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FOREWORD

The following paper from about 1994 is being published in Psi-k Newsletter because Physical

Review has twice refused to do so, for reasons that are frankly unacceptable, in spite of meeting

all the objections of the first round of refereeing.

Anyway it is not unsuitable for Psi-k Newsletter because some people still use norm-conserving

pseudopotentials for a wide range of applications, and anyway the idea of the Qc tuning is now

also being used elsewhere. Also these pseudopotentials are very good, the extra ’tuning’ degree

of freedom allowing one to match the logarithmic derivative as closely as possible, and to soften

the energy cut-off for the plane waves, or to fit to some other empirical quantity such as a

lattice constant. They are considerably softer than some pseudopotentials that are widely used,

without loss of accuracy.

The paper is also being put on the e-Print archive server (http://arxiv.org/), and the code is

freely available (see website http://boson4.phys.tku.edu.tw/qc/).
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Abstract

We have developed an improved scheme for generating optimised norm-conserving pseu-

dopotentials which is more systematic and more flexible, with a better insight. The control

parameter Qc connected with the kinetic energy of the pseudo wavefunction Ψl(r) is used in
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a new way to tune the pseudopotential. The scheme uses only three constraints and three

spherical Bessel functions in the expansion of Ψl(r) inside the pseudising radius rc , com-

pared with four commonly used, which tends to give a somewhat softer pseudopotentials.

The fidelity of the pseudopotential as seen in the logarithmic derivative can be improved in

a simple and systematic way by tuning Qc while minimising the energy cutoff Ecut neces-

sary in solid state application. The scheme opens the way to tailor-making pseudopotentials

for specific requirements useful for large scale ab initio calculations, including reducing the

number of non-local projectors for speeding up the calculations.

1 Introduction

The present paper concerns a further improvement of earlier schemes for generating norm-

conserving pseudopotentials [1, 2, 3]. Soft and accurate pseudopotentials are essential for state-

of-the-art large scale ab initio simulations for solids using plane-wave basis sets. This is in the

context of periodic superlattice calculations based on Density Functional Theory with Local

Density Approximation (LDA) for exchange and correlation with possibly a Generalised Gradi-

ent Approximation (GGA). Here, a ”soft” pseudopotential means that a low energy cut-off, Ecut,

can be used in the planewave expansion of the wavefunction, and the ”accuracy” of a pseudopo-

tential can be measured by the agreement between the logarithmic derivatives of pseudo and

true wavefunctions in a certain energy range, which is an equivalent characterisation of the scat-

tering property of a pseudopotential in terms of the phase shifts of different incoming waves. We

are here concerned with norm-conserving pseudopotentials, as distinct from the super-soft pseu-

dopotentials of Vanderbilt [4] which are not norm-conserving. Although the latter are widely

used, we believe there is still a role for norm-conserving pseudopotentials because of certain

computational efficiences, e.g. optical properties and stress are easier to implement. In any

case it appears that the idea of Qc tuning can also be applied with advantage to the super-soft

pseudopotential [5]. Even with the accuracy and efficiency achieved by a Car-Parrinello type

of algorithm [6, 7], the computational cost still requires as soft a pseudopotential as possible to

make the largest calculations affordable.

While the advantage of the softness in a pseudopotential can not be over-emphasised, what is

equally important is to have a flexible scheme to generate quickly and systematically a new

pseudopotential appropriate to a new physical situation, such as short inter-atomic distances in

some compounds or at ultra high pressures. Another example would be some structural energy

difference where errors cancel, so that one can compromise on convergence properties. A further

situation might be one where the energy range over which the logarithmic derivative of the

pseudo wavefunction has to be accurate is unusually narrow or wide. Whereas one standard

transferable pseudopotential for a given chemical element may be satisfactory for many purposes,

this will not be so for some calculations. On the contrary, the flexibility of balancing the accuracy

(logarithmic derivative) and the efficiency (Ecut) of a pseudopotential in its construction will be

useful, because then computing effort will not be wasted in achieving unnecessary precision. This

utility can not be replaced by simply using an insufficient Ecut in exchange for a less accurate

result because the quality of computed physical quantities falls very rapidly when decreasing Ecut

below some point which is essentially determined by the way the pseudopotential is generated. A
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flexible scheme is therefore to be welcomed if it allows one to regulate the degree of approximation

in different parts of a pseudopotential, such as the logarithmic derivative, Ecut and a large

pseudising radius (”cut-off” radius) rc to maximise the pseudopotential performance in a given

problem without compromising the science. A great computational efficiency has been achieved

in a few cases (eg. reference [8]) by what we call ’projector reduction’. A normal pseudopotential

consist of a local potential operating on all angular momentum (l,m) components of the pseudo

wavefunction, plus a few non-local potentials operating on specific l components only. For a

non-transition element such as carbon, the latter would normally be for l = 0 and 1, requiring

