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Abstract

For practical computational electronic structure calculations an important and comple-

mentary alternative to density functional theory in situations where high accuracy is required

is the quantum Monte Carlo method. This has many attractive features for probing the elec-

tronic structure of real systems. In particular, it is an explicitly many-particle technique

which takes electron correlation into account from the outset, and gives consistent, highly

accurate results while at the same time exhibiting favourable (cubic or better) scaling of

computational cost with system size. In this article I briefly review the present state of the

art, and outline the implementation of the method in the Cambridge quantum Monte Carlo

code ‘CASINO’ [1, 2].

1 Introduction

The continuum Quantum Monte Carlo (QMC) method has been developed to calculate the properties of

assemblies of interacting quantum particles. It is generally capable of doing so with great accuracy. The

various different techniques which lie within its scope have in common the use of random sampling, and

this is used because it represents by far the most efficient way to integrate numerically (wave) functions in

many dimensions. In this article I shall give a brief introduction to the two most common types of QMC,

namely variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC) [3, 4]. As we shall see, the

first of these techniques is simple in concept and is designed just to sample a given trial wave function and

calculate the expectation value of the Hamiltonian using Monte Carlo numerical integration. DMC is one

of a class of so-called ‘projector’ methods which attempt the much more difficult job of simultaneously

creating and sampling the unknown exact ground state wave function. Other variants, including those

aimed at expanding the scope of the method to finite temperature such as path integral Monte Carlo

(PIMC) [5, 6], or those designed to find the exact non-relativistic energy overcoming the small fixed-node

approximation made in DMC (such as fermion Monte Carlo (FMC) [7, 8, 9]) will not be discussed in any
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detail here. The interested reader is invited to consult the literature for more detailed discussions (the

extensive bibliography in Ref. [4] is a good place to start).

QMC is perhaps best known for its early application to the homogeneous electron gas by Ceperley and

Alder [10], the results of which were used to develop accurate parametrizations of the local density

approximation to density functional theory (DFT) in the early 1980s. However, it is of course perfectly

possible to apply the method to real systems with atoms, and for small molecules containing helium

and hydrogen QMC gives total energies with an extraordinary accuracy greater than 0.01 kcal/mole

(≈ 1.5 × 10−5 Ha or 4 × 10−4 eV). In one well-known QMC study of the H + H2 −→H2+H potential

energy surface tens of thousands of points with accuracies close to this value were computed [11]. Despite

such capabilities the technology of QMC is neither mature nor particularly widely used; its routine

application to arbitrary finite and periodic systems, particularly those containing heavier atoms, has

long been just out of reach and there are still many open methodological and algorithmic problems to

interest the computational electronic structure theorist. The situation is clearly changing however, and

it ought now to be a matter of routine for people to perform accurate a posteriori QMC evaluations of

the correlation energy starting from the results of molecular orbital or band theory calculations. Systems

and problems for which accurate calculations of the total energy actually matter, and for which DFT (for

example) is not sufficiently accurate, are likely more numerous than is generally believed. To this end, our

group in the Cavendish Laboratory of Cambridge University has over many years developed a general-

purpose QMC computer program - CASINO [1, 2]. This is capable of performing both variational and

diffusion Monte Carlo calculations on a wide variety of systems, which may be finite (atoms or molecules)

or have periodic boundary conditions in one, two or three dimensions, i.e., polymers, slabs (surfaces)

or crystalline solids. The code may also be used to study situations without an external potential such

as the homogeneous electron gas, Wigner crystals, and various electron-hole phases. We will describe

CASINO in more detail presently.

One of the main reasons that QMC is currently attracting so much interest is the scaling behaviour of

the necessary computational effort with system size. This is favourable enough that we can continue to

apply the method to systems as large as are treated in conventional DFT (albeit with a considerably

bigger pre-factor, and thus probably not on the same computers). In fact, QMC represents the most

accurate method available for medium-sized and large systems. Other quantum chemistry correlated wave

function methods based on the ‘standard model’ of multideterminant expansions - such as configuration

interaction or high-order coupled cluster theory - are capable of similar accuracy for systems containing

a few electrons, but as the size of the molecule is increased they quickly become too expensive. Standard

Quantum Monte Carlo calculations scale as the third power of the system size (the same as DFT), and

are capable of treating solid crystalline phases as well as molecules. The largest calculations done to

date on the more expensive periodic systems using the regular algorithm include almost 2000 electrons

per cell in the three-dimensional electron gas [12], 1732 electrons (432 atoms) per cell in crystalline

silicon [13], and 1024 electrons (128 atoms) per cell in antiferromagnetic nickel oxide [14]. Furthermore

the natural observation has been made that provided localized molecular or crystalline orbitals are used

in constructing the QMC trial wave function, and provided these orbitals are expanded in a localized basis

set, then the scaling of the basic algorithm can be substantially improved, even as far as linear scaling

in some cases [15, 16]. This capability, to be discussed in Section 4.2, has recently been introduced into

CASINO and this should considerably extend the range of problems that may be studied.

Before we go further, it will be useful to list some other favourable properties of the method :

- For most practical purposes the ‘basis set problem’ is essentially absent in DMC; errors due to the use

of a finite basis set are very small since the many-electron wave function is not represented directly in

terms of a basis set, but rather by the distribution of an ensemble of particles evolving in (imaginary)

time. The basis set that is employed in DMC is just used to expand a guiding function required for

importance sampling. The final DMC energy depends only weakly on the nodal surface of this function
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(i.e., the set of points in configuration space on which the function is zero).

