Poisson’s equation:

∇2vHartree[n](~r) = −4πn(~r) . (9)

There are various ways in which these equations may be solved, and we have investigated and

implemented some of them [14].

Conjugate gradients. This amounts to solving Eq. (9) via a conjugate gradients algorithm.

This poses the problem of the boundary conditions for v. The standard solution is to obtain

the boundary conditions by calculating the value of v at points around the simulation box by

making use of a multipole expansion representation of the density n: For points outside, the

potential is given by

vHartree(~r) =

∞
∑

l=0

l
∑

m=−l

4π

2l + 1

1

r(l+1)
Ylm(r̂)Qlm , (10)

Qlm =

∫

d3r rlYlm(~r)n(~r) ,

where Ylm are spherical harmonics. octopus now offers an alternative: we subtract from n a

sum of densities Qlmnlm, where Qlm are the multipoles of n, and where nlm are auxiliary known

charge distributions whose (lm)-moment is unity, and whose other moments are zero:

n̄ = n−
L

∑

l=0

l
∑

m=−l

Qlmnlm . (11)

For a sufficiently large integer L, n̄ has negligible boundary conditions, so that vHartree[n̄] may

be calculated with the usual Laplacian with zero boundary conditions. Since Poisson’s equation

is linear,

vHartree[n] = vHartree[n̄] +
L

∑

l=0

l
∑

m=−l

QlmvHartree[nlm] . (12)

The functions vHartree[nlm] can be obtained exactly (see Ref. [14] for explicit analytical expres-

sions for nlm and vHartree[nlm]).

Multigrids. Still in real-space, as a recent addition, octopus now also allows for the use of

the multigrid method [30, 31]. Multigrid is a linear scaling iterative method to solve elliptic

problems. The base of this scheme is to use a group of different grids that have less points

than the original grid where the problem is discretized. In these coarser grids the corrections

to the solution in the original grid are calculated using standard relaxation methods (such as

Gauss-Jacobi or Gauss-Seidel). The solution process is much faster in the coarser grids, not only

because of the reduced number of points, but also because relaxation operators are less local.
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Currently, this technique is implemented in octopus only for the problem of solving Poisson’s

equation; our plans however are to use this technique to accelerate the convergence of our

eigensolvers [32, 33].

Fourier space. octopus also allows to move to Fourier space and obtain the Hartree potential

by making use of the well-known fact that it is simply a multiplicative function in Fourier space.

This is be the best choice for fully periodic systems, since it naturally handles the periodic

boundary conditions. It is a fast and efficient method thanks to the existence of the Fast

Fourier Transform (FFT) algorithm.

For systems of reduced periodicity (finite systems, slabs, cylinders) plane waves can still be used

efficiently to calculate the Hartree potential using the cutoff technique. The discussion of this

issue is referred to Section 6.

3 Response calculations

3.1 Time-dependent DFT

TDDFT [3,4] extends the previous formulation to time-dependent phenomena; one can establish

an analogous mapping between the interacting and a non-interacting system, and we obtain a

set of time-dependent one-particle equations [3] (Runge-Gross equations, or time-dependent KS

equations, TDKS):

i
∂

∂t
ϕi(~r, t) = hKS(t) ϕi(~r) (i = 1, . . . , N) . (13)

n(~r, t) =

N
∑

i=1

|ϕi(~r, t)|2 . (14)

The KS Hamiltonian is similar to the static version given by Eq. (3):

hKS(t) = −1

2
∇2 + v(~r, t) + vHartree[n](~r, t) + vxc[n](~r, t) . (15)

Note, however, that in this case we allow for an explicitly time-dependent external potential

v(~r, t). The exchange and correlation term is now both a functional of the time-dependent

density and of the initial state of the system (typically the ground state). In principle, vxc

should depend on the densities at all times in the past; in practice most applications of TDDFT

rely on an adiabatic approximation:

vxc[n](~r, t) = vgs
xc[ρ]|ρ=n(~r,t) , (16)

where vgs
xc is the ground state exchange and correlation potential functional. In this way, all the

approximations implemented in the code for the ground state calculations translate immediately

to the time-dependent formalism. Moreover, orbital functionals are also implemented in octopus

for time-dependent calculations within the time-dependent KLI scheme [34].

Most applications of TDDFT are restricted to a linearized form of Eqs. (13) and (14) that

assumes a small external perturbation, and attempts to obtain the first-order density-density
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response in frequency domain. In octopus we allow for both possibilities: the linear-response

formalism, and the explicit integration of the TDKS equations in the time domain. The latter

may not only be used to calculate linear response properties, but also permits to use high-

intensity fields and to perform combined electron-ion dynamical simulations.

For the explicit integration of Eqn. (13) in real time one uses a propagation algorithm. In other

words, we seek a numerical representation of the evolution operator Û(t+ ∆t, t):

ϕ(~r, t+ ∆t) = Û(t+ ∆t, t)ϕ(~r, t) . (17)

In TDDFT we are dealing with the integration of a set of coupled Schrödinger-like equations,

characterized by two important facts: (i) The Hamiltonian is intrinsically time-dependent, even

if there is no external potential, since the Hartree and xc parts depend on the time-dependent

density; (ii) The Hamiltonian – at least a part of it – is not known a priori: both Hartree and

xc terms depend on the solution itself.

For time-independent Hamiltonians, it is well known that the problem reduces to the calculation

of the action of the exponential of the Hamiltonian on the function that describes the state.

Unfortunately, since this is not the case in TDDFT, one has to approximate the full evolution

operator:

Û(t+ ∆t, t) =
∞
∑

n=0

(−i)n

n!

∫ t+∆t

t

dt1 . . .

∫ t+∆t

t

dtnT [ĥKS(t1) . . . ĥKS(tn)] , (18)

where T is the time-ordering product. We have done some research on this topic, by implement-

ing in the octopus package a handful of algorithms: polynomial expansions (in the standard base

or in the Chebyshev base) to approximate the exponential operator, Krylov subspace projections,

the split-operator technique, higher-order split-operator-like schemes, the implicit midpoint rule,

the exponential midpoint rule, and the so-called Magnus expansions.