1 + 3 = 4 specific projectors in the computations to pick out these components from the total

pseudo wavefunction. However using the flexibility of Qc tuning, we have been able to generate

pseudopotentials for some elements where the l = 1 component is sufficiently nearly the same

as that for l = 2 so that it can be taken as the local potential part, thus requiring only one

projector for l = 0. This is particularly advantagous with the real-space implementation of

Kleinman-Bylander form [9] for the non-local part of the pseudopotential [10]. The large dynamic

simulation of methanol dissociation in a zeolite [8] could not have been carried out at that time

without such projector reduction for carbon and oxygen. In the case of Cu and transition

elements, we can achieve a pseudopotential with projectors for l = 2 only.

In order to generate a new pseudopotential efficiently, it is a great help to understand how

changes in the input parameters affect the pseudopotential that results. Such understanding

also helps one to avoid an unrealistic choice of parameters. We present in this chapter a robust

way of constructing norm-conserving pseudopotentials which addresses those essential points

mentioned above, namely acceptable accuracy, softness, flexibility and understanding, through

further improvements to the well established ”Optimised Pseudopotentials” approach. [1, 2, 3].

We regard our method as an alternative to the very popular schemes proposed by Troullier

and Martins [11], by Vanderbilt [4], and by Blöchl [12]. These schemes all aim to improve the

softness and/or the accuracy of pseudopotentials.

Before we describe the technical details of our current scheme, it is necessary to outline previous

optimisation methods. The ”Optimised Pseudopotentials” proposed by Rappe, Rabe, Kaxiras

and Joannopoulos (RRKJ) [1, 2] are recognised as very soft norm-conserving pseudopotentials.

Their scheme is very suitable for transition metals and first-row elements which we are inter-

ested in and which usually need higher Ecut than other elements due to their very localised 3d

(or 4d) or 2p valence electrons. Based on the RRKJ idea, a modified strategy of generating

optimised pseudopotentials was suggested by Lin, Qteish, Payne and Heine (LQPH) [3] in order

to simplify the numerical procedure. Although using different options and procedures, the basic

formulations in LQPH and the current work are the same as those in the original RRKJ. In

all these schemes the pseudo wavefunction Ψl(r) of angular momentum l is generated first, and

then the pseudopotential Vl(r) is derived from it by inverting the Schrödinger equation [13]. The

Ψl(r) is expressed in terms of some specially chosen spherical Bessel functions as follows :

Ψl(r) =

n∑
i=1

αi jl(qir) for 0 < r < rc, with
j ′l (qirc)

jl(qirc)
=

φ′
l(rc)

φl(rc)

Ψl(r) = φl(r) forr ≥ rc (1.1)
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in which the jl(qir) are spherical Bessel functions with (i − 1) zeros for r < rc, and j′l(qir) their

first derivative with respect to r. The φl(r) is the proper all-electron atomic wavefunction and

φ′
l(r) its first derivative. Since we start with φl(rc) when generating a new pseudopotential, all

the qi are fixed once the rc is chosen. The portion of the kinetic energy of the pseudo wavefunction

due to the q > Qc part of its Fourier components is denoted by ∆Ek (in atomic-Rydberg unit) :

∆Ek(α1, α2, ..., αn, Qc) =

∫ ∞

Qc

d3q q2|Ψl(q)|2 (1.2a)

= −

∫ ∞

0
d3r Ψ∗

l (r) ∇2Ψl(r) −

∫ Qc

0
d3q q2|Ψl(q)|2 (1.2b)

in which the Ψl(q) is the Fourier transform of the Ψl(r). The central idea for optimising a

pseudopotential was that for a given Qc , the coefficients αi of Ψl(r) in (1.1) can be obtained by

minimising ∆Ek in (1.2) with Lagrange multipliers constraining the normalisation and the con-

tinuity of the first and second derivatives of the pseudo wavefunction at rc . Thus a smooth and

norm-conserving pseudo wavefunction Ψl(r) could be determined. Incidentally, the continuity

of the pseudo wavefunction Ψl(r) at rc is not imposed explicitly because the optimisation pro-

cedure results in this condition being fulfilled automatically. This can be understood from the

definition of the jl(qir) in (1.1). We know that when the constrained minimisation is successful,

one has Ψ′
l(rc) = φ′

l(rc) : therefore

Ψl(rc) =

n∑
i=1

αi jl(qirc) =

n∑
i=1

αi ·
φl(rc)