- The QMC algorithm is intrinsically parallel and Monte Carlo codes are thus easily adapted to parallel

computers and scale linearly with the number of processors. There are no memory or disk bottlenecks

even for relatively large systems.

- We can use many-electron wave functions with explicit dependence on interparticle distances and no

need for analytic integrability.

- We can calculate ground states, some excited states, chemical reaction barriers and other properties

within a single unified framework. The method is size-consistent and variational.

One may ask why one should formulate a method based on the many-electron wave function when so

much stress is normally placed on reducing the number of variables in the quantum problem (by using,

e.g., density, Green’s functions, density matrices or other quantities which depend on fewer indepen-

dent variables). The main point is that the many-electron wave function satisfies a rather well-known

fundamental equation [17]:

ĤΨ(r1, r2, . . . , rN ) = EΨ(r1, r2, . . . , rN ) (1)

The price we pay for reformulating the problem in terms of the density is that we no longer know

the exact equation satisfied by the density. In DFT, the complicated many-body problem is effectively

relocated into the definition of the exchange-correlation functional, whose mathematical expression is not

currently known and unlikely ever to be known exactly. The inevitable approximations to this quantity

substantially reduce the attainable accuracy.

Widely-used standard solid state texts often refute the possibility of solving the many-electron Schrödinger

equation directly in any meaningful way for large crystalline systems. To take a particular example,

Ashcroft and Mermin [18] state that, ‘one has no hope of solving an equation such as Eq. 1’ and one must

reformulate the problem in such a way as ’to make the one-electron equations least unreasonable’. The key

simplifying physical idea to allow one to treat crystalline solids however, is not the use of one-electron

orbitals but simply the imposition of periodic boundary conditions. One can then have an explicitly

correlated many-body wave function (i.e., with explicit dependence on the interparticle separations), in

a box, embedded in an infinite number of copies of itself. The ‘particles’ in the many-body wave function

are no longer individual electrons, but electrons in the cell we are focussing on moving in tandem with all

of their periodic images. Clearly in order for this to have any chance of being an accurate approximation,

the range of the electron-electron pair correlation function must be substantially shorter than the repeat

distance and the box must be large enough so that the forces on the particles within it are very close to

those in the bulk. If not, then we may get substantial ‘finite-size errors’.

This problem is analagous to, but not quite the same as, the problem of representing an infinite system

in DFT calculations. In that case Bloch’s theorem is used in the extrapolation to infinite system size so

that the problem of calculating an infinite number of one-electron states reduces to the calculation of a

finite number (equal to the number of electrons in the primitive cell) of states at an infinite number of k

points. Because the energy of states at k points which are close together are very similar, the k space may

be ‘sampled’ and if this is done efficiently the calculated energy per cell approaches that in the infinite

system. The situation in QMC is a little different since the explicit correlation between electrons means

that the problem cannot be reduced to the primitive cell; a one-electron wave function on a 2 × 2 × 2 k

point grid corresponds to a many-electron wave function for a 2 × 2 × 2 supercell in real space. There

is a ‘many-body Bloch theorem’ expressing the invariance of the Hamiltonian under translations of all

electrons by a primitive lattice vector or of a single electron by a supercell lattice vector [19], and thus

there are two k vectors associated with the periodic many-body wave function. The error analagous to

inadequate Brillouin zone sampling can be made smaller either by increasing the size of the simulation cell

168



or by choosing the k values using ‘special k point’ techniques [20]. An additional type of finite-size error

arises in periodic QMC calculations (though not in DFT) when calculating interactions between particles

with long-range Coulomb sums. The difference is that in QMC we deal with instantaneous positions of

electron configurations, rather than with the interaction of averaged densities. When using the standard

Ewald formulation [21, 22], the choice of boundary conditions leads to an effective depolarization field

which is supposed to cancel the field due to notional surface charges. As all periodic copies of the

simulation cell contain, for example, the same net dipole due to the random arrangement of electrons

with respect to nuclei the interaction of the dipoles and the field gives rise to ‘Coulomb finite size errors’.

These can be substantially reduced by using special techniques [23].

A few years ago in his Nobel prize-winning address Walter Kohn suggested that the many-electron wave

function is not a legitimate scientific concept for more than about a thousand particles [24]. Does this

mean we’re in trouble if we use them in QMC? The main idea behind this statement is that the overlap of

an approximate wave function with the exact one will tend exponentially to zero as the number of particles

increases, unless one uses a wave function in which the number of parameters increases exponentially. Such

an object would not be computable for large systems. This is indeed true, as is easy to verify by calculating

the overlap integral directly using VMC [25]. Note that one does not need the exact wave function itself

to perform this calculation. Rather one can evaluate the overlap between a single-determinant wave

function on its own and multiplied by a Jastrow correlation function. The fact that these share the same

nodal surface does not matter since Kohn’s argument is based solely on the high-dimensionality of the

overlap integrals rather than, say, the explicit cancellation of positive and negative regions. However,

his objection is almost certainly not relevant to the sort of QMC calculations discussed here. Clearly

the successful DMC calculations of systems containing up to 2000 electrons mentioned earlier provide

some evidence in this direction. Kohn’s arguments were used to motivate density functional theory

(DFT), but it is possible to argue that, within the standard Kohn-Sham formulation, DFT suffers from

exactly the same overlap ‘catastrophe’. For a large system the overlap of the determinant of Kohn-Sham

orbitals with the exact one will go to zero because of the inevitable numerical inaccuracies and the

approximations to the exchange-energy functional. Fortunately the overlap ‘catastrophe’ is irrelevant to

calculating the quantities of interest. As Kohn himself points out, we are interested in quantities such

as the total energy, which can be accurate even when the overlap with the exact wave function goes to

zero. To get the energy right it is required only that relatively low-order correlation functions (such as

the pair-correlation function) are well-described and QMC seems to manage this very well.