For more details on these propagation algorithms, we refer the reader to our publication on the

issue [35].

3.2 Electronic excitations by means of time-propagation

Dynamical polarizability. In octopus the calculation of the dynamical polarizability can

be performed by propagating in real time [36]. This methodology scales well with the size of the

system, and is thus our preferred scheme for large systems. Let us recall the essentials of this

formulation. We will restrict hereafter to electrical (spin-independent) dipole perturbations:

δvext,σ(~r, ω) = −xjκ(ω) . (19)

This defines an electrical perturbation polarized in the direction j: δ ~E(ω) = κ(ω)êj . The

response of the system dipole moment in the i direction

δ〈X̂i〉(ω) =
∑

σ

∫

d3r xi δnσ(~r, ω) (20)

is then given by:

δ〈X̂i〉(ω) = −κ(ω)
∑

σσ′

∫

d3r

∫

d3r′ xi χσσ′(~r, ~r′, ω) x′j . (21)
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We may define the dynamical dipole polarizability αij(ω) as the quotient of the induced dipole

moment in the direction i with the applied external electrical field in the direction j, which

yields:

αij(ω) = −
∑

σσ′

∫

d3r

∫

d3r′ xi χσσ′(~r, ~r′, ω) x′j . (22)

The dynamical polarizability elements may then be arranged to form a second-rank symmetric

tensor, α(ω). The cross-section tensor is proportional to its imaginary part:

σ(ω) =
4πω

c
=α(ω) . (23)

We consider a sudden external perturbation at t = 0 (delta function in time), which means

κ(ω) = κ, equal for all frequencies. This perturbation is applied along a given polarization

direction, say êj . By propagating the time-dependent Kohn-Sham equations, we obtain δ〈X̂i〉(ω)

through Eq. (20). The polarizability element αij(ω) may then be calculated easily via:

αij(ω) = −δ〈X̂i〉(ω)

κ
= −1

κ

∫

d3r xi δn(~r, ω). (24)

Symmetry considerations. One recent addition to octopus [37] is the possibility of tak-

ing advantage of the possible symmetries of a given molecule when calculating its dynamical

polarizability tensor, Eq. (22), through the time-propagation technique.

Let us consider three linearly-independent, but possibly not non-orthogonal, unit vectors {p̂1, p̂2, p̂3}.
We define the polarizability elements α̃ij(ω) as:

α̃ij(ω) = −
∫

d3r

∫

d3r′ (~r · p̂i)χ(~r, ~r′, ω)(~r′ · p̂j) . (25)

This corresponds to a process in which the polarization of the perturbing field is along p̂j, and

the dipole is measured along p̂i. If we know the 3x3 matrix α̃(ω), we can get the real tensor

α(ω) by making use of the following simple relationship, which can be obtained once again from

Eq. (22):

α̃(ω) = Pt
α(ω)P . (26)

P is the transformation matrix between the original orthonormal reference frame and {p̂1, p̂2, p̂3}.
Note, that this transformation is in general not a rotation, as P is not unitary. Moreover, no

matter how familiar it looks, Eq. (26) does not describe a change of coordinates: α̃(ω) is not

the polarizability tensor in the new reference frame. And finally, also note that the traces of α̃

and α do not coincide:

Tr [α̃(ω)] = Tr
[

Pt
α(ω)P

]

= Tr
[

α(ω)PPt
]

. (27)

but PPt 6= 1. Notwithstanding all this, it is the basis of our scheme, since it tells us that we

may obtain the polarizability tensor by obtaining the related object α̃(ω).

Now let us assume that the molecule under study possesses some non-trivial symmetry trans-

formations – to start with, we consider that it has two, A and B. We consider an initial unit

vector, p̂1, and define:

p̂2 = Ap̂1 (28)

p̂3 = Bp̂2
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We assume that this may be done in such a way that the set {p̂1, p̂2, p̂3} is linearly independent.

Next, we perform a TDDFT calculation with the perturbing field polarized in the direction

p̂1. This permits us to obtain the row {α̃11, α̃12, α̃13}. Since the matrix is symmetric, we also

have the column {α̃11, α̃21, α̃31}. The symmetry of the molecule also permits us to obtain the

diagonal: {α̃33 = α̃22 = α̃11}. The only missing element is α̃23 = α̃32, but it is easy to prove

that:

α̃23 = det(A) α̃1,A−1 p̂3
, (29)

which we can also obtain from our original calculation. The conclusion is that we have access

to the full tensor by performing only one calculation.

Finally, we should note that these symmetry considerations may be extended to other response

properties of the system, and to the calculation of the singlet and triplet excitations of param-

agnetic molecules.

3.3 Electronic excitations by means of linear-response theory

We recall here the fundamental equations of the linear response formalism [38]. In the following,

we work directly in the frequency domain – the variable ω denotes the frequency. A small

perturbation δvσ(~r, ω) will induce a density response δnσ(~r, ω) (hereafter the Greek letters σ, τ, µ

will denote spin components). They will be linearly related by the susceptibility function:

δnσ(~r, ω) =
∑

σ′

∫

d3r′χσσ′(~r, ~r′, ω)δvσ′(~r′, ω) . (30)

An analogous equation may be written for the KS system, substituting the interacting suscep-

tibility by the KS susceptibility χKS
σσ′ and the external perturbation δvσ by the KS variation

δvKS,σ. The density response, however, is identical by virtue of the Runge-Gross theorem [3].

