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Abstract

The atomic structures and energies of 1/6 < 202̄3 > and 1/3 < 101̄0 > partial dislocations

in wurtzite GaN are modelled using an empirical interatomic potential in combination with

topological theory and anisotropic elasticity calculations. Twelve stable configurations of the

1/6 < 202̄3 > edge and mixed partial dislocations that bound I1 intrinsic basal stacking faults

are obtained for each polarity and their core radii, energies, and atomic configurations are

given. Moreover, the 1/3 < 101̄0 > edge and mixed partial dislocations along the junction

lines between inversion domain boundaries (IDBs) and I1 stacking faults are studied. Twenty

eight stable junction line configurations have been identified, sixteen of them resulting in stable

transformations of the energetically favourable IDB* defect to the electrically active Holt type

IDB. The majority of the dislocation core structures possessed either dangling bonds or highly

strained bonds. Since reduced coordination or strained bonds can introduce gap states, such

dislocations could be electrically active.

1. Introduction

The influence of dislocations on the electrical, optical and mechanical properties of Ga-based

III-nitride semiconductors is currently under intense investigation. Efficient optical devices such

as blue-light-emitting diodes are commercially available despite the presence of a high density

(∼109 cm−2) of threading dislocations [1]. Theoretical and experimental investigations so far

have concentrated on lattice dislocations. Initial theoretical results using ab initio calculations
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indicated that charge-neutral edge and screw threading dislocations do not contribute to gap

states and they are electrical inactive [2]. This has been disputed by other ab initio studies

which have shown that edge dislocations may be charged, giving rise to deep-gap states [3],

[4]. Dependence of the core formation energies on the Fermi level and growth stoichiometry has

also been examined [3]. Moreover tight binding calculations have shown evidence for empty gap

states associated with edge dislocations in the top half of the gap [5]. Also, by the use of first-

principles calculations of electron energy-loss spectra, has been shown gap stage associated with

edge dislocations [6]. Regarding the screw dislocations, full core structure has been observed

using Z-contrast imaging [7] and the open core structure by transmission electron microscopy, [8]

[9] while their electrical activity has been related to the growth stoichiometry [10]. More recently

new structures for the screw dislocation have been proposed under certain growth conditions

[11] [12].

Beside the perfect lattice dislocations, optoelectronic properties of devices should be also in-

fluenced by the partial dislocations when they exist in large numbers. The aim of the present

contribution is to perform a systematic investigation of the core structures and the correspond-

ing energies of the 1/6 < 202̄3 > edge and mixed partial dislocations that bound I1 intrinsic

basal stacking faults in wurtzite GaN, and of the 1/3 < 101̄0 > edge and mixed partial dislo-

cations along the junction lines between inversion domain boundaries (IDBs) and I1 stacking

faults (SFs). Core radii and energies are evaluated in an approach combining anisotropic elas-

ticity, topological theory and atomistic calculations. Initially, the dislocation displacement field

of the 1/6 < 202̄3 > edge and mixed partial dislocations is imposed according to anisotropic

elasticity theory [13]. For the IDB-I1SF junction line, the initial configurations are based on

Volterra models. In both cases the supecells are relaxed to the minimum energy by the use of

an interatomic potential.

In order to achieve a satisfactory description of the microstructure and the energetics of junctions

between extended defects, a large number of atoms must be taken into account. Although the

energies of many of the isolated planar defects observed in epitaxial GaN layers have been

determined using ab initio calculations, the total energy of large scale atomic configurations

involving different planar defects cannot be calculated, for supercells exceed 15,000 atoms. For

this purpose, an empirical potential of the Stillinger-Weber type [14], can be employed; this

potential has previously been successfully applied for the study of line and extended defects

in GaN [15] [16] [17] [18] [19] [20]. The use of an empirical potential in order to describe the

structures and energetics of dislocations is certainly less accurate in comparison with a tight-

binding approach or ab initio calculations, since it does not consider explicitly the electronic

effects. Tight-binding or ab initio calculations employ mainly two approaches in order to model

dislocations. In the first approach a dislocation dipole or multipole is placed in a supercell and

this leads to a considerable interaction between dislocations. In the second approach, where

an isolated dislocation is considered in a supercell-cluster with periodic boundary conditions

along the dislocation line and hydrogen-terminated surfaces parallel to the line direction, the

long range elastic effects are not treated rigorously [6] [21] [22]. On the other hand however,

in dislocation modeling, medium and long range strain effects play an important role and the

empirical potential offers better embedding of the core into the surrounding bulk material.