To understand how accurate the total energies must be we note that the main goal is to calculate the

energy difference between two arrangements of a set of atoms. The desired result might be the energy

required to form a defect, or the energy barrier to some process, or whatever. All electronic structure

methods for large systems rely on a cancellation of errors in energy differences. For such error cancellations

to occur we require that the error in the energy per atom is proportional to the number of atoms. If this

condition was not satisfied then, for example, the cohesive energy would not have a well defined limit for

large systems. Many VMC (and DMC) calculations have demonstrated that the commonly-used Slater-

Jastrow form of many-body wave function leads to errors which are proportional to the number of atoms,

and typically gives between 70 and 80% of the correlation energy independent of system size. Additional

requirements on QMC algorithms are that the number of parameters in the trial wave function must not

increase too rapidly with system size and that the wave function be easily computable. Fortunately the

number of parameters in a Slater-Jastrow wave function increases only linearly with system size or at

worst as the square of the system size, and it can be evaluated in a time which rises as a low power of

the system size.
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2 QMC algorithms

In this section, we will look at the basic ideas and algorithms underlying VMC and DMC.

2.1 Variational Monte Carlo

2.1.1 Basics

With variational methods we must ‘guess’ an appropriate many-electron wave function which is then used

to calculate the expectation value of the Hamiltonian operator. In general this wave function will depend

on a set of parameters {α} which can be varied to optimize the function and minimize either the energy

or the statistical variance. The energy thus obtained is an upper bound to the true ground state energy,

〈ΨT ({α})|Ĥ |ΨT ({α})〉
〈ΨT ({α})|ΨT ({α})〉 = E({α}) ≥ E0 . (2)

The expectation value of the Hamiltonian Ĥ with respect to the trial wave function ΨT can be written

as

〈Ĥ〉 =

∫

EL(R)Ψ2
T (R) dR

∫

Ψ2
T (R) dR

, (3)

where R is a 3N dimensional vector giving the coordinates (r1, r2, . . . , rN ) of the N particles in the

system, and EL(R) = Ĥ(R)ΨT (R)
ΨT (R) is known as the local energy.

We can evaluate this expectation value by using the Metropolis algorithm [26] to generate a sequence of

configurations R distributed according to Ψ2
T (R) and averaging the corresponding local energies,

〈Ĥ〉 =
1

M

M
∑

i=1

EL(Ri) =
1

M

M
∑

i=1

ĤΨT (Ri)

ΨT (Ri)
. (4)

The question of whether or not we get the right answer with this approach is just one of complexity ;

can we create a wave function with enough variational freedom so that the energy approaches the exact

(non-relativistic) ground state energy? The answer in general is no. There is no systematic way in which

one can improve the wave function until the correct answer is reached, and in general, we shouldn’t

normally expect to recover much more than 80% of the correlation energy in this way. As we shall see,

the the final 20% or so can be calculated by feeding the VMC wave function into a projector method

such as DMC. This, to my mind, is the main use of VMC and in our laboratory we rarely use it as a

method in its own right when performing calculations. With this attitude, it is not generally necessary

to kill oneself optimizing wave functions in order to recover an extra 1% of the correlation energy with

VMC - it is better to use DMC and let the computer do the work for you. Although the efficiency of

the DMC calculations is increased with more accurate trial functions, the final DMC energy does not in

principle depend on that part of the wave function that we generally optimize.

2.1.2 The form of the trial wave function

Clearly, however, for VMC the choice of the trial function is particularly important as it directly deter-

mines the accuracy of the calculation ; the answer will approach the true energy from above as we use

better and better wave functions. An additional consideration is the ‘zero variance principle’. As the

trial function approaches an exact eigenstate the local energy ĤΨ
Ψ approaches a constant, E, everywhere

in configuration space (check the Schrödinger equation again!) and hence the variance approaches zero.
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Through its direct influence on the variance of the energy the accuracy of the trial wave function thus

determines the amount of computation required to achieve a specified accuracy. When optimizing wave

functions, one can therefore choose to use energy or variance as the objective function to be minimized.

The fact that arbitrary wave function forms can be used is one of the defining characteristics of QMC.

We do not need to be able to integrate the wave function analytically, as is done for example in quantum

chemistry methods with Gaussian basis functions. We just need to be able to evaluate it at a point in the

configuration space. If the electrons and nuclei have certain fixed positions in space, what is the value of

the wave function? This being the case, we can use correlated wave functions which depend explicitly on

the distances between particles. The most commonly-used functional form is known as the Slater-Jastrow

wave function [27]. This consists of a single Slater determinant (or sometimes a linear combination of a

small number of them) multiplied by a positive-definite Jastrow correlation function which is symmetric

in the electron coordinates and depends on the inter-particle distances. The Jastrow function allows

efficient inclusion of both long and short range correlation effects. As we shall see however, the final

DMC answer depends only on the nodal surface of the wave function and this cannot be affected by the

nodeless Jastrow. In DMC it serves mainly to decrease the amount of computer time required to achieve

a given statistical error bar and improve the stability of the algorithm.