The KS variation is:

δvKS,σ(~r) = δv(~r) +

∫

d3r′
δn(~r′)

|~r − ~r′| +
∑

σ′

∫

d3r′fxc,σσ′(~r, ~r′, ω)δnσ′(~r′, ω) , (31)

where the so-called “kernel”, fxc,σσ′(~r, ~r′, ω), is the second functional derivative of the xc energy

functional. If we now make use of the identity between densities of the real and of the KS

systems, we arrive at a Dyson-like equation for the response function [39]:

χσσ′(~r, ~r′, ω) = χKS
σσ′(~r, ~r′, ω)+

∑

ττ ′

∫

d3r

∫

d3r′χστ (~r, ~x, ω)

[

1

|~x− ~x′| + fxc,ττ ′(~x, ~x′, ω)

]

χKS
τ ′σ′(~x′, ~r′, ω) .

(32)

A fully self-consistent solution of this equation would provide us with the response function

of the interacting system. Unfortunately, this is quite difficult numerically. Furthermore, it

requires the knowledge of the non-interacting response function, χKS
σσ′ . This function is usually

evaluated through an infinite summation over both occupied and unoccupied KS states. This

summation may be slowly convergent. For systems with a discrete spectrum of excitations (like

finite systems), it is possible to recast this equation through a series of transformations [38] into

a form that is manageable and resembles the equations that are obtained in the time-dependent
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Hartree-Fock and Bethe-Salpeter approaches in many-body perturbation theory [42]. We write

here only the final result – which is the equation that octopus actually solves:

Ω~FI = Ω2
I
~FI . (33)

This is an eigenvalue equation of dimensionNpairs, whereNpairs is the number of pairs of occupied

and unoccupied KS orbitals that one wishes to consider (ideally infinite). The matrix Ω is defined

as:

Ωiaσ,jbµ = δijδabδσµ(εaσ − εiσ)2 + 2
√
εaσ − εiσKiaσ,jbµ

√

εbσ − εjµ , (34)

with the matrix elements

Kiaσ,jbµ =

∫

d3r

∫

d3r′ ϕ∗
iσ(~r)ϕaσ(~r)

[

1

|~r − ~r′| + fxc,σµ(~r, ~r′)

]

ϕ∗
jµ(~r)ϕbµ(~r) . (35)

Here i and j run over occupied KS states, a and b over unoccupied KS states, and σ and µ

are spin indexes. Upon diagonalization of this matrix, we obtain the eigenvalues Ω2
I , which

are the squares of the excitation energies of the system. The eigenvectors, in turn, contain the

information that permits to obtain the transition densities and the oscillator strengths of these

excitations.

We should remark, however, that Eq. (33) assumes that the Ω matrix is independent of the

excitation energy. This is an approximation: For exchange-correlation potentials with memory

(e.g. Ref. [40]), one has to solve self-consistently a non-linear eigenvalue problem: Ω(ΩI)~FI =

Ω2
I
~FI , whose manifold of solutions is usually larger than the approximated one.

In order to implement the TDDFT-based linear-response equations – essentially, Eq. (33) –,

one just needs to provide a means to calculate the Ω matrix elements in Eq. (34). The only

new difficulty is the appearance of a new ingredient, the kernel fxc(~r, ~r
′). Note that this is a

two-point function, although it reduces to a one-point function in local approximations to the

exchange and correlation energy functionals.

3.4 High-intensity fields

Now, a word about calculations in the non-linear regime (i.e. when applying large external

electromagnetic fields, or when studying the scattering of a high energy projectile by a molecule).

One external field is added to the “internal” KS potential; In such cases the external potential

takes typically the form:

v(~r, t) = E0f(t) sin(ωt)p̂ · ~r . (36)

This ansatz describes a classical laser pulse in the dipole approximation, where f is the “enve-

lope” of the pulse and p̂ is the polarization of the light. Finally, E0 determines the intensity of

the pulse. Of course there is no problem to extend this ansatz in order to describe more general

situations.

When dealing with high-intensity fields, there will be a non-negligible transition probability

to unbound states. In other words, the incoming field may induce the ionization of part of

the electronic cloud. The observables related to this process are the ionization probabilities,

which are functionals of the time-dependent density by virtue of the Runge-Gross theorem.
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Unfortunately, these functionals are unknown. There is not a fully satisfactory way to deal with

this issue within a grid-based formalism, but there are some approximate methods that rely on

a geometrical picture [41]: we define a bound region A around the system that contains the

bound states, and the density that travels outside (to the rest of the space, B) corresponds to

ionized states.

In practice, there are two schemes to simulate this ionization in octopus. The first consists

of adding an imaginary potential to the Hamiltonian, which is defined to be non-zero only in

a frontier region F that separates A and B. It varies smoothly from zero in the intersection

of F and A to a maximum in the limit of the simulation region. The role of this imaginary

potential is to eliminate in a smooth way the electronic density that approaches the frontier of

the simulation region. The second uses a mask function to selectively remove the density close

to the borders.

A classical example for the application of TDDFT within the high-intensity field regime is the

calculation of the High-Harmonic Generation (HHG) spectrum of a molecule: If we shine a very

intense laser field (of intensity over 1013W/cm2) on a molecule, an electron may absorb several

photons, be ejected, and then return emitting one single photon. This photon has a frequency

which is an integer multiple of the frequency of the external driving field. The spectrum of

emitted radiation is approximately (i.e. neglecting incoherent processes) given by:

σemission(ω) =

∣

∣

∣

∣

∫

dte−iωt d2

dt2
〈 ~̂R〉

∣

∣

∣

∣

2

. (37)

Since the dipole 〈 ~̂R〉 is an explicit functional of the time dependent density, the emission spectrum

can then be approximated with TDDFT. A couple of examples may be found in Ref. [43].