The advantages of the empirical potential calculations are the competency to treat thousands of
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atoms and the efficient way to take into account fixed boundary conditions in surfaces parallel to

the line direction of the dislocation far from the core area. The strain induced by the dislocation

in this case is more accurately estimated. Since the stress of the supercell geometry influences

the core structure and the core energy [23], it provides a better embedding of the core. Moreover,

such calculations have been proven [24] suitable for treating relatively complicated supercells

comprising multiple planar defects.

The material of this highlight has been presented in detail in three regular articles of Physi-

cal Review B. The topological analysis of the IDB-SF interactions and the characterization of

experimental observations using circuit mapping technique and electron microscopy image simu-

lations has been analysed in ref [25]. The atomic structures and energies of 1/6 < 202̄3 > partial

dislocations delineating the I1 intrinsic basal stacking fault in wurtzite GaN are modelled using

an empirical interatomic potential in combination with anisotropic elasticity calculations in ref

[26]. Finally the predicted IDB-SF interactions [25] have been analyzed at atomic scale using

large scale empirical potential calculations in ref [27].

Our study is divided in two parts. In the first part the 1/6 < 202̄3 > partial dislocations

are analysed. In section 2.1 the computational method is given. In section 2.2 the dislocation

parameters are calculated using elasticity theory and empirical potential calculations. In the

second part and in section 3.1 the topological methodology is outlined and the admissible junc-

tions between IDBs and basal I1 SFs are determined. The relaxed atomic configurations and

their energies are presented in section 3.2. Finally, in section 4 the main conclusions of our study

are presented.

2. I1 SF Partial Dislocations

2.1 Computational Method

The GaN structure (spacegroupP63mc) [28] consists of four atoms per unit cell and can be

visualized as two interpenetrating hexagonal substructures, one of Ga and one of N atoms

related by a spacing u along the c-axis. The position vectors of the atoms comprising the

crystal’s motif are uA=1/12 [404̄3], uB=1/12 [4̄043̄] for atoms of the one species, and ua=1/12

[404̄3] + u [0001], ub=1/12 [4̄043̄] + u [0001] for atoms of the other species [29]. For the GaN

wurtzite structure, c/a= 1.626, u= 0.375 and the coordination number is 4 [1].

The stacking sequence for the perfect wurtzite structure along [0001] is . . .AaBbAaBbAaBb . . . ,

i.e. each layer parallel to the basal plane is composed of two sublayers of distinct atomic species

(aB or bA where capital and small fonts denotes distinct atomic species.) (figure 1(a)).

In the wurtzite structure, two types of intrinsic SFs, designated I1 and I2, and one extrinsic,

designated E, can be formed [13]. These are low-energy defects since they do not disturb the

nearest-neighbor packing. The I1 intrinsic SF (figure 1(b)) corresponds to one violation of the

stacking rule and can be formed by the removal of a B plane followed by shearing by 1/3 < 101̄0 >

(figure 2).

In order to describe the I1 SF configuration with bounding partial dislocations, we start from the

perfect crystal [13]. Upon removal or addition of a basal disc of atoms (vacancy or interstitial
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Figure 1: (a) Wurtzite structure and (b) I1 SF projected along the < 12̄10 > direction. The

broken line indicates the SF plane, large and small circles denote distinct atomic species, unfilled

circles are at 0 level, and filled circles are at level a/2 along the projection direction.

Figure 2: The stacking sequence in the formation of a I1 SF.
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disc) and assuming that only displacements normal to the basal plane are associated with the

precipitation, the SF is bounded by a Frank loop with Burgers vectors 1/2[0001] [13]. A loop of

Shockley partial dislocation is then nucleated in the faulted region leading to the formation of I1

SF. In other words, if a shear is associated with vacancy (case a) or interstitial disc precipitation

(case b) the I1 type fault could be formed. The above SFs are bounded by loops comprising

edge and mixed segments with Burgers vectors:

be = 1/2[0001] + 1/3[101̄0] = 1/6[202̄3]

and

bm = 1/2[0001] + 1/3[11̄00] = 1/6[22̄03]

respectively (assuming a [12̄10] segment line direction).

The supercells, for the 1/6 < 202̄3 > edge and mixed partial dislocations, initially contained

perfect crystal of wurtzite GaN. By employing displacements expected from anisotropic elac-

ticity theory [13], the unrelaxed structures of the I1 intrinsic SF and the corresponding partial

dislocation were formed to be used as initial atomic positions. The supercells were created in the

form of rectangular parallelepiped volumes. Periodic boundary conditions were applied along the

dislocation line direction (i.e. [12̄10]), while fixed boundaries were imposed perpendicular to the

dislocation line, thus following the so-called “hybrid” model [22]. The fixed boundary conditions

were applied using the following methodology (figure 3): perpendicular to the dislocation line

the supercell was divided into three concentric domains defining a thin external domain, a thin

intermediate domain and the internal area with the dislocation line at the centre. The thickness