The basic functional form of the Slater-Jastrow function is

Ψ(X) = eJ(X)
∑

n

cnDn(X) , (5)

where X = (x1,x2, . . . ,xN ) and xi = {ri, σi} denotes the space-spin coordinates of electron i, eJ(X) is the

Jastrow factor, the cn are coefficients, and the Dn(X) are Slater determinants of single-particle orbitals,

D(X) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ1(x1) ψ1(x2) . . . ψ1(xN )

ψ2(x1) ψ2(x2) . . . ψ2(xN )
...

...
...

...

ψN (x1) ψN (x2) . . . ψN (xN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (6)

The orbitals in the determinants are often obtained from self-consistent DFT or Hartree-Fock calculations

and are assumed to be products of spatial and spin factors,

ψα(x) = ψα(r)δσ,σα
, (7)

Here δσ,σα
= 1 if σ = σα and zero otherwise. If the determinant contains N↑ orbitals with σα = ↑ and

N↓ = N −N↑ with σα = ↓, it is an eigenfunction of Ŝz with eigenvalue (N↑ −N↓)/2. To avoid having to

sum over spin variables in QMC calculations, one generally replaces the determinants Dn by products of

separate up- and down-spin determinants,

Ψ(R) = eJ(R)
∑

n

cnD
↑
n(r1, . . . , rN↑

)D↓
n(rN↑+1, . . . , rN ) , (8)

where R = (r1, r2, . . . , rN ) denotes the spatial coordinates of all the electrons. This function is not

antisymmetric under exchange of electrons with opposite spins but it can be shown that it gives the same

expectation value as Ψ(X) for any spin-independent operator. Note that the use of wave function forms

in QMC which allow one to treat non-collinear spin arrangements and the resultant vector magnetization

density is an interesting open problem, and we are currently working on developing such an algorithm [28].

The full Jastrow functions that we typically use in CASINO contain one- and two-electron terms and

may be inhomogeneous, i.e., depend on the distances of the electrons from the ions. Their functional
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form is quite complicated and involves sums in Chebyshev polynomials. However just to give you a feel

for it, a simple Jastrow function for a homogeneous system such as the electron gas might look like :

eJ(R) with J(R) = −
∑

i>j

uσi,σj
(rij) and uσi,σj

(rij) =
A

rij

(

1 − e−rij/Fσi,σj

)

. (9)

where rij is the distance between electrons i and j, and F is chosen so that the electron-electron cusp

conditions are obeyed i.e. F↑↑ =
√

2A and F↑↓ =
√
A. The value of A, and the coefficients in the

Chebyshev expansion in the full version of the Jastrow function, will need to be optimized using, for

example, variance minimization.

2.1.3 Optimization of trial wave functions

In our discussion so far we have said nothing about how we actually perform the wave function opti-

mization, and this is clearly a critical step. Our code CASINO, for example, allows optimization of the

parameters in the Jastrow factor, of the coefficients of the determinants of a multi-determinant wave

function, and of various parameters in specialized wave functions such as pairing parameters in electron-

hole gases and Padé coefficients in orbitals in Wigner crystals. Optimizing the orbitals themselves in the

presence of the Jastrow factor would be a good thing to be able to do, since it optimizes the nodal surface

in some sense and allows improvement of the DMC answer. This remains an active problem, although

some progress has been made [29, 30].

There are many approaches to wave function optimization, but as far as our code is concerned, optimiza-

tion of the wave function is achieved by minimizing the variance of the energy,

σ2
E(α) =

∫

Ψ2(α) [EL(α) −EV (α)]2 dR
∫

Ψ2(α) dR
, (10)

where α is the set of parameters, and EV is the variational energy. There are a number of reasons for

preferring variance minimization over energy minimization (including the fact that the variance has a

known lower bound of zero) but the most important is that it appears to show better numerical stability,

particularly in large systems [31].

Minimization of σ2
E is carried out via a correlated-sampling approach in which a set of configurations

distributed according to Ψ2(α0) is generated, where α0 is an initial set of parameter values. The variance

σ2
E(α) is then evaluated as

σ2
E(α) =

∫

Ψ2(α0) w(α) [EL(α) −EV (α)]2 dR
∫

Ψ2(α0) w(α) dR
, (11)

where

EV (α) =

∫

Ψ2(α0) w(α) EL(α) dR
∫

Ψ2(α0) w(α) dR
, (12)

and the integrals contain a weighting factor, w(α), given by

w(α) =
Ψ2(α)

Ψ2(α0)
. (13)

The parameters α are adjusted until σ2
E(α) is minimized. The advantage of the correlated-sampling

approach is that one does not have to generate a new set of configurations every time the parameter

values are changed.

In order to create a set of configurations distributed according to Ψ2(α0), a VMC ‘configuration genera-

tion’ run must first be carried out. This is just an ordinary VMC run where ‘snapshots’ of the system are
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created by writing the current electron positions and associated interaction energies to a file. To perform

the actual minimization, we then use an algorithm which performs an unconstrained minimization (with-

out requiring derivatives) of a sum of m squares of functions which contain n variables, where m ≥ n.