3.5 Coupled ion-electron response

In order to study the dynamics of molecules exposed to external fields, we have implemented

a mixed classical/quantum approach. The Hellman-Feynman theorem is no longer valid in this

case, but we may resort to the Ehrenfest theorem; the model may be described as two coupled

dynamical systems: one quantum system of non-interacting particles (the KS/TDDFT system

of electrons) subject to the KS potential, and one classical system of particles describing the

ions. The first system obeys Eqs. (13) and (14); the second system is described by Newton’s

equations:

mα
d~Rα

dt
= ~Pα , (38)

d~Pα

dt
= −

∑

j

〈ϕj(t)|~∇~Rα

vKS[n]|ϕj(t)〉 +
∑

β 6=α

~Fβ→α . (39)

In these equations, mα is the mass of the nucleus tagged by α; ~Rα and ~Pα are their position and

momentum; ~Fβ→α is the classical electrostatic force exerted by nucleus β on nucleus α. Eq. (39)

is nothing else than a reformulation of Ehrenfest’s theorem.
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3.6 Sternheimer’s equations

One recent addition to octopus is the possibility of calculating response properties using density-

functional perturbation theory [44–46]. Currently it is possible to calculate static polarizabilities

and the first hyperpolarizabilities,

The base of this theory is that, for a given perturbative potential, we can find the first order

perturbations to the wavefunctions (ϕ
(1)
i ) solving the Sternheimer [47] equation

(

H(0) − ε(0)
)

ϕ
(1)
i = −

(

H(1) − ε(1)
)

ϕ
(0)
i , (40)

the H(1) term includes the perturbative potential and the variation of the Hamiltonian due to

the variation of the density, which is

n(1) (~r) =

N
∑

i=0

[

ϕ
∗(0)
i (~r)ϕ

(1)
i (~r) + ϕ

∗(1)
i (~r)ϕ

(0)
i (~r)

]

. (41)

The two equations (40) and (41) form a system that must be solved self-consistently. As the

right hand side of (40) is known, this is a linear equation that can be solved by iterative methods.

Thanks to the 2n+ 1 theorem [48], using the first order perturbations of the wavefunctions, we

are able to calculate properties that are second and third-order derivatives of the total energy

(polarizability and the first hyperpolarizability, for instance).

This formalism is also applicable to time dependent perturbations, using TDDFT [49], where

we have to solve a slightly different Sternheimer equation

(

H(0) − ε(0) ± ω
)

|ϕ(1)
i 〉 = −H(1)|ϕ(0)

i 〉 , (42)

where ω is the frequency of the perturbative potential. We are now developing this scheme to

calculate dynamical polarizabilities.

4 Adaptive coordinates

The real-space techniques for computational simulations in the condensed matter realm are

usually praised for, at least, two strong advantages: On the first hand, the intrinsically local

character of the “basis set” permits, in principle, large scale parallelization by dividing the space

in domains. This locality is also the basis for the use of techniques aiming at the linear-scaling of

the computational effort. On the second hand, the real space mesh on which the magnitudes are

represented may be locally adapted to the needs of each region – one feature which is difficult

to translate to the more traditional plane wave representation.

This section is centered on the second aspect: One possible route to implement curvilinear

coordinates, able to adapt the local resolution to the needs of each region in space. The next

section will be dedicated to the parallelization.

A real-space representation is the description of the functions involved in the calculation by the

values that these functions take on a collection of points in real space (the “grid” or “mesh”).

This grid can be regular – meaning that the points are equispaced between each other – or
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→ ~r → ~ξ(~r) →

Figure 1: An adaptive-coordinates representation is constructed through the definition of a coordinate

transformation function ~ξ.
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Figure 2: Left: the “basic” porphyrin molecule. Right: convergence study of the ground-state total

energy of the porphyrin molecule, with and without the use of the adaptive-grid technique. In this case,

we have used the transformation formula of F. Gygi [50], doubling the local cut-off near the atoms, and

a 44-point stencil to represent the Laplacian operator.

curvilinear. An “adaptive” or “curvilinear” grid is the deformation of a regular grid through

some transformation function (see Fig. 1), which leads to a curved distribution of points. This

deformation should be intelligently done, so that the density of points increases in the regions

of space where the problem requires a larger resolution.

In the last years, a number of groups have contributed to the development of these techniques

in the field of electronic structure calculations. We have specially looked at the works of F. Gygi

and collaborators [50], Hamann [51], Pérez-Jordá [52], Briggs and collaborators [53], E. Fattal

and collaborators [54] and at the work of Waghmare and collaborators [55]. In octopus we have

implemented one scheme based on the ideas of these works.

An example of curvilinear coordinates is based on the following transformation function, first

proposed by Gygi [50]

ξi = xi +
∑

α

(xi −Ri
α)fα(|~x− ~Rα|), (43)

fα(r) = Aα
aα

r
tanh

(

r

aα

)

exp

[

−
(

r

bα

)2
]

, (44)

where α runs over the atoms, and ~Rα are the atomic positions. The parameters Aα, aα, and bα

fine-tune the transformation – what will be the resolution enhancement, the region around each

atom where the regular grid is transformed, etc.

Once that the positions of the grid points are specified, we represent each function involved in

the calculation (f , g,. . . ) by the vector formed by the values that it takes on the grid points
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(f ,g, . . . ). We must then define the basic operations:

• The basic vector space operations are of course unaltered: αf + βg → αf + βg.

• The integration is now a weighted sum; each grid point i has a weight ωi, which is in fact

the Jacobian of the transformations:
∫

d3r f(~r) =
∑

i

ωifi , (45)

wi = det

[

∂xi
m

∂rn

]

. (46)

• The integral permits to define the dot product:

〈f |g〉 =
∑

i

ωifigi = f †Ωg . (47)

We see how a metric appears naturally; it is given by the diagonal matrix Ω: Ωij = δijωi .

• The operators that are local in real space are trivial to represent; they are just multiplica-

tive operators in the same way that they were for uniform grids.

• The differential operators (e.g. the kinetic operator) are the main problem. In principle,

one can use the transformation laws to relate the differential operators in the new grid to

the usual well-known finite-differences discretization expressions in the uniform space:

∇2 =
∑

ij

gij ∂

∂ξi

∂

∂ξj
+

∑

lik

∂ξl

∂xk

∂

∂ξl

(

∂ξi

∂xk

)

. (48)

This, however, involves a lot of computations, and in general does not provide a Hermitian

operator.