of the external domain is larger than the maximum range of the potential (3.36 Å for the Ga-Ga

interaction [19]), and the atoms are at fixed positions there. The intermediate domain starts at

the end of the external one and also extends further than the maximum range of the potential

and up to the internal area. In the intermediate domain the atoms are relaxed but are not

taken into account in energetic calculations. The energetic calculations are evaluated taking

into consideration only the energies of the relaxed atoms in the internal area. (Although test

calculations have shown that in most cases the atoms in the intermediate domain are relaxed

sufficiently well and their energies could also have been taken into account. It has been found

that the deviation of the atomic energies in the intermediate domain, due to their vicinity with

fixed atoms, is inversely proportional to the size of the supercell and for the supercells used in

the present cases it is very small. Nevertheless the intermediate domain has been excluded from

our calculations.)

For the relaxation, the modified [19] [20] Stillinger-Weber potential (MSWp) has been employed.

The Stillinger-Weber [14] potential (SWp) attempts to model a semiconductor in a semiclassical

way and it is based on a two-body term:

{

v2(rij) = εA(B(
rij

σ )−4 − 1)exp[((
rij

σ ) − α)−1]for
rij

σ < α

v2(rij) = 0for
rij

σ ≥ α
(1)

and a three body term:
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Figure 3: Schematic illustration of the fixed boundary methodology.

v3(rij,rik,θijk) = ε λ exp[γ (rij - α ) - 1 + γ (rik - α ) - 1] x (cos θ ijk + θ 0)2 (2)

where ε and σ are the energy and length units; A, B, α are positive, α represents the cut-off

distance, and θijk is the angle subtended by the ji and the jk bond. The original SWp takes into

account 7 parameters (α, γ, σ, ε, A, B, λ). However, its build-in tetrahedral bias of one kind of

bonds creates problems in other situations; it is necessary to take into account 21 parameters

in order to represent the three kinds of bonds in GaN (i.e. Ga-N, and Ga-Ga or N-N “wrong”

bonds). In table 1 we present the SWp parameters.

Type

of bond

α γ σ

(a.u.)

ε

(eV)

A B λ θ0

Ga-N 1.8 1.2 3.203 2.17 7.917 0.720 32.50 1/3

Ga-Ga 1.6 1.2 3.968 1.2 7.917 0.720 26.76 1/3

N-N 1.8 1.2 2.457 1.2 7.917 0.720 26.76 1/3

Table 1: Parameters of the modified Stillinger-Weber potential. (α, γ, A, B, λ and θ0

dimensionless)

The minimum energy configurations were obtained using the quench molecular dynamics method

[30]. We assumed bonds between atoms within distances up to 2.4 Å in all atomic configurations

which is the minimum range of the MSWp (for the N-N interaction [19]).

Generally, atomistic empirical potential calculations provide the total energy of a relaxed struc-

ture. Let Eexcess
TOTAL be the total excess energy of a supercell, defined as the difference between

the total energy found by empirical potential calculations and the energy of a supercell of perfect
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GaN crystal containing the same number of atoms. Let also Eplanardefect be the planar defect

energy per unit area, i.e. the total excess energy of a supercell containing the planar defect

divided by planar defect area. Eplanardefect was evaluated by relaxing a supercell contain-

ing a planar defect in the middle; periodic boundary condition were employed along all three

directions.

The I1 SF has been found to have formation energy equal to 1.8 meV/Å2 which is in satisfactory

agreement with the value of 1.1 meV/Å2 given by ab initio [31].

The dislocation energy per unit length, Ed(R), of each dislocation in a cylinder of radius R was

calculated as the total excess energy of the cylinder minus the sum of the planar defects energies.

Hence

Ed(R) =

Eexcess
TOTAL(R) −

∑

planar defects

Eplanar defect × (planar defectarea(R))

L
(3)

where L is the length of the supercell along [12̄10].

Continuum elasticity theory is complementary to atomistic simulations for the modeling of line

defects since it allows an evaluation of the long range strain effects whereas atomistic simulations

describe core structure and energy. The strain energy of an infinite straight dislocation in a

perfect crystal can be calculated analytically using linear elasticity [13]. The total energy of a

dislocation is equal to the elastic energy plus the core energy:

Etotal = Eelastic + Ecore (4)

The elastic energy per unit length of a dislocation contained in a cylinder of radius R is given

by

Eelastic = A ln
R

r0

, r0 ≤ R (5)

where A = Kb2

4π is the prelogarithmic factor, b is the Burgers vector, K is an energy factor and

r0 is the core radius.