Having generated a new set of parameters with this algorithm, we then carry out a second configuration

generation run with these parameters followed by a second variance minimization run, and so on. Gen-

erally very few such ‘iterations’ are required before the minimum is approached. The procedure can be,

and in CASINO is, thoroughly automated and providing a systematic approach is adopted, optimizing

VMC wave functions is not the complicated time-consuming business it once was. This is particularly

the case if one requires only the optimized wave function for input into a DMC calculation, rather than

being concerned with lowering the VMC energy as much as possible.

2.1.4 VMC conclusions

Although VMC can be quite powerful when applied to the right problem, the necessity of guessing the

functional form of the trial function limits its accuracy and there is no known way to systematically

improve it all the way to the exact non-relativistic limit. In practice therefore, the main use of VMC is

in providing the optimized trial wave function required as an importance sampling function by the much

more powerful DMC technique, which we now describe.

2.2 Diffusion Monte Carlo

Let us imagine that we are ignorant, or have simply not been paying attention in our quantum mechanics

lectures, and that we believe that the wave function of the hydrogen atom looks like a square box centred

on the nucleus. If we tried to calculate the expectation value of the Hamiltonian using VMC we would

obtain an energy which was substantially in error. What DMC can do, in essence, is to correct the

functional form of the guessed square box wave function so that it looks like the correct exponentially-

decaying one before calculating the expectation value. This is a nice trick if you can do it, particularly

in cases where we have very little idea of what the exact ground state wave function looks like (that is,

almost all of them). Clearly the necessary algorithm is rather more involved than the VMC.

Essentially then, the DMC method is a stochastic projector method for evolving the imaginary-time

Schrödinger equation,

−∂Ψ(R, t)

∂t
= −1

2
∇2Ψ(R, t) + (V (R) −ET )Ψ(R, t) . (14)

Here the real variable t measures the progress in imaginary time and R is a 3N -dimensional vector of

the positions of the N electrons. V (R) is the potential energy operator, ET is an energy offset which

only affects the normalization of the wave function Ψ, and ∇ = (∇1,∇2, . . . ,∇N ) is the 3N -dimensional

gradient operator.

This equation has the property that an initial starting state Ψ(R, t = 0) decays towards the ground state

wave function. In DMC the time evolution of Eq. 14 may be followed using a stochastic technique in

which Ψ(R, t) is represented by an ensemble of 3N -dimensional electron configurations (‘walkers’), {Ri}.

The time evolution of these configurations is governed by the Green’s function of Eq. 14. Within the

short time approximation the Green’s function separates into two processes: random diffusive jumps of

the configurations arising from the kinetic term and creation/destruction of configurations arising from

the potential energy term.

Unfortunately this simple algorithm suffers from two very serious drawbacks. The first is that we have

implicitly assumed that Ψ is a probability distribution, even though its fermionic nature means that it

must have positive and negative parts. The second problem is less fundamental but in practice very severe.
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The required rate of removing or adding configurations diverges when the potential energy diverges, which

occurs whenever two electrons or an electron and a nucleus are coincident. This leads to extremely poor

statistical behaviour.

These problems are dealt with at a single stroke by introducing an importance sampling transformation.

If we consider the mixed distribution f = ΨT Ψ, where ΨT is known as the trial or guiding wave function,

and substitute into Eq. 14 we obtain

−∂f(R, t)

∂t
= −1

2
∇2f(R, t) + ∇ · [vD(R)f(R, t)] + (EL(R) − ET )f(R, t) , (15)

where vD(R) is the 3N -dimensional drift velocity defined by

vD(R) = ∇ ln |ΨT (R)| =
∇ΨT (R)

ΨT (R)
, (16)

and

EL(R) = Ψ−1
T

(

−1

2
∇2 + V (R)

)

ΨT , (17)

is the local energy. This formulation imposes the fixed-node approximation [32]. The nodal surface of a

wave function is the surface on which it is zero and across which it changes sign. The nodal surface of Ψ is

constrained to be the same as that of ΨT and therefore f can be interpreted as a probability distribution.

The time evolution generates the distribution f = ΨT Ψ, where Ψ is the best (lowest energy) wave function

with the same nodes as ΦT . The problem of the poor statistical behaviour due to the divergences in the

potential energy is also solved because the term (V (R)−ES) in Eq. 14 has been replaced by (EL(R)−ET )

which is much smoother. Indeed, if ΨT was an exact eigenstate then (EL(R)−ET ) would be independent

of position in configuration space. Although we cannot in practice find the exact ΨT it is possible to

eliminate the divergences in the local energy by choosing a ΨT which has the correct cusp-like behaviour

whenever two electrons or an electron and a nucleus are coincident [33]. The fixed-node approximation

implies that we solve independently in different nodal pockets, and at first sight it appears that we have to

solve the Schrödinger equation in every nodal pocket, which would be an impossible task in large systems.

However, the tiling theorem for exact fermion ground states [34, 35] asserts that all nodal pockets are in

fact equivalent and therefore one only need solve the Schrödinger equation in one of them. This theorem

is intimately connected with the existence of a variational principle for the DMC ground state energy [35].