φ′
l(rc)

· j′l(qir) = Ψ′
l(rc) ·

φl(rc)

φ′
l(rc)

= φl(rc) (1.3)

which gives the required continuity of Ψl(r) from the continuity of Ψ′
l(rc) due to the special

choice of expansion functions in (1.1). Although the mathematical scheme is essentially the

same, there are some differences in the way the procedure is used by the previous authors and in

the present work. In the RRKJ method, typically 10 or more spherical Bessel function terms in

(1.1) were used, with Qc being varied iteratively such that the ∆Ek is minimised to a pre-chosen

tolerance, say 1 mRyd. It appears that using Qc in that way has the advantage of controlling the

quality of the total energy convergence with respect to the energy cut-off used in the calculations.

In the LQPH method, the number of spherical Bessel function terms was fixed to be four so

that there are four αi coefficients for the Ψl(r) to be determined, making the number of free

parameters equal to the number of constraints, namely norm-conservation, continuity of the first

and second derivatives of Ψl(r) at rc , and minimisation of ∆Ek. Efficient numerical routines

exist for such a problem, and the reasonably small number (four) of terms in Ψl(r) helps to

stabilise the numerical procedure. In addition to using just four spherical Bessel function terms

in Ψl(r), the LQPH method always sets Qc equal to the largest qn , i.e. q4 , which avoided the

variation of Qc and therefore made the numerical procedure significantly simpler than that of

RRKJ.

We recognise the success of the above mentioned schemes, but the consequences of some of

their detailed assumptions, such as the value of Qc , the number of terms and the choice of

constraints, were not fully clear to us. In particular, the role of Qc in optimising pseudopotentials

attracted our attention. From the definition in (1.2), Qc can be regarded as a kinetic energy filter
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controlling the constrained minimisation of the kinetic energy of Ψl in the range q > Qc. If the

minimisation is effective, the resulting k-space pseudo wavefunction Ψl(q) will be restricted as far

as possible to the range 0 < q < Qc, which will subsequently determine the analogous behaviour

of the pseudopotential V ps
l (q) in k-space in solid state applications. A unique correspondence

is therefore likely to exist between Qc and the pseudopotential in k-space V ps
l (q,Qc), which of

course also applies to Qc and V ps
l (r,Qc) in r-space due to the duality of r and k spaces. Most

importantly, the scattering property of such a pseudopotential should also depend on Qc in some

simple manner because it is all in the characteristics of V ps
l (q,Qc). In the current scheme we

therefore vary Qc to control the phase shift, i.e. logarithmic derivative, as will be demonstrated in

Section 2. We shall call this ”Qc tuning” and it will be the crux of the present work. Additionally,

from the argument above we expect the Qc to correspond roughly to Ecut. The Qc therefore

controls both the scattering property and the energy convergence of the pseudopotential in our

new optimisation scheme.

On investigating the choice of constraints, we realised that it is not necessary to impose strictly

the continuity of Ψ′′
l (r) at rc because minimisation of ∆Ek already more or less constrains the

higher derivatives of Ψl(r) by reducing its high q amplitude. Moreover, dropping unnecessary

constraints means that a less restricted and more efficient minimisation can be performed. Thus

not only can a softer pseudopotential be obtained but also the resulting pseudopotential will

be more sensitive to the choice of Qc , which enhances the controllability of the pseudopotential

by Qc . We have, in fact, tried applying the Qc tuning within the four-term/four-constraint

framework, and found that both logarithmic derivative and the shape of the pseudopotential do

not vary systematically with respect to Qc , which is presumably due to the extra (unnecessary)

constraint which somehow restricts the effect of Qc tuning.

However with the use of three terms and three constraints, we found that the logarithmic

derivative and pseudopotential varied smoothly with Qc so that one can use Qc tuning efficiently.

This is the main reason for preferring the three-term/three-constraint framework. Incidentally,

keeping the number of terms and unknown coefficients in (1.1) equal to the number of constraints

is very helpful in maintaining a stable numerical procedure, as found by LQPH. We can also see

why the pseudopotential becomes somewhat softer. To a first approximation, Ecut = Q2
c Ryd.

if Qc is in atomic units as will be assumed hereafter, and Qc is approximately the maximum qi.

Thus omitting the term jl(q4r) reduces Ecut, because jl(q4r) has the maximum number of nodes

and hence the highest Fourier components of the jl(qir).