Let xz be the basal plane where x is [101̄0], and let the dislocation line [12̄10] coincide with the

z axis. The y axis, in this coordinate system is along the [0001] direction. The elastic energy

of a dislocation in the basal plane can be decomposed into screw and edge parts according to

anisotropic elasticity as follows [13]

Eelastic =
1

4π
(Ksb

2
s + Kex

b2
ex

+ Key
b2
ey

)ln
R

r0

(6)

where Ks is the energy factor of bs, the screw component of the Burgers vector of the dislocation,

and Kex, Key are the energy factors of the edge components, bex and bey respectively.

The energy factors are equal to [13]

Ks = (C44C66)
1/2, (7)
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Kex
= [(C11C33)

1/2 + C13] ∗ {
C44[(C11C33)

1/2 − C13]

C33[(C11C33)1/2 + C13 + 2C44]
}1/2, (8)

And

Key
= [(C11C33)

1/2 + C13] ∗ {
C44[(C11C33)

1/2 − C13]

C11[(C11C33)1/2 + C13 + 2C44]
}1/2 (9)

where C11, C13,C33, C44 and C66 are the elastic constants.

As has been shown previously, two types of admissible partial dislocations may bound the

I1 SF. An edge dislocation with Burgers vector equal to be = 1/6[202̄3] and a mixed-type

dislocation with Burgers vector bm = 1/6[22̄03]. In both cases the dislocation line is taken to

be [12̄10]. Using the elasticity theory, the prelogarithmic factors for the edge and the mixed

dislocations were calculated, as well as the ratio between them. The edge dislocation can be

decomposed into two normal edge components bex = 1/3 [101̄0]and bey = 1/2 [0001] while

the mixed dislocation can be decomposed into a screw bs = 1/6 [12̄10] and two normal edge

components bex = 1/6 [101̄0] and bey = 1/2 [0001]. Using elastic constants calculated by the

MSWp [32], the prelogarithmic factors are found to be Ae = 0.79 eV/Å and Am = 0.73 eV/Å

leading to a ratio equal to Ae

Am
= 1.08. If experimental determined elastic constants [33] are used

the prelogarithmic factors are Ae = 0.82 eV/Å and Am = 0.76 eV/Å, and the ratio between them

again equals Ae

Am
= 1.08, i.e. due to the satisfactory agreement between the experimental and

the calculated elastic constants [32], the obtained prelogarithmic factors are also in consistency.

The elastic energy of a dislocation is related to the radius of the cylinder and it is infinite for

an infinite crystal. Although it can be calculated for a finite radius, it cannot be considered

a characteristic invariable property like the core energy. Therefore, only the dislocation core

energy, i.e. the energy of the minimum region which cannot be described by elasticity theory,

can be used in such capacity.

In order to evaluate the core parameters of dislocations, the energy in the region bounded by

coaxial cylinders of radii r and R0 is plotted versusln(r), where R0 is the external cylinder radius

(taken as large as possible), and r is the internal cylinder radius (r0 ≤ r ≤ R0). The core radius

r0 is taken at the point where the curve stops being linear. Equation 5 can be written as:

Eelastic(r) = A ln R0 − A ln r r ≤ R0. (10)

The corresponding prelogarithmic factor is evaluated by fitting equation (10) to the calculated

values. The core energy is evaluated by averaging the calculated energy values following equation

(3) minus the elastic part:

Ed(r) − Eelastic = Ed(r) − A ln r + A ln r0. r ≥ r0 (11)

2.2 Results

In figure 4 the fully relaxed core structures of all the admissible atomic configurations are

presented. Since, in [0001] orientation, the wurtzite structure presents two polarities (N or Ga
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polarity), each atomic configuration is relaxed in both cases. In all atomic configurations we

have assumed bonds between atoms within distances up to 2.4 Å which is the range of the

MSWp for the N-N interaction (although the range for Ga-N and Ga-Ga interactions is larger

than 3 Å) [19].

Following the procedure described in the previous section, figures 5 and 6 illustrate the energies

Eelastic(r) and Ecore(r) = Ed(r)−Eelastic versus ln(r) plots for partial dislocations delineating a I1

SF formed by a collapsed vacancy disc or a precipitated interstitial loop respectively. In all cases,

it can be observed that the curve becomes linear and the energy assumes the expression given by

elasticity theory (eq. 10). In table 2 the calculated core radii, energies and prelogarithmic factors

of the analyzed partial dislocations in both polarities of GaN are given. Also the prelogarihmic

factors are presented as they have been evaluated by the use of elastic constants calculated with

the MSWp (AMSWp
elastic ) and by the experimental elastic constants (Aexp

elastic).