A DMC simulation proceeds as follows. First we pick an ensemble of a few hundred configurations

chosen from the distribution |ΨT |2 using VMC and the standard Metropolis algorithm. This ensemble

is evolved according to the short-time approximation to the Green function of the importance-sampled

imaginary-time Schrödinger equation (Eq. 15), which involves biased diffusion and addition/subtraction

steps. The bias in the diffusion is caused by the importance sampling which directs the sampling towards

parts of configuration space where |ΨT | is large. After a period of equilibration the excited state contri-

butions will have largely died out and the configurations start to trace out the probability distribution

f(R)/
∫

f(R) dR. We can then start to accumulate averages, in particular the DMC energy, ED, which

is given by

ED =

∫

f(R)EL(R) dR
∫

f(R) dR
≈

∑

i

EL(Ri) . (18)

This energy expression would be exact if the nodal surface of ΨT was exact, and the fixed-node error

is second order in the error in the nodal surface of ΨT (when a variational theorem exists [35]). The

accuracy of the fixed node approximation can be tested on small systems and normally leads to very

satisfactory results. The trial wave function limits the final accuracy that can be obtained because of the

fixed-node approximation and it also controls the statistical efficiency of the algorithm. Like VMC, the
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DMC algorithm satisfies a zero-variance principle, i.e., the variance of the energy goes to zero as the trial

wave function goes to an exact eigenstate.
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Figure 1: DMC simulation of solid antiferromagnetic NiO. In the lower panel, the noisy black line

is the local energy after each move, the green (or possibly grey) line is the current best estimate

of the DMC energy, and the red (slightly different grey) line is ET in Eqn. 15 which is varied to

control the population of configurations through a feedback mechanism. As the simulation equili-

brates the best estimate of the energy, initially equal to the VMC energy, decreases significantly

then approaches a constant - the final DMC energy. The upper panel shows the variation in the

population of the ensemble during the simulation as walkers are created or destroyed.

3 Miscellaneous issues

In this section I will discuss some practical issues related to VMC and DMC.

3.1 More about trial wave functions

Single-determinant Slater-Jastrow wave functions often work very well in QMC calculations. For example,

in the ground state of the carbon pseudo-atom, single determinant HF theory retrieves about 98.2% of

the total energy. The residual 1.8% is the correlation energy, amounting to 2.7 eV in this case, which

is very important for an accurate description of chemical bonding. A determinant of HF orbitals gives

the lowest energy of all single-determinant wave functions and DFT orbitals are often very similar to

them. These orbitals are not optimal when a Jastrow factor is included, but it turns out that the Jastrow

factor does not change the detailed structure of the optimal orbitals very much, and the changes are well

described by a fairly smooth change to the orbitals, which is conveniently included in the Jastrow factor.

How might we improve on the HF or DFT orbitals in the presence of the Jastrow factor? Direct opti-

mization of the whole Slater-Jastrow wave function including both the orbitals and Jastrow factor has

not been performed for large systems due to the computational cost. A promising technique [29, 30] is

to optimize the potential that generates the orbitals rather than the orbitals themselves. Grossman and

Mitas [36] have used a determinant of the natural orbitals which diagonalize the one-electron density

matrix. It is not immediately clear why this should be expected to work in QMC, but the motivation

appears to be that the convergence of configuration interaction expansions is improved by using natu-
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ral orbitals instead of HF orbitals. However, the calculation of reasonably accurate natural orbitals is

computationally demanding, and this approach is not attractive for large systems.

Another approach is to introduce ‘backflow’ correlations which were originally derived from a current

conservation argument by Feynman and Cohen [37] to provide a picture of the excitations in liquid 4He,

although they are also helpful in fermionic systems. In the backflow trial function the electron coordinates

ri appearing in the Slater determinants of Eq. (8) are replaced by quasiparticle coordinates,

r̄i = ri +

N
∑

j=1
(j 6=i)

η(rij )(ri − rj) , (19)

where rij = |ri − rj |. The optimal function η(rij) may be determined variationally. Kwon, Ceperley, and

Martin [38] found that the introduction of backflow significantly lowered the VMC and DMC energies of

the three-dimensional uniform electron gas at high densities (it is expected to be even more significant

in two dimensions). However, the use of backflow wave functions significantly increases the cost of QMC

calculations because one can no longer move the electrons one at time, which is a significant saving in

the standard algorithm. The basic scaling of the algorithm with backflow is thus N 4 rather than N3.

In some cases it is necessary to use multi-determinant wave functions to preserve important symmetries

of the true wave function. In other cases a single determinant may give the correct symmetry but a

significantly better wave function can be obtained by using a linear combination of a few determinants.

Multi-determinant wave functions have been used successfully in QMC studies of small molecular systems

and even in periodic calculations such as the recent study of the neutral vacancy in diamond due to Hood et

al. [39]. It is widely believed that a direct expansion in determinants (as used in configuration interaction

calculations) converges very slowly because of the difficulty in describing the strong correlations which

occur when electrons are close to one another. These correlations result in cusps in the wave function when

two electrons are coincident, which are not well approximated by a finite sum of smooth functions [40].

However, this is not the whole story, and Prendergast et al. [41] have pointed out that the cusp is

energetically less important, and that the slow convergence of determinant expansions has a lot to do

with the description of medium-range correlations. In any case the number of determinants required to

describe the wave function to some fixed accuracy increases exponentially with the system size. Practically

speaking, this rules out the possibility of retrieving a significant extra fraction of the correlation energy

with QMC in large systems via an expansion in determinants. Methods in which only local correlations

are taken into account might be helpful, but overall an expansion in determinants is not a promising

direction to pursue for making QMC trial wave functions for large systems, and the backflow technique,

while costly, is more likely to be useful.