Incidentally, the small discontinuity in V ps(r) at rc , corresponding to the discontinuity in the

second derivative of the pseudo wave-function, does not destroy the energy convergence. At the

q relevant to Ecut, the V ps(q) is determined by the general shape of V ps(r), by the discontinuity

in V ps(r) at rc given by the discontinuity in second derivative of the pseudo wave-function, and

by the wiggles in V ps(r) at r just less than rc which are seen clearly in Fig. 1 (c) for example.

For a good Ecut, these need not individually be zero but it is sufficient that they more or less

cancel giving a small total V ps(q) over a range of q. In addition the discontinuity may give some

very small Fourier components extending to very high q, which can affect the absolute energy

convergence of a calculation but which cancel in the calculation of any physical quantity.

To summarise: using a three-term expansion in (1.1) and three constraints gives a stable nu-
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Figure 1: Oxygen 2p pseudopotential with rc =1.8 a.u. showing its variation with Qc . Left-hand-

side panels, Vl=1(r) : right-hand-side panels, logarithmic derivatives of the true potential (dashed

line) and pseudopotential (solid line). (a) Qc/q3 = 0.98 (b) Qc/q3 = 1.15 (c) Qc/q3 = 1.20.
150



merical procedure allowing a good flexibility in the pseudo wavefunction. It combines well with

tuning Qc to optimise the accuracy of the pseudopotential, which is the main purpose of the

present work. The flexcibility can also be used to control the shape of the pseudopotential for

different l and hence to reduce the number of projectors required in solid state applications. The

limitation to three terms in (1.1) automatically gives a somewhat softer pseudopotential than

previously. The effect of Qc tuning and relevant technical points are discussed in Section 2. In

Section 3 some solid state tests of the pseudopotentials will be presented, which is followed by

a discussion and conclusion as Section 4.

2 The Qc Tuning Method

To generate a pseudopotential in the current scheme, as in all ab initio pseudopotential generat-

ing procedures, an all-electron LDA or GGA atomic calculation is first performed to obtain all

the atomic orbitals of a selected configuration : in the present work we just use the LDA. The

procedure described in Section 1 is then implemented with three terms in (1.1) and the three

constraints already discussed, while Qc remains as an adjustable input parameter. In Fig. 1 we

demonstrate the effect of varying Qc in the current scheme on the oxygen 2p pseudopotential.

Three different Qc were used to generate the corresponding pseudopotentials, and the logarithmic

derivative was tested on these pseudopotentials. We can see that for a given atomic configura-

tion and pseudising radius, there is a certain value of Qc which yields the best agreement with

the logarithmic derivative, in this case that shown in Fig. 1(b). We note that the logarithmic

derivative curve of the pseudo wavefunction for a larger and a smaller Qc deviate from the curve

with the best possible Qc in opposite directions, as shown in Fig. 1(a) and Fig. 1(c). In Fig. 1

we also see that the shape of the pseudopotential changes with Qc , which can be regarded as

the reason why the scattering properties of the resulting pseudopotentials are different. The

monotonic correspondence between the variation of (a) the Qc , (b) the shape of the pseudopo-

tential and (c) the logarithmic derivative of the pseudopotential is the most important feature

in the current scheme. This feature enables us to establish a systematic procedure for updat-

ing Qc towards the best results judged by the following criterion. As mentioned in Section 1,

Qc controls the softness of a pseudopotential as well as its accuracy because it affects both the

Ecut and the logarithmic derivative of the wavefunction. If transferability is a higher priority

in a particular application, then Qc should be tuned to obtain the best match between the log-

arithmic derivatives of the pseudo and true wavefunctions. Depending on the application, one

may require a good match over a wide range of energy for broad bands or only a narrower range

in the case of narrow bands. If a satisfactory match can be obtained for a range of Qc , then the

smallest Qc should be used to achieve the lowest Ecut.

By removing the constraint on the second derivative of the wavefunction at rc , we allow our

pseudopotential to have a discontinuity there because the kinetic energy, which is proportional

to Ψ′′(r), is discontinuous across rc , and hence so is the potential. Although a large disconti-

nuity in a pseudopotential can damage its scattering property, in the current scheme the best

possible Qc is chosen to give the best fit of the logarithmic derivative, which thus guarantees

that the discontinuity is harmless. This is also consistent with our observation that whenever

the logarithmic derivative agreement is satisfactory, the discontinuity is always small. This can
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also be understood from the fact that in the current scheme the high q components of the pseudo

wavefunction are reduced as much as possible, both because they are expanded using the least

possible number of spherical Bessel functions and also because of the minimising procedure im-

posed on ∆Ek in (1.2). The convergence of a practical calculation is not affected if a suitable

Ecut is chosen, as already discussed in the previous section. Incidentally, it is generally the case

that the Qc yielding the best fit to the logarithmic derivative of the true potential need not be

the Qc that minimises the discontinuity of the pseudopotential, even though these two Qc are

usually close. We regard the quality of scattering being optimised by the Qc as being more

significant than the existence of the discontinuity.