In the a-edge diagram of figure 5 we notice that the 5/7 core is energetically favorable for both

polarities and it exhibits the smallest core radius. In the b-edge case, it is found that, as in

a-edge case, the 5/7 core configuration has the lowest energy. These two core configurations

are the lowest energy models between all the admissible dislocations and they are the only

configurations in which all the atoms are tetrahedrally coordinated. The 8-atom rings (a-edge-

b, a-edge-c and b-edge-b) and the 12-atom ring (b-edge-c) configurations include at least one

atom with dangling bond and consequently require higher energies.

In the a-mixed diagram of figure 6 it is seen that the a-mixed-b configuration which exhibits a

5/7-atom ring has the smallest core and is energetically favorable. In the b-mixed diagram, it

can be seen that the 12-atom ring of the b-mixed-a configuration is energetically favourable and

presents the smallest core in comparison with the interstitial type b-mixed-b and c configurations.

Regarding the prelogarithmic factors, the calculated values given in table 2 are in agreement

with the elasticity theory calculations. Discrepancies occur between the values for vacancy type

b-edge-c configuration, and for, interstitial type, b-mixed-c configurations and the elastic theory

calculated values. This divergence is related to the fitting process, in particular in determining

the exact value where the curves become linear.

Partial

disloca-

tion

Core

con-

figu-

ration

r0

(Å)

Ecore

(eV/Å)

A

(eV/Å)

AMSWp
elastic

(eV/Å)

Aexp

elastic

(eV/Å)

a-edge-a 5/7 2.0 (2.0) 0.50±0.02 (0.45±0.01) 0.79 (0.76) 0.79 0.82

a-edge-b 8 3.1 (3.1) 1.28±0.02 (1.34±0.02) 0.79 (0.79) 0.79 0.82

a-edge-c 8 3.1 (3.1) 1.34±0.02 (1.39±0.02) 0.78 (0.78) 0.79 0.82

b-edge-a 5/7 2.5 (2.5) 0.72±0.02 (0.76±0.02) 0.78 (0.76) 0.79 0.82

b-edge-b 8 2.5 (3.1) 1.34±0.02 (1.43±0.03) 0.75 (0.78) 0.79 0.82

b-edge-c 12 2.5 (2.5) 1.48±0.01 (1.39±0.01) 0.73 (0.73) 0.79 0.82

a-mixed-a 8 3.1 (3.1) 1.17±0.02 (1.17±0.02) 0.74 (0.74) 0.73 0.76

a-mixed-b 5/7 2.0 (2.0) 0.81±0.02 (0.96±0.02) 0.73 (0.72) 0.73 0.76
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a-mixed-c 5/7 2.5 (3.1) 1.30±0.02 (1.48±0.02) 0.73 (0.75) 0.73 0.76

b-mixed-a 12 2.0 (2.0) 0.99±0.02 (1.05±0.02) 0.73 (0.72) 0.73 0.76

b-mixed-b 10 3.1 (3.1) 1.60±0.02 (1.83±0.03) 0.78 (0.83) 0.73 0.76

b-mixed-c 8 3.1 (3.1) 1.77±0.03 (1.66±0.04) 0.81 (0.87) 0.73 0.76

Table 2: The calculated core radii, energies and prelogarithmic factors of the 1/6 < 202̄3 >

partial dislocations of GaN in N-polarity. The values for Ga-polarity are given in parentheses.

The prelogarihmic factors obtained from anisotropic elasticity by the use of MSWp-calculated

elastic constants (AMSWp
elastic ) and by the use of experimental elastic constants (Aexp

elastic) are given.

In closing the discussion on 1/6 < 202̄3 > partial dislocations we remark that the obtained

cores are structurally similar to those found favorable for perfect basal dislocations in GaN by

ab initio calculations, [22] [34] as discussed in ref [26].

3. IDB-I1 SF Junctions

3.1 Topological Analysis and Computational Method

A rigorous framework for the a priori characterisation of defects [29] [35] [36] has been applied

in order to determine the defect character of IDB–SF junction lines [25]. This analysis is based

on Volterra’s description of line defects in elastic continua [37], as extended for bicrystals. For

this purpose, the abutting crystal components, designated λ and µ, are initially considered to

be joined along their interface with no long-range stresses present (figure 7(a)). A Volterra cut

is then introduced along a part of their interface, and the exposed surfaces are modified by

the addition/removal of material and/or the application of tractions as shown in figure 7(b).

After re-joining the exposed surfaces, a line defect results between the initial interface and the

new one. In agreement with the right-handed/finish-start (RH/FS) convention, this defect is

described by the rigid-body operation required in order to bring the new µ surface onto the new

λ one [29] [35] [36]. Let the new surfaces be obtained from the initial ones by the rigid-body

operations V(λ)j and V(µ)i, where V(λ)j = (V(λ)j , v(λ)j) in Seitz notation [38] (with V(λ)j

being the orthogonal part and v(λ)j the translation part of the operation), and similarly for

V(µ)〉.