Instead, we have used the following approach, valid for any grid, even unstructured ones:

– Select a stencil: given each point in the grid, the stencil is the set of neighboring

points from which we calculate the action of any differential operator D:

(D(f))i =
∑

j∈Stencil(i)

Ci
jfj . (49)

– Select a set of polynomials {xαyβzδ}, of equal number to the points in the stencil:

the coefficients C i
j are fixed by ensuring that the action of D on these polynomials is

exact.

This amounts to solving a linear system of equations of order the size of the stencil

for each point of the grid. This operation must be performed at the beginning of the

calculations, or every time that the grid is redefined.

– The Laplacian operator is Hermitian; the gradient operator is anti-Hermitian. The

resulting numerical operator C, however, is not (anti) Hermitian. But it can be (anti)

symmetrized by transforming the matrix C in the following way:

C̃ =
1

2
(C±W−1CW) . (50)
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Figure 3: Parallelization modes for DFT/TDDFT codes.

More details about the selection of the stencil and of the fitting polynomials may be consulted

directly in the code, and will be provided in a separate publication. Here we will finish this

section by presenting an example that shows the gain that is to be expected from the use of

adaptive coordinates.

For that purpose we have chosen the “base” porphyrin molecule, depicted on the left hand side

of Fig. 2. We have then calculated its ground state total energy at the KS/LDA level, with

varying grid spacing. We plot, on the right hand side of Fig. 2, the resulting convergence study

– a plot of the error in the total energy as a function of the grid spacing.

We show two curves, one of them corresponds to the calculations with the standard uniform

grid, and one of them with adaptive coordinates. The meaning of the grid spacing in the latter

case is ambiguous (the spacing is no longer constant), and therefore we plot in the figure the

original grid spacing, before the transformation is performed. In this way, at each abscissa point

the number of grid points of both the uniform and the adaptive grid is the same.

In this case, we used Gygi’s transformation function, Eq. (43). The parameters are chosen in

such a way that the grid resolution is doubled in the vicinity of the nuclei. The plot shows a

faster convergence for the adaptive grid: The calculation can be done, with the same level of

accuracy, by making use of roughly half the number of points (it is the number of points in the

grid that determines the final computational cost).

5 Large-scale parallelization

The current trend in hardware technology follows a steep increase in the number of processors

in each computing machine or facility, as opposed to the trend towards an increase in the clock

speed or number of operations that each processing unit may perform per unit time. To use

modern computing facilities efficiently, we have to ensure that our codes are able to benefit from

such parallel-computing architectures.

5.1 Parallelization strategies

Recently, we have incorporated into octopus a multiple-way parallelization scheme that may

divide the work among a given number of processors, splitting the tasks either in k-points, in

Kohn-Sham states, in regions of real-space, or in a combination of all of them. Each single form

of the contemplated parallelizations may scale by its very nature only to a certain maximum

number of processors. Only combined schemes allow to overcome such limitations.
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In Fig. 3 we have represented the various possible modes for which a task division within a

DFT/TDDFT calculation may be obtained:

• k-points: In a ground-state DFT calculation each processor solves the KS equation

ĤKS
k ϕnk(~r) = εnkϕnk(~r) (51)

for a given but fixed k-point. Communication among the nodes is only required for the

calculation of the (common) density or other Brillouin-zone integrations. This is the paral-

lelization mode that most ground-state solid-state DFT codes offer. The implementation is

straightforward and scales very nicely with the number of processors. However, limitations

arise for systems with very large unit cells.

• spin: The different spin subspaces may be treated by different processors. In practice

this is rather similar to the k-point parallelization, so that both spin and k-points are

represented as common quantum numbers and are treated on the same footing.

• Kohn-Sham states: For the ground-state a parallelization in state indices or bands is

more involved than the k-point parallelization. Essentially, the state indices have to be

divided into different state-groups. The eigenproblem is then solved for each group and

a subsequent orthonormalization of the states is performed among the states of different

groups. Special block-diagonalization algorithms are used for this task.

On the other hand, in time-dependent DFT the parallelization in state indices is straight-

forward. Since the time-dependent Kohn-Sham equations constitute a N-fold initial value

problem, each orbital/state index may be propagated on a different processor. Com-

munication is only required for the calculation of the density and in some cases for the

calculation of the current.

• real-space regions: The real-space mesh is divided into different domains, so that each

processor can treat a different portion of the total mesh. This is illustrated in the left

of Fig. 4, where we show a six-fold domain decomposition of a benzene molecule in the

x-y plane. Apart from the distribution of the computational burden over the different

nodes, this parallelization strategy also has the distinct advantage that the total memory

requirement for the storage of the grid points is distributed over the nodes. Much larger

systems can be treated if domain parallelization is used.

The price one has to pay for this flexibility is the rather involved implementation which

requires non-trivial communication among the nodes. On the right hand side of Fig. 4 we

show the application of a finite-difference stencil of the Laplacian to a boundary point of

Domain B. Due to the non-local character of the stencil this requires points of Domain A

(grey shaded area) which are held in memory by a neighboring processor. These points

are termed ghost points and need to be communicated among neighboring nodes every

time the function values on the grid change. Low-latency high-bandwidth networks are

therefore the preferred interconnects for such an implementation.

• other: electron-hole pairs, scattering states, etc: The basis set in a linear response calcula-

tion within time-dependent DFT consists of electron-hole pairs: products of occupied and
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Figure 4: Ghost points in a domain parallelization.

unoccupied Kohn-Sham states. Typically a large number of matrix elements in the form

of Eq. (34) is required. Since the different matrix elements are independent of each other,

a parallelization may be easily obtained by simply distributing their calculation over the

different nodes.

The natural description of a quantum-mechanical transport calculation is in terms of

scattering states at given energies. Similar in spirit to the parallel treatment of Kohn-

Sham states, the propagation of these scattering states can be distributed over different

nodes.