The harmlessness of a small discontinuity is further confirmed by our experience that good

agreement is obtained between the results of super-cell calculations using both k-space and r-

space versions of the same pseudopotential expressed in Kleinman-Bylander form [9]. To convert

the k-space pseudopotential to one in r-space we use the method of King-Smith et al. [10]. It

will modify the original pseudopotential in a way that depends on Ecut in minimising the aliasing

error of the Fast Fourier Transform in planewave supercell calculations. The discontinuity at

rc in the original pseudopotential is smoothed out by the transformation. The fact that both the

original and the transformed pseudopotentials gave almost identical results for the relaxation

and energy of structures shows that the high q feature at rc is irrelevant to the super-cell results

when a reasonable Ecut is used.

3 Generation and Test of Some Pseudopotentials

Although the logarithmic derivative test gives useful indication about the quality of a pseudopo-

tential, there is no precise criterion of how good the agreement should be for a particular physical

application. Also the test is evaluated at a given r outside the pseudising radius rc , which does

not give us the information whether the rc is small enough for the frozen core approximation to

be valid for the given application. A solid state calculation is therefore always necessary for a

serious test of a pseudopotential.

To test the pseudopotential generated by our current scheme, we have chosen some bulk proper-

ties of Cu metal because it is a popular case tested by other authors [1, 11]. We follow the RRKJ

paper in using a slightly ionised Cu configuration 3d9.004s0.754p0.25 from which to generate the

pseudopotential. After generating the pseudopotential for each l as described in Section 2, it

was converted to Kleinman-Bylander form with the s-potential chosen as the local potential.

Two Cu pseudopotentials were prepared (Fig. 2), one with smaller d-core and the other a larger

d-core, with rc(s, p, d) = (2.0, 2.0, 2.0) a.u. and rc(s, p, d) = (2.0, 2.0, 2, 4) a.u. respectively. The

Qc for these two potentials are Qc(s, p, d) = (3.17, 4.66, 6.47) and Qc(s, p, d) = (3.17, 4.66, 5.17).

In most cases, we found it useful to choose q3 as the initial guess for Qc from which to start

the tuning, so that it is convenient to express the final Qc in terms of the ratio Qc/q3. For

the Cu pseudopotentials in this section, this becomes Qc/q3(s, p, d) = (0.8, 1.0, 1.175) and

Qc/q3(s, p, d) = (0.8, 1.0, 1.2).

The Cu pseudopotential with the smaller d-pseudocore (rc = 2.0 a.u.) allows our results to be

compared directly with those of other popular schemes in the literature [1, 11], while we shall
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Figure 2: The s, p, d pseudopotentials for Cu. (a) Small rc =2.0 a.u. for l = 0, 1, 2. (b) rc =2.0

a.u. for l = 0, 1 but larger rc =2.4 a.u. for l = 2. (s: dashed line, p: dot-dashed line, d: solid

line)

use the one with a big d-pseudocore to demonstrate the flexibility of using Qc -tuning to generate

a pseudopotential with a larger rc . Although a pseudopotential with larger rc is always softer,

it may not be accurate enough. In our current scheme we can tune the value of Qc so that we

obtain a good logarithmic derivative even for such a large rc .

For calculating the bulk properties of Cu metal, an 8 × 8 × 8 Monkhorst-Pack k-point grid [14]

was used for a simple-cubic unit cell containing four atoms. With such a coarse grid of k-points,

a gaussian smearing of the occupation function at the Fermi level of 1eV was needed, and the

energy was corrected appropriately [15]. In the case of the small d-core pseudopotential, the

convergence test was done and the sudden drop of the total energy in a super-cell calculation

was found to occur at 650 eV where absolute convergence to about 0.1 eV per atom is reached

(Fig. 3). To justify the results obtained at Ecut = 650 eV , a similar calculation was also

performed at 1000 eV where the total energy converged to within 0.01 eV per atom, and the

results for the bulk properties, as shown in Table 1, were found to be essentially the same. This

is consistent with our experience that the Ecut that gives the calculated total energy converged

to around 0.1 eV per atom is usually high enough for reliable solid state bulk properties. In the

case of the pseudopotential with a large d-core, the convergence test was also done (Fig. 3) and

we chose Ecut = 500 eV to run the simple bulk property tests which are shown as the third line

in Table 1. Note that the valid comparison is with an exact all-electron calculation because we

are testing the pseudising, not the accuracy of LDA, and we give the LAPW [16] results without

knowing how closely it approximates to that. As one can see from the table, the overall result

is satisfactory in comparison with experiment [17] and other computational methods.