Then the line defect is described by the operation [29] [35] [36]

Zij = V(λ)j P V(µ)−1
i P−1, (12)

where P = (P, p) is the transformation relating the µ coordinate frame to the λ one (P is the

matrix which transforms λ vectors into corresponding µ ones, expressed in the λ frame, and p,

is the relative displacement, expressed in the λ frame, of the µ origin away from the λ origin).

In the case of dislocations, Eq. (12) yields Zij = (I, zij), where I is the identity rotation, and

bij = zij (other admissible types of defects are discussed by Pond [35]). Interfacial dislocations
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Figure 4: The relaxed atomic core configurations in N-polarity GaN projected along the [12̄10]

direction. Symbols are as in figure 1. Shading of atoms indicates distinct levels along the

projection direction. For the edge dislocations there are two such levels i.e. at 0 and a/2,

whereas for mixed type partials shading denotes multiple different levels. The shaded atomic

rings depict the cores of the dislocations. Reprinted figure with permission from [26]. Copyright

(2004) by the American Physical Society.
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Figure 5: Elastic energy per unit length Eelastic(r) stored in the region bounded by coaxial

cylinders of radii r and R0, and the core energy Ecore(r) = Ed(r) − Eelastic as a function of

ln(r) for the a-edge and b-edge configurations. (Large symbols denote N-polarity whereas small

symbols denote Ga-polarity) The core radius r0 is given by the radius below which linearity

breaks down. Reprinted figure with permission from [26]. Copyright (2004) by the American

Physical Society.
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Figure 6: Elastic energy per unit length Eelastic(r) stored in the region bounded by coaxial

cylinders of radii r and R0 and the core energy Ecore(r) = Ed(r)−Eelastic as a function of ln(r)

for the a-mixed and b-mixed configurations. Symbols are as in figure 5. Reprinted figure with

permission from [26]. Copyright (2004) by the American Physical Society.

Figure 7: (a) Bicontinuum. (b) Schematic illustration of the introduction of an interfacial

dislocation by the Volterra process. Reprinted figure with permission from [25]. Copyright

(2001) by the American Physical Society.
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can also have associated step character, and this is taken into account by the Volterra approach

(figure 7(b)).

In our particular case, we consider the interface to be the {101̄0} IDB and hence P =1̄, the

inversion operation, while p is the relative displacement of the inverse polarity domains. The

electronically inert character of one type of inversion domain boundaries (IDBs) has been at-

tributed to a particular relative displacement of the abutting domains leading to the elimination

of “wrong” bonds along the IDB plane. Such IDBs have been designated to belong to the IDB*

structural model [39] and their observation in GaN specimens has been reported by a number of

authors [40] [41] [42]. A second type of IDB, namely the Holt IDB [43], comprises wrong bonds

and has been shown to be electrically active [39]. Consequently, it requires a higher formation

energy than IDB*s [39]. In figure 8 the atomic structures of the {101̄0} IDB*, and Holt IDB

in the GaN wurtzite structure are illustrated. In the {101̄0} Holt-type IDB, p = 3/8[0001])

while, for the IDB*, p = −1/8[0001]. The relative displacement vectors p are defined taking as

reference the Austerman – Gehman IDB model [25] [36] [44].

Figure 8: Schematic illustrations of {101̄0} IDBs in the wurtzite GaN structure. (a) Holt-type

IDB (p = 3/8[0001]), (b) IDB* (p = −1/8[0001]). (< 12̄10 > projection, large and small circles

denote distinct atomic species, shading indicates levels 0 and a/2 along the projection direction,

and tetrahedra indicate polarity reversal). The vectors denote displacement of domain µ with

respect to domain λ. The stacking sequence along [0001] is also given.

Using the Volterra-like approach, the defect character of IDB junctions with I1 (0001) SFs

can be determined by considering SF-introducing Vi operations. Two such operations can be

distinguished, i.e. either V1 = (I, v1) where v1 = ± 1/3 < 101̄0 > + 1/2 [0001], or V2 = (I,

v2) where v2 = ± 1/6 < 1̄010 > + 1/2 [0001] ± 1/6 < 1̄21̄0 >. The signs of the < 101̄0 >

components of v1and v2 are reversed when changing the sense of the SF-associated stacking,

i.e. . . . ABABCBCB . . . or . . . ABABACAC . . . . The corresponding step heights on the {101̄0}
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plane are h1 = ± (3)1/2a/3 and h2 = ± (3)1/2a/6 respectively.