5.2 Technical aspects

For the implementation of the multiple-way parallelization in octopus we have employed version

1 of the message passing standard MPI [56]. The choice was mainly motivated by the availability

of this MPI variant for virtually any computer architecture, and by the fact that MPI is the

de facto standard on large-scale parallel architectures. We did not make use of version 2 or

newer developments in the MPI standard since these features are still not available on many

platforms. Parallelization techniques like OpenMP have been ruled out from the start, since

they are limited to shared memory architectures with many processors in a single machine. The

current Top500 list [57] contains only a few machines of this kind.

Within octopus we allow for various different box shapes like spheres, cylinders or paral-

lelepipeds in 3D, or disks and rectangles in 2D. With a recent addition to the code even ar-

bitrary user-defined shapes can be chosen. To treat the segmentation of the real space mesh

for all possible geometries and spatial dimensions on the same footing, we convert the sequence

of mesh points into a structured graph. The problem of decomposing the real-space mesh into

different domains is then translated into a graph-partitioning problem. Several graph algorithms

are available for such tasks and we have chosen for our implementation in octopus a “multilevel

k-way partitioning algorithm” as provided by the METIS library [58]. The library functions try

to minimize the edge cuts while the graph partitioning is performed. Translated back to the
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Figure 5: Measured speedups for a domain-parallel calculation of Cs8@C60.

real-space mesh this means that the intersection area of neighboring domains is minimized which

in turn implies that fewer ghost points have to be communicated between the different nodes.

This effect can be seen nicely in the example of the benzene molecule (Fig. 4) where the domain

boundaries computed by METIS always lie between two carbon atoms, the optimal situation in

this case.

5.3 Application to Cs8@C60

In Fig. 5 we show a sample calculation for 8 Cs atoms attached to C60. Because of the size of

the Cs atoms a rather large sphere with 26 Å diameter was used as enclosing computational

domain. By choosing a grid spacing of ∆=0.20Å a total number of 1.177.863 grid points were

contained in the calculation box.

To asses the performance of the domain parallelization we have repeated the ground-state DFT

calculation of this system with a varying number of processors ranging from one to 32. On the

right hand side of Fig. 5 we plot the measured speedup as function of the number of processors.

The circles correspond to the timings obtained for the application of the Hamiltonian to the

wavefunction and the diamonds represent the measured timings for a full SCF cycle. Both curves

follow Amdahl’s law [59]: Suppose that p is the fraction of a calculation that can be performed

in parallel. Then 1 − p is the percentage which is intrinsically serial. If we define the speedup

S(N, p) of a parallel calculation as the ratio T (1, p)/T (N, p), where T (N, p) is the execution

time using N processors, we find

S(N, p) =
1

1 − p+ p/N
. (52)

Note, that the speedup will always saturate to 1/(1−p) as function of the number of processors,

if p < 1. In Fig. 5 we have fitted our measured data to Amdahl’s law (solid lines) and obtain

parallel fractions p = 0.97 for the application of Ĥ to the wavefunction and p = 0.992 for the

execution of a full SCF cycle. Both fractions indicate that a high degree of parallelization has

been achieved for the domain parallelization in octopus. Nevertheless, since the saturation is

very sensitive to the value of p there is still room for improvement in the future.
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6 Periodic systems

DFT has been extensively applied to bulk systems, as much as it has been to clusters or

molecules. TDDFT for solids, however, has a smaller history [42]. We intend to provide a

tool for DFT and TDDFT on extended systems. In the definition of “extended systems,” how-

ever, we include systems of intermediate dimensionality: systems that are periodic in one and

two dimensions. These systems are still 3-dimensional (3D), but their quantum properties are

those of a finite system in one or more directions, and those of a periodic system in the remaining

directions.

It is possible to implement periodic boundary conditions also in real space, but we have to take

special care of (i) the proper implementation of the the operators that are non-local in real space,

and (ii) the correct treatment of the long-range Coulomb interaction. Regarding the first issue,

we must worry about the differential operators (i.e., gradient and Laplacian), and the non-local

components of the pseudopotentials. In both cases, the action of the operator on a function for

a given point may need the values of the function at points that belong to a neighboring cell.

The periodicity is thus enforced by identifying the “mirror” points.

Regarding the second issue – the correct treatment of the long-range Coulomb interaction – it

is convenient to resort to a dual methodology, that allows to move back and forth from real

to reciprocal space. In particular, the integration of Poisson’s equation is more conveniently

performed in Fourier space, but it is easier to impose different boundary conditions in different

directions in real space.

6.1 Implementation details for bulk systems

Most of the numerical machinery described in Section 2 for finite systems can be also be used

for periodic systems. In the following we will just review the main differences.

Kinetic term. For what concerns the kinetic part of the Hamiltonian, for periodic systems, we

have to modify the kinetic operator used for finite systems. The feature that remains common

to both cases is that, differently from what happens in plane waves codes, the kinetic energy

is entirely calculated in real space. We must however remember that only the periodic part

unk(r + L) = unk(r) of the Bloch states ψnk(r) = e−ik·runk(r) is used as the working quantity

within the cell, and, accordingly, the kinetic operator used for finite systems has to be modified

in the following way:

T̂ = −1

2
∇2 → T̂k = −1

2
(∇2 + 2ik · ∇ − k2). (53)

External potential The total local part of the ionic potential of the infinite system is given

by

vlocal(~r) =
∑

~n∈P

Na
∑

α

vlocal
α (|~r − ~dα − ~L~n|) . (54)

The inner sum runs over the Na atoms of the unit cell: the index α runs over the atoms in the

unit cell, and ~dα indicates the position of the α-th atom. We also use the notation
~̂
L~n to mean
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(nx
~Lx, ny

~Ly, nz
~Lz), and the outer sum is just the sum over the set {P} of all the cells allowed

by the Born-Von Kármán periodic-boundary conditions.