We have already outlined in the Introduction the idea of ”projector reduction”, i.e. using

Qc tuning to make the pseudopotentials for two angular momenta i and j sufficiently nearly

the same that a common potential can be used for both. The latter then becomes the local
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Figure 3: Convergence of total energy per atom of copper metal with respect to the cut-off

energy for two pseudopotentials with rc =2.5 a.u. (solid line) and rc =2.0 a.u. (dashed line).

component VL(r) of the atomic pseudopotential, leaving only one set of projection operators

for the third angular momentum component. The elements B, C, N, O in the first row of

the periodic table have only 1s orbitals in the atomic core and hence both the p (l = 1) and d

(l = 2) pseudopotentials Vs(r), Vp(r) contain no core cancellation in the sense of the cancellation

theorem of pseudopotential theory [18], and one may therefore expect them to be similar. With

Qc tuning it has been found that they can be made extremely similar, as shown in Fig. 4 for

carbon using the parameters given in Table 2. The VL(r) is then taken as Vp(r) because the

l = 2 components in the wave functions are presumed to be very small. This gave a logarithmic

derivative for l = 2 practically identical to that from the Vd pseudopotential and very close to

the all-electron one by the standards of pseudopotentials. Similarly, very good pseudopotentials

with only an l = 0 projector were also generated for C, N and O with the parameters of Table

2. Extensive tests were carried out on the C and O pseudopotentials for the work of Ref.[8] and

on the N pseudopotential with methylamine [19].

Similarly with Qc tuning a pseudopotential was generated for Al with only the l = 0 part

non-local, as given in Table 2. It has been well tested in solid state calculations and gives a

satisfactory value for the C44 elastic constant (correct to 10%) which is notoriously sensitive to

the pseudopotential (Ref [19] p.IV-18). For Br with the parameters in Table 2 the local potential

VL(r) = αVp(r) + (1 − α)Vd(r) (3.1)

with α = 0.7 gave good logarithmic derivatives for l = 1 and 2, again leaving only a projector

for l = 0. This also avoided some problems in generating the Kleinman-Bylander form of the

pseudopotential [9] for calculations, which was in fact the reason for generating it.
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Table 1: The solid state bulk test of Cu pseudopotentials, comparing the results of the present

calculations (first three rows) with those from another pseudopotential [11] and from an all-

electron calculation (LAPW), and with experiment : for lattice constant a, bulk modulus B and

B′ the pressure derivative of bulk modulus fitted from the equation of state.

Type Ecut(eV ) a(Å) B(GPa) B ′

rc(d) = 2.0 a.u. 1000 3.60 166 5.0

rc(d) = 2.0 a.u. 650 3.59 163 5.4

rc(d) = 2.4 a.u. 500 3.66 145 4.8

rc(d) = 2.3 a.u.a 982 3.60 160 5.1

LAPW b 3.61 162

Experiment c 3.61 142 5.28

a Ref [11]
b Ref [16]
c Ref [17]

In the transition elements the Vd pseudopotential is very different from the Vs and Vp ones, and

it was found for Fe, Co and Cu the latter two could be well represented by the local potential

VL(r) = βVs(r) + (1 − β)Vp(r) (3.2)

which leaves only a set of projectors for Vd(r). The parameters are given in Table 2, the

pseudopotential for Co having been tested by solid state calculations for the work on CoSi2 in

Ref [20]. In Cu the q3 for l = 0 was set equal to q2 so that (1.1) effectively only contains two

terms instead of three.

In Al and Ge, it was possible with Qc tuning to make the pseudopotentials for l = 0, 1 and 2 all

quite similar, which would give a local potential if taken as equal. Such a potential is probably

Table 2: Parameters for pseudopotentials with projector reduction. The second column gives

the label of the pseudopotential in Ref [19] where more details and tests may also be found. The

third column gives the atomic wavefunction used for generating the s and p pseudopotentials,

and the second line in the same column for Vd(r). The values of Qc for l = 0, 1, 2 are given in

the form of Qc/q3(s, p, d). The last two columns give α, β in Eqs. (3.1), (3.2).