3.2 Basis set expansions : how to represent the orbitals?

The importance of using good quality single-particle orbitals in building up the Slater determinants in

the trial wave function is clear. The determinant part accounts for by far the most significant fraction of

the variational energy. However, the evaluation of the single-particle orbitals and their first and second

derivatives can sometimes take up more than half of the total computer time, and consideration must

therefore be given to obtaining accurate orbitals which can be evaluated rapidly at arbitrary points in

space. It is not difficult to see that the most critical thing is to expand the single-particle orbitals in a

basis set of localized functions. This ensures that beyond a certain system size, only a fixed number of the

localized functions will give a significant contribution to a particular orbital at a particular point. The cost

of evaluating the orbitals does not then increase rapidly with the size of the system. Note that ‘localized

basis functions’ can (1) be strictly zero beyond a certain radius, or (2) can decrease monotonically and

be pre-screened before the calculation starts, so that only those functions which could be significant in a
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particular region are considered for evaluation.

An alternative procedure is to tabulate the orbitals and their derivatives on a grid, and this is feasible for

small systems such as atoms, but for periodic solids or larger molecules the storage requirements quickly

become enormous. This is an important consideration when using parallel computers as it is much

more efficient to store the single-particle orbitals on every node. Historically a very large proportion of

condensed matter electronic structure theorists have used plane-wave basis sets in their DFT calculations.

However in QMC, plane-wave expansions are normally extremely inefficient because they are not localized

in real space ; every basis function contributes at every point, and the required number of functions

increases linearly with system size. Only if there is a short repeat length in the problem are plane waves

not totally unreasonable. Note that this does not mean that all plane-wave DFT codes are useless for

generating trial wave functions for CASINO; a post-processing utility can be used to reexpand a function

expanded in plane-waves in another localized basis before the wave function is input into CASINO. The

usual thing here is to use some form of localized spline functions on a grid such as those used by the

Lawrence Livermore group [15], or the ‘blip’ functions used by Mike Gillan’s group [42] and implemented

in CASINO by Dario Alfè [43].

Another pretty good way to do this is to expand the orbitals in a basis of Gaussian-type functions. These

are localized, quick to evaluate, and are available from a wide-range of sophisticated software packages.

Such a large expertise has been built up within the quantum chemistry community with Gaussians that

there is a significant resistance to using any other type of basis. A great many Gaussian-based packages

have been developed by quantum chemists for treating molecules. The most well-known of these are the

various versions of the GAUSSIAN package [44]. In addition to the regular single determinant methods,

these codes include various techniques involving multi-determinant correlated wave functions (although

sadly, not QMC!). This makes them very flexible tools for developing accurate molecular trial wave

functions. For Gaussian basis sets with periodic boundary conditions, the CRYSTAL program [45] can

perform all-electron or pseudopotential Hartree-Fock and DFT calculations both for molecules and for

systems with periodic boundary conditions in one, two or three dimensions, which makes it very useful

as a tool for generating trial functions for CASINO.

3.3 Pseudopotentials

Pseudopotentials or effective core potentials are commonly used in electronic structure calculations to

remove the inert core electrons from the problem and to improve the computational efficiency. Although

QMC scales very favourably with system size it has been estimated that the scaling of all-electron cal-

culations with the atomic number Z is approximately Z5.5−6.5 which effectively rules out applications to

atoms with Z greater than about ten. The use of a pseudopotential serves to reduce the effective value

of Z and although errors are inevitably introduced, the gain in computational efficiency is sufficient to

make applications to heavy atoms feasible.

Accurate pseudopotentials for single-particle theories such as DFT or Hartree-Fock theory are well de-

veloped, but pseudopotentials for correlated wave function techniques such as QMC present additional

challenges. The presence of core electrons causes two related problems. The first is that the shorter

length scale variations in the wave function near a nucleus of large Z require the use of a small time step.

This problem can be significantly reduced (in VMC at least) by the use of acceleration schemes [46, 47].

The second problem is that the fluctuations in the local energy tend to be large near the nucleus because

both the kinetic and potential energies are large.

The central idea of pseudopotential theory is to create an effective potential which reproduces the effects

of both the nucleus and the core electrons on the valence electrons. This is done separately for each of

the different angular momentum states, so the pseudopotential contains angular momentum projectors

and is therefore a non-local operator.
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It is convenient to divide the pseudopotential for each atom into a local part V ps
loc(r) common to all

angular momenta and a correction, V ps
nl,l(r), for each angular momentum l. The electron-ion potential

energy term in the full many-electron Hamiltonian of the atom then takes the form

Vloc + V̂nl =
∑

i

V ps
loc(ri) +

∑

i

V̂ ps
nl,i , (20)

where V̂ ps
nl,i is a non-local operator which acts on an arbitrary function g(ri) as follows

V̂ ps
nl,i g(ri) =

∑

l

V ps
nl,l(ri)

l
∑

m=−l

Ylm(Ωri
)

∫

Y ∗
lm(Ωr′

i
) g(r′i) dΩ′

i , (21)

where the angular integration is over the sphere passing through the ri. This expression can be simplified

by choosing the z-axis along ri, noting that Ylm(0, 0) = 0 for m 6= 0, and using the definition of the

spherical harmonics to give

V̂ ps
nl,i g(ri) =

∑

l

V ps
nl,l(ri)

2l + 1

4π

∫

Pl [cos(θ′i)] g(r′i) dΩ′
i , (22)

where Pl denotes a Legendre polynomial.