Evaluation of this expression either in real space or in Fourier space leads to well known conver-

gence problems. The solution consists in splitting v local
α (~r) into a short range, and a long range

part. The long range tail of each atomic potential must behave asymptotically like Zα/r, where

Zα is the number of valence electrons for the atom α, and the long range part can be chosen

in such a way that its Fourier transform is analytical, adopting a suitable representation. This

representation is obviously not unique.

A convenient representation turns out to be the following:

vlocal
α (r) = ∆vα(r) − Zα

erf(ar)

r
, (55)

where a is chosen in such a way that ∆vα(r) is sufficiently localized within the cell, but is also

well approximated by its Fourier series when it is truncated to Ni points per each i direction.

The Fourier transform can be performed numerically on the localized part, and analytically on

the long range part

vlocal
α (G) = 4π

∫ R

0
dr r2 sin(Gr)

Gr
∆vα(r) − 4πZα

exp
(

−G2/4a2
)

G2
. (56)

Alternatively, the term ∆vα(r) can be directly handled in real space.

Hartree potential Let us now turn our attention to the Hartree part of the potential. The

solution of Poisson’s equation in real space can be achieved, for example, with a conjugated

gradient minimization method (see discussion in Section 2.2), but, for infinite systems, it is

more convenient to transpose the problem to Fourier space, where we can take advantage of the

efficient Fast Fourier Transform, that scales like N log(N) with the number of grid points N .

Applying the convolution theorem, we can write Eq. (8) in Fourier space as

vHartree( ~G) = n( ~G)w(G) , (57)

where v(G) is the Fourier transform of the Coulomb interaction

w(G) =
4π

G2
. (58)

The treatment of the singular point G = 0 is particularly simple in the case of bulk crystals,

since v(G = 0) corresponds to the average value of the potential, which is determined up to an

arbitrary constant, and it can set to 0 by observing that the overall charge neutrality of the unit

cell imposes v(G = 0) = 0. Note that, as the density is periodic, Eq. (57) needs to be evaluated

only at the reciprocal primitive vectors ~G. The case of systems that are periodic in less than

three dimensions is considered below.

6.2 Systems with reduced periodicity: the cutoff problem

In this sub-section we call nD-periodic a 3D system, that can be considered infinite and periodic

in n dimensions, being finite in the remaining 3 − n dimensions. In order to simulate this kind
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of systems, a commonly adopted approach is the supercell approximation. In the supercell

approximation the physical system is treated as a fully 3D-periodic one, but a new unit cell

(the supercell) is built in such a way that some extra empty space separates the periodic replica

along the direction(s) in which the system is to be considered as finite.

This approach has several major drawbacks. For instance, it is well known that the response

function of an overall neutral solid of molecules is not equal, in general, to the response of

the isolated molecule, and converges very slowly to it, when the amount of vacuum in the

supercell is progressively increased [42, 60]. Another problem arises when studying slabs, as a

layered system (i.e., a supercell) is in fact equivalent to an effective chain of capacitors. These

issues become particularly evident in the approaches that involve the calculation of non-local

operators or response functions because, in these cases, two supercells may effectively interact

even if their charge densities do not overlap at all. Moreover, even in those cases in which good

convergence can be achieved, the supercell can be considerably larger than the system, affecting

the performance, and wasting computational resources.

Some of the available methods used to avoid these problems have been mentioned in Sec. 2.2, but,

with special regard to the periodic case, and considering that the Fourier space method is still

the fastest available to solve the Poisson problem, some of us [61] have recently developed a new

reciprocal space analytical method to cutoff the long range interactions in supercell calculations,

extending previous works for finite systems [14]. This method has been implemented and tested

in octopus.

Our goal is to transform the 3D-periodic Fourier representation of the Hartree potential

vHartree( ~G) = n( ~G)w( ~G) , (59)

into the modified one

ṽHartree( ~G) = ñ( ~G)w̃( ~G) , (60)

such that all the interactions among the undesired periodic replica of the system disappear. The

present method is a generalization of the method proposed by Jarvis and collaborators [62] for

the case of a finite system.

In order to build this representation, we want to: (i) define a screening region D around each

charge in the system, out of which there is no Coulomb interaction; (ii) calculate the Fourier

transform of the desired effective interaction w̃(r), that equals the Coulomb potential in D, and

is 0 outside D

w̃(r) =







1
r

if r ∈ D
0 if r /∈ D

. (61)

Finally, we must (iii) modify the density n(~r) in such a way that the effective density is still

3D-periodic, so that the convolution theorem can be still applied, but densities belonging to

undesired images are not close enough to interact through w̃(r).

The choice of the region D for step (i) is suggested by symmetry considerations. It is a sphere

(or radius R) for finite systems, an infinite cylinder (of radius R) for 1D-periodic systems, and

an infinite slab (of thickness 2R) for 2D-periodic systems.
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Step (ii) means that we have to calculate the modified Fourier integral

w̃( ~G) =

∫

d3r w̃(r)e−i ~G·~r =

∫

D
d3r w(r)e−i ~G·~r . (62)

Still, we have to avoid that two neighboring images interact by taking them far away enough

from each other. The cutoff functions are analytical in Fourier space except some particular sets

of points (the Gx = 0 plane in the 1D-periodic case, and the G‖ = 0 plane in the 2D-periodic

case), for which a suitable limiting procedure has to be followed in order to get finite results

(explained in Ref. [61]). The results of the integral (62) are the following

• 0D-periodic

w̃0D(G) =







4π
G2 [1 − cos(GR)] for G 6= 0

2πR2 for G = 0
(63)

• 1D-periodic (G⊥ =
√

G2
y +G2

z)

w̃1D(Gx, G⊥) =



























4π
G2

[

1 +G⊥RJ1(G⊥R)K0(|Gx|R) for Gx 6= 0

−|Gx|RJ0(G⊥R)K1(|Gx|R)
]

−4π
∫ R

0 dr rJ0(G⊥r) log(r) for Gx = 0 and G⊥ > 0

−πR2(2 log(R) − 1) for Gx = 0 and G⊥ = 0

(64)