Element (Label) Configuration Vs, Vp Vd (if different) rc(s, p, d) Qc/q3(s, p, d) α β

B B001a 2s2.002p1.00 2s1.003d0.20 all 1.4 0.80, 0.80, 1.00 1.0 -

C C021 2s2.002p2.00 2s0.752p1.003d0.25 all 1.4 0.80, 1.05, 1.0325 1.0 -

N N010 2s2.002p1.00 2s0.752p2.003d0.25 all 1.4 0.80, 1.05, 1.035 1.0 -

O O051 2s2.002p4.00 2s1.002p1.753d0.25 all 1.4 0.40, 1.11, 1.0325 1.0 -

Al Al013a 3s2.003p1.00 no d is used all 2.4 1.10, 1.10 - 0.8

Br Br000 4s2.004p5.00 4s1.004p3.754d0.25 all 1.4 1.00, 1.00, 0.90 0.7 -

Fe Fe002 3d4.004s1.004p0.25 all 2.4 0.48, 0.87, 1.18 - 0.3

Co Co013 v2 3d7.004s1.004p0.25 2.0, 2.0, 2.4 0.70, 0.965, 1.18 - 0.2

Cu Cu006g 3d9.004s0.754p0.25 2.0, 2.0, 2.5 0.80, 0.95, 1.20 - 0.5
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Figure 4: Vl=1(r) (solid line) and Vl=2(r) (dashed line) for carbon with the parameters of Table

2.

not good enough for modern work, but explains perhaps why empirical local potentials were

found to give rather good results through the 1960’s and 1970’s and even more recently for Al,

Ge and As [21, 22].

4 Discussion and Conclusion

In Section 2 we described how Qc may be varied to obtain the best fit to the logarithmic derivative

of the original potential, and we turn now to look at how the variation of Qc manifests itself

in the resultant pseudopotential as is required for projector reduction. Fig. 1 shows that the

main effect of varying the Kinetic Energy Filter parameter Qc is to change the depth of the

pseudopotential in r-space. One can interpret qualitatively the effect of the optimisation on

the shape of a pseudopotential from an r-space view point, which is useful when using Qc to

regulate the shape of the pseudopotential. If Qc is set to be relatively small, this pushes Ψl(r)

in the direction of having lower Fourier components, which means having lower kinetic energy

inside rc . Since the energy eigenvalue is fixed and is equal to the kinetic energy plus potential

energy, the low kinetic energy implies a rather shallow (weak) pseudopotential. On the other

hand using a higher Qc results in a deeper pseudopotential as shown in Fig. 1(c). If Qc is reduced

even further, the pseudopotential becomes even shallower (weaker) and a barrier will be raised

near rc as a result of the norm-conserving constraint so that the pseudopotential preserves the

correct amount of charge within the pseudo-core region. Such a barrier may look strange but

experience shows it does not affect Ecut or the accuracy of the pseudopotential in solid state

tests provided the logarithmic derivative fits well.

The effect of Qc -tuning on the shape of a pseudopotential also depends on other factors. In the
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Figure 5: Logarithmic derivative of carbon before (a) and after (b) projector reduction.

case of nodeless orbitals such as 2p and 3d, the pseudopotentials are highly attractive because

there is no ”Cancellation Effect” from inner shells in the sense of conventional pseudopotential

theory [18]. Optimising these pseudopotentials therefore means shifting the electrons outward

from the centres of the atoms. On the other hand, in the case of (soft) pseudopotentials that

do have a cancellation effect from inner shells, using a smaller Qc means spreading the charge

distribution inwards towards the centres of the atoms, which serves to lower the magnitude of

the originally repulsive (or weakly attractive) pseudopotentials at r = 0, but has less effect

on their shape near rc . Such a trend can be used to systematically regulate the shape of a

pseudopotential by tuning Qc .

Figure 4 illustrates the use of Qc tuning to achive projector reduction. It shows l = 1 and l = 2

pseudopotentials V1(r) and V2(r) for C which have been tuned using Qc to resemble each other as

close by as possible while retaining a good fit to the all-electron logarithmic derivative (Fig. 5).

Tests showed that the resemblance was sufficiently good to use V1(r) also for V2(r) and for all

higher l, i.e. to take it as the local component of the pseudopotential. Thus only one projector

for l = 0 was required. The experience with generating pseudopotentials with reduced number

of projectors for the elements listed in Table 2 suggests that this idea can probably be extended

to a significant number of other elements.