By employing the aforementioned operations, Volterra-like diagrams of all the admissible junc-

tions of an IDB* with a I1 SF are illustrated in figures 9(a) to (h), where it can be seen that

they lead to transformation of IDB character from IDB* to Holt; the 1/2[0001] component of the

SF-introducing operation accommodates the IDB structural transformation. In figures 9(a)-(h)

we chose to apply the SF-introducing operation to domain µ while, for domain λ, we may employ

either the identity operation (I, 0) or a lattice translation (I, t(λ)), where t(λ) = 1/3< 21̄1̄0 >.

These operations yield the smallest-in-magnitude Burgers vectors for the particular interactions.

The Burgers vectors obtained from Equation (12), as well as the average step heights hav on the

IDB plane are also given in figure 9.

In addition to applying the SF-introducing operations only to domain µ, we may apply such

operations to both the λ and µ domains (figure 9(i) to (l)). These cases correspond to the SF

crossing the IDB, and it can be seen that the IDB type remains invariant. In figures 9(i) and (j),

the SF crosses via a dislocation-free step whereas, if the SF structural units are mirror related

with respect to the IDB plane, a partial dislocation is required (figures 9(k) and (l)).

For the IDB-SF interactions, the supercells corresponding to each Volterra model have been

constructed based on figure 9. The energies of the IDBs that appear in the studied interactions,

as calculated by the MSWp [19], are EHOLT =166.3 meV/Å2 and EIDB∗=61.4 meV/Å2.

In the case of IDB-I1 SF interaction models, due to the existence of three types of planar defects,

there is no linear part in the energy versus ln(r) plots. Consequently there is no way to evaluate

the core parameters but only the prelogarithmic factors by calculating the slope of the fitted

line to the curve. The calculated values of the prelogarithmic factors (Ae = 0.261 eV/Å for the

a-model and Am = 0.203 eV/Å for the f-model) are in satisfactory agreement with the values

calculated by elastic theory, (Ae = 0.258 eV/Å for edge type and Am = 0.245 eV/Å for mixed

type using elastic constants calculated by the MSWp [32],) confirming the coherency of the

method.

Taking into account the size of our supercells the interaction energy of each interaction model

is equal to the core energy plus an elastic contribution. Consequently the interaction energy

represents the core energy of each model and due to the fact that all the supercells have the same

size, we are able to compare the calculated values between the models with the same Burgers

vector.

3.2 Results

Among the twelve models of figure 9, five comprise edge type partial dislocations (a, d, e, h,

l), five involve mixed type dislocations (b, c, f, g, k), and two models (i and j) are dislocation-

free interactions. Regarding the two dislocation-free interactions, each case can appear in two

possible arrangements of the SF structural units before and after the IDB, thus leading to four

initial unrelaxed models (ia, ib, ja, jb) [25]. Consequently the total number of Volterra models is

equal to fourteen. Additionally by taking into account the polarity of the abutting domains, two

atomic configurations, one per each polarity, correspond to each of the fourteen models. Hence

a total of twenty eight stable atomic configurations of IDB-SF junctions have been calculated.
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Figure 9: Volterra diagrams of the IDB* - I1 SF junctions. Junctions (a) to (h) lead to a Holt

IDB, while configurations (i) to (l) illustrate IDB - I1 SF crossings. The IDBs and SFs have been

indicated by broken lines. On each SF, a structural unit has been drawn to indicate its sense.

The given configurations correspond to minimum Burgers vectors and minimum average step

heights (hav). Reprinted figure with permission from [25]. Copyright (2001) by the American

Physical Society.
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The models i, j, k, and l, where the SF crosses the IDB without transforming its character,

may be constructed either with IDB* or Holt type IDB. In the present study we examine only

crossings involving IDB*s since they are energetically more favourable than Holt IDBs [39].

a) Edge type partial dislocations

The energy calculations indicate that the a model has the lowest energy of the edge type models.

The relative energies ∆EJn for the stable atomic configurations of the a, d, e, h, and l models,

taking as reference the lowest energy, are given in figure 10. The associated junction line defects

are edge partial dislocations with Burgers vector be = 1/3 [101̄0].

Figure 10: Relative energies calculated by the MSWp, for both polarities of the models a, d, e,

h and l. The associated partial dislocations have edge character.

The corresponding relaxed atomic configurations are presented in figure 11.

b) Mixed type partial dislocations

In interactions where the associated junction line defects are partial dislocations with mixed

character (i.e. b, c, f, g, and k) the Burgers vector can be decomposed into a screw bs =

1/6 [12̄10] and an edge component be = 1/6 [101̄0]. The relative energies as calculated by the

MSWp, and taking as reference the lowest energy (k model), are given in figure 12.