• 2D-periodic (G‖ =
√

G2
x +G2

y)

w̃2D(G‖, Gz) =



















4π
G2

[

1 + e−G‖R
(

|Gz |
G‖

sin(|Gz |R) − cos(|Gz |R)
)]

for G‖ 6= 0

4π
G2

z

[1 − cos(|Gz |R) −GzR sin(|Gz |R)] for G‖ = 0 and Gz 6= 0

−2πR2 for G‖ = 0 and Gz = 0

(65)

A suitable supercell consists in increasing the cell in the non-periodic directions (in the 1D-

periodic case the supercell size is actually (1 +
√

2)L, and in the 0D-periodic it is (1 +
√

3)L),

and setting to zero the density in this extended area. Again, since the density naturally falls

off to zero at the border of a finite system, doubling the cell size in all periodic directions is

sufficient.

Figure 6 illustrates the effect of the cutoff on the potentials. The left panel shows the ionic

potential, the Hartree potential, and their sum for a Si atom in a parallelepiped supercell with

side lengths of 2.5, 11, and 11 a.u. respectively in the x, y and z directions. No cutoff is used

here. The ionic potential is roughly behaving like 1/r in the area not too close to the nucleus

(where the pseudopotential takes over). The total potential, on the other hand, falls off rapidly

to an almost constant value at around 4 a.u. from the nuclear position, by effect of the electron

screening.

In the right panel of Fig. 6 the cutoff is applied to the all the potentials consistently. The radius

of the cylinder is R = 5.5 a.u. such that there is zero interaction among the replica of the system

along the y and z axes. The ionic potential now behaves like it is expected for a potential of
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Figure 6: Calculated total and ionic and Hartree potentials for a 3D-periodic (left) and 1D-periodic

(right) Si chain.
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Figure 7: Effect of the cutoff in a Na linear chain in a supercell size of 7.5x19x19 a.u. The bands obtained

with an ordinary supercell calculation with no cutoff (dashed line) are compared to the bands obtained

applying the 1D cylindrical cutoff (solid line).

a chain, i.e. diverges logarithmically, and is clearly different from the latter case. Nevertheless,

the sum of the ionic and Hartree potential is basically the same as for the 3D-periodic system. In

the static case the two band structures are found to be the same, confirming that, as far as static

calculations are concerned, the supercell approximation is good, provided that the supercell is

large enough. In static calculations, then, the use of our cutoff only has the effect of allowing us

to eventually use a smaller supercell, which provides clear computational savings. In the case of

the Si-chain a full 3D calculation would need a cell size of 38 a.u. whereas the cutoff calculation

would give the same result with a cell size of 19 a.u. Of course, when more delocalized states are

considered, like higher energy unoccupied states, larger differences are observed with respect to

the supercell calculation.

In Fig. 7 a Na chain with lattice constant 7.5 a.u. is considered in a cell of 7.5x19x19 a.u.,

and the effect of the cutoff on the occupied and unoccupied stated is shown. As expected, the

occupied states are not affected by the use of the cutoff, since the density of the system within

the cutoff radius is unchanged, and the corresponding band is the same as it is found for an

ordinary 3D supercell calculation with the same cell size. However there is a clear effect on the

bands corresponding to unoccupied states, and the effect is larger the higher the energy of the

states. In fact, the high energy states, and the states in the continuum are more delocalized,

and therefore the effect of the boundary conditions is more sensible.
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In summary, the proposed cutoffs are functions in Fourier space, that are used as a multiplicative

factor to screen the bare Coulomb interaction. The functions are analytic everywhere but in a

sub-domain of the Fourier space that depends on the periodic dimensionality. In Ref. [61] we

show that the divergences that lead to the non-analytical behavior can be exactly canceled when

both the ionic and the Hartree potential are properly screened. This technique is exact, fast,

and very easy to implement in already existing supercell codes.

7 Conclusions

octopus was officially born on the 1st of January 2002. Since then, the code has grown at a

steady pace, both in the number of lines of code (that will soon reach the 50.000 lines of Fortran

90), and in the kind of problems it is able to tackle. In this article we gave a brief overview on

the code, mentioning some of the algorithms used and their numerical implementation. Some

of the most recent developments were discussed in more detail, namely (i) the use of curvilinear

coordinates, that can improve dramatically the efficiency of the calculation; (ii) the multiple

parallelization approach, that allows the code to scale in some situations to several hundred

processors; and (iii) the extension of the code to periodic systems. Nevertheless, octopus is

still, and will always be, a work in progress. In fact, our TODO list already includes, among

others, (i) the extension to all-electron calculations, either using the Projector Augmented Wave

technique, or by using specially crafted curvilinear transformations able to describe adequately

the core wave-functions; (ii) the possibility of performing fully-relativistic (i.e., Dirac-level)

calculations; (iii) the possibility of using hybrid exchange-correlation functionals; etc.

Note, however, that the code is not important per se, but due to the physics and chemistry

we can learn from it. We believe that octopus has already reached a high level of maturity

when it comes to the calculation of linear optical properties in nanostructures. In fact, we,

and several other groups around the world, routinely use octopus to study the optical spectra

of large nanocrystallites, bio- chromophores, and even aromatic molecules with astrophysical

implications. octopus can also be efficiently used to study the interaction of molecules with

strong lasers, to calculate (hyper)polarizabilities, etc. However, experimentalists have nowadays

at their disposal numerous probes to study physical systems – infrared, visible and ultra-violet

light, X-ray radiation, magnetic fields, electron beams, etc. It would be certainly helpful if a

tool could describe consistently this whole plethora of spectroscopies. With octopus we are still

far from this objective, but by adding new features and by making the code more user friendly,

we expect to provide a code that is useful to a large scientific community.
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[20] S. Kümmel and J. P. Perdew, Phys. Rev. Lett 90, 043004 (2003); S. Kümmel and J. P. Perdew,
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