The current scheme has been used to generate a significant number of pseudopotentials for a

wide range of applications. A complete periodic table of pseudopotentials is available commeri-

cally from Molecular Simulation Inc. for use with the CASTEP code for solid state applications,

though not all have been thoroughly tested. Nearly 300 papers have been published in the aca-

demic literature with calculations using pseudopotentials generated by the present method. We

reference some of the early ones because they tend to contain more details of the pseudopoten-

tials, namely those for Co [18]; Ge [21]; C, O and Pd [22]; Cu and Cl [23]. The pseudopotentials

for C and O were tuned especially for projector reduction in the large dynamic calculation on a

zeolite [8] as already mentioned. More details on 38 elements may be found in Ref [19].
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The code for generating pseudopotentials by the present method will be available at the website

http://www.phys.tku.edu.tw/qc/

In summary, therefore, we have introduced an improved scheme for generating Optimised Pseu-

dopotentials. The Qc parameter is used in a new way, and is tuned to give as accurate a

pseudopotential as possible, meaning a good match to the all-electron logarithmic derivative

of the wave function over a suitably wide range of energy. The continuity constraint of Ψ ′′
l (r)

at rc is dropped and the number of terms in the expansion (1.1) is also reduced to three, to

remain equal to the number of constraints in order to give a numerically stable algorithm. The

reduction to three terms automatically tends to make the pseudopotential softer because the

cut-off Ecut in solid state applications is largely controled by the highest qi appearing in (1.1).

Dropping the constraint on continuity of the Ψ′′
l (r) means the pseudopotential has a disconti-

nuity at rc , but in practice the Qc is tuned in our scheme to match the logarithmic derivative

which always makes the discontinuity small, so that it does not adversely affect the accuracy

or the softness of the pseudopotential. In some sense the dropping of one constraint allows the

pseudo wavefunction (and hence pseudopotential) greater freedom for optimisation with regard

to accuracy and convergence properties.

A most important point is that the generated pseudopotential and the corresponding logarith-

mic derivative vary with the chosen Qc parameter in a systematic way. One therefore has a

well controlled situation for generating and improving a pseudopotential for any given physical

application, depending on the required balance between Ecut, the accuracy of the pseudopoten-

tial and the width of the energy range over which it has to be accurate. This is important for

many calculations. Moreover we have shown how one can physically understand the connection

between Qc and the shape of the pseudopotential, which helps one to operate the scheme sys-

tematically and efficiently. The scheme represents a further significant step toward generating

systematically good norm-conserving pseudopotentials for a wide variety of physical systems.

We have also demonstrated how to use Qc tuning method to reduce the number of non-local

projectors of pseudopotentials for quite a few elements. These projector reduced pseudopoten-

tials allow one to save significant computing time while remain as accurate as normal unreduced

ones.
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[12] P. E. Blöchl, Phys. Rev. B 41, 5414 (1990).

[13] D. R. Hamann, M. Schluter and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979).

[14] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

[15] M. J. Gillan, J. Phys : Condensed Matter 1, 689 (1989); A. De Vita, Ph.D. thesis, Keele

University, 1992.

[16] Z. W. Lu, S. -H. Wei, and A. Zunger, Phys. Rev. B 41, 2699 (1990).

[17] P. van ’t Kiooster, N. J. Trappeniers, and S. N. Biswas, Physica B 97, 65 (1979).

[18] V. Heine, Solid State Physics 24 , 1 (1970).

[19] M.-H. Lee, Ph.D. thesis, Cambridge University, 1995.

[20] V. Milman, M.-H. Lee, and M. C. Payne, Phys. Rev. B 49, 16300 (1994).

[21] I. J. Robertson, M. C. Payne and V. Heine, Europhys. Lett. 15, 301 (1991).

[22] M. Needels, M.C. Payne and J. Joannopoulos, Phys. Rev. B 38, 5543 (1988).

[23] V. Milman, D. E. Jesson, S. J. Pennycook, M. C. Payne, M.-H. Lee, I. Stich, Phys. Rev. B

50, 2663 (1994).

[24] P. Hu, D. A. King, S. Crampin, M. -H. Lee and M. C. Payne, Chem. Phys. Lett. 230, 501

(1994).

[25] H.-C. Hsueh, J. R. Maclean, G. Y. Guo, M. -H. Lee, S. J. Clark, G. J. Ackland and J.

Crain, Phys. Rev. B 51, 12261 (1995).

159