It is not currently possible to construct pseudopotentials for heavy atoms entirely within a QMC frame-

work, although progress in this direction was made by Acioli and Ceperley [48]. It is therefore currently

necessary to use pseudopotentials generated within some other framework. Possible schemes include HF

theory and local density functional theory (DFT), where there is a great deal of experience in generating

accurate pseudopotentials. There is evidence to show that HF pseudopotentials give better results within

QMC calculations than DFT ones, although DFT ones work quite well in many cases. The problem

with DFT pseudopotentials appears to be that they already include a (local) description of correlation

which is quite different from the QMC description. HF theory, on the other hand, does not contain any

effects of correlation. The QMC calculation puts back the valence-valence correlations but neglects core-

core correlations (which have only an indirect and small effect on the valence electrons) and core-valence

correlations. Core-valence correlations are significant when the core is highly polarizable, such as in alkali-

metal atoms. The core-valence correlations may be approximately included by using a ‘core polarization

potential’ (CPP) which represents the polarization of the core due to the instantaneous positions of the

surrounding electrons and ions. Another issue is that relativistic effects are important for heavy elements.

It is still, however, possible to use a QMC method for solving the Schrödinger equation with the scalar

relativistic effects obtained within the Dirac formalism incorporated within the pseudopotentials. The

combination of Dirac HF pseudopotentials and CPPs appears to work well in many QMC calculations.

CPPs have been generated for a wide range of elements (see, e.g., Ref. [49]).

Many HF pseudopotentials are available in the literature, mostly in the form of sets of parameters for fits

to Gaussian basis sets. Unfortunately many of them diverge at the origin, which can lead to significant

time step errors in DMC calculations [50]. We have concluded that none of the available sets are ideal

for QMC calculations, and that would be helpful if we generated an on-line periodic table of smooth

non-divergent HF pseudopotentials (with relativistic corrections). This project is well on its way to

completion.

Recent developments have been made that allow the use of all-electron QMC calculations for much heavier

atoms than has previously been the case, based on reducing the fluctuations in the local energy near the

nucleus. These developments will be described in the following section.
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4 Recent developments

In this section I will describe some recent improvements to the basic algorithms that improve the ability

of QMC to (1) treat heavier atoms with all-electron calculations, and (2) to treat larger systems by

improving the scaling behaviour. Both these features have recently been implemented in the CASINO

code.

4.1 All-electron QMC calculations for heavier atoms

At a nucleus the exact wave function has a cusp so that the divergence in the potential energy is cancelled

by an equal and opposite divergence in the kinetic energy. If this cusp is represented accurately in the

QMC trial wave function therefore, then the fluctuations in the local energy referred to in the previous

section will be greatly reduced. If the wave function is formed from one or more determinants of single-

particle orbitals expanded, for example, in a Gaussian basis set, then there can be no cusp in the wave

function since Gaussians have zero gradient at r = 0. The local energy thus diverges at the nucleus.

In practice one finds that the local energy has wild oscillations close to the nucleus which can lead to

numerical instabilities in DMC calculations. To solve this problem we can make small corrections to the

single particle orbitals close to the nuclei which impose the correct cusp behaviour. Such corrections need

to be applied at each nucleus for every orbital which is larger than a given tolerance at that nucleus.

It is likely that a number of other researchers have developed such schemes, but within the literature we

are only aware of the scheme developed by Manten and Lüchow [51], which is rather different from ours

[52]. Our scheme is based on the idea of making the one-electron part of the local energy for each orbital,
Ĥoeφ

φ , finite at the nucleus. Ĥoe is given by

Ĥoe = −1

2
∇2 − Z

r
, (23)

where r is the distance to the nucleus of charge Z. The scheme need only be applied to the s-component of

orbitals centred at the nuclear position in question. Inside some radius rc we replace the orbital expanded

in Gaussians by φ = sgn[ψ(r = 0)] exp[p], where sgn[ψ(r = 0)] denotes the sign of the Gaussian orbital

at r = 0 and p is a polynomial in r. Therefore ln |φ| = p and the local energy is given by

EL =
Ĥoeφ

φ
= −p

′

r
− p′′

2
− p′2

2
− Z

r
. (24)

We impose five constraints, that p(rc), p′(rc), and p′′(rc) are continuous, that p′(0) = −Z (to satisfy the

cusp condition), and that EL(0) is chosen to minimize the maximum of the square of the deviation of

EL(r) from an ‘ideal curve’ of local energy versus radius.

To see the cusp corrections in action, let us first look at a hydrogen atom where the basis set has been

made to model the cusp very closely by using very sharp Gaussians with high exponents. Visually (top

left in Figure 2) the fact that the orbital does not obey the cusp condition is not immediately apparent.

If we zoom in on the region close to the nucleus (top right) we see the problem: the black line is the

orbital expanded in Gaussians, the red (or light grey if you’ve scrimped on the colour printing) line is

the cusp-corrected orbital. The effect on the gradient and local energy is