In figure 13 the relaxed atomic configurations of the models b, c, f, g and k are presented.
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Figure 11: Relaxed atomic configuration of models a, d, e, h and l given in figure 9, which

comprise interactions involving partial dislocations with edge character. (< 12̄10 > projection,

broken lines indicate planes of IDBs and SFs, large and small circles denote distinct atomic

species, shading of atoms denotes levels 0 and a/2 along the projection direction and the shaded

areas represent the central atomic rings of the cores).
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Figure 12: Relative energies of models b, c, f, g, k calculated by the MSWp. The associated

junction line defects are mixed type dislocations.

Figure 13: Relaxed atomic configuration of models b, c, f, g and k given in figure 9, which

comprise partial dislocations with mixed character. (< 12̄10 > projection, atoms and symbols

are as in figure 11).
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c) Dislocation-free interactions.

Two dislocation-free IDB-I1 SF junctions have been depicted in figure 9 (models i, j). As it

has already been pointed out, each case comprises two possible stable arrangements of the SF

structural units before and after the IDB, leading to four models (ia, ib, ja, jb) [25]. The

relative energy of each configuration, taking as reference the lowest energy, was calculated for

both polarities of GaN and the corresponding values are presented in the bar-graph of figure 14.

Figure 14: Relative energies of dislocation-free junctions calculated by the MSWp.

In figure 15, the relaxed atomic configurations are presented.

We have presented so far the admissible IDB-SF junctions and a detailed analysis based on the

MSWp potential have been presented in ref [27]. It has to be noticed that although the MSWp

yields about the maximum accuracy currently possible for the given model sizes, especially for

GaN with bulk like coordination of atoms, the energies of the reconstructed cores comprising of

Ga-Ga and N-N bond are less accurately represented. However the relaxed models can be used

as reference for band structure calculations.

Almost all the relaxed core structures comprise a 5 or 7-atom ring.

Moreover in ref [27], one of the determined core structures has been matched to an IDB-SF

junction line observed by high resolution transmission electron microscopy. In particular, this

was achieved for the f -model which has the second lower energy for the mixed type partial

dislocations leading to IDB* transformation to Holt IDB.
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Figure 15: Relaxed atomic configurations of models i and j (figure 9) which comprise dislocation-

free interactions. (< 12̄10 > projection, atoms and symbols are as in figure 11).
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4. Conclusions

The atomic structures and dislocations parameters of the 1/6 < 202̄3 > partial dislocations

that bound the I1 SF and the 1/3 < 101̄0 > admissible partial dislocations at the junction lines

between I1 SFs and IDBs have been calculated by means of empirical potential calculations in

combination with topological and elastic theory.

Our calculations on 1/6 < 202̄3 > partial dislocations reveal twelve stable configurations in

each polarity and their core structures and energies have been presented. Although there are

difficulties in determining the exact cylinder radius below which linearity breaks down the core

radii have been calculated in the range between 2 and 3.1 Å, and, in all cases, the smallest cores

belong to the energetically favourable configurations.

The 5/7 ring core in which the atoms are tetrahedrally coordinated has been found energetically

favourable among the edge configurations; such cores have been calculated, in all cases, to have

energies less than 0.76 eV/Å. The 8- and 12-atom rings have been found to require energies from

1.28 to 1.48 eV/Å.

Regarding the mixed type partial dislocations, a variety of core configurations (8, 5/7 and

12 atom rings) has been revealed. The 5/7- and 12-atom ring configurations has been found

favorable for partial dislocations delineating a I1 SF formed by a collapsed vacancy disc or a

precipitated interstitial loop respectively. However, none of them has been found to consist

of only tetrahedrally coordinated atoms. Their core energies are larger than the edge type

dislocations and the energetically favourable models were found to require energies from 0.81 to

1.05 eV/Å.

Based on the analysis of ref [26], it is reasonable to postulate that 1/6 < 202̄3 > partial

dislocations in wurtzite GaN may introduce band gap states. However, in addition to the core

structure, the strain environment in the surrounding crystal plays an important role. Further

investigations are required in order to determine their influence on the band structure.

Regarding the IDB-I1 SF interactions, twenty eight stable configurations of such junctions have

been identified, sixteen of them resulting in transformations of IDB* to Holt IDBs. Consequently,

the IDB*-I1 SF interactions appears to be an important mechanism for the introduction of Holt

IDBs.

Moreover, the majority of the core structures exhibit either dangling bonds or highly distorted

bond angles and lengths [27]. Since gap states may arise from reduced coordination or strained

bonds, these dislocations could be electrically active. Furthermore the core stress field could

act as a trap for electrically active native defects (e.g. vacancies) or impurities. Consequently

almost all the examined junction cores are potentially electrically active defects.

It has also been found that the core energy depends on polarity for dislocations with line di-

rection along < 12̄10 > [26], [27]. When the polarity of the supercells is inverted, the core ring

configuration remains invariant but not the lengths of the bonds and the angles between them.

The changes depend on the type of the atoms and the positions of their neighbour atoms.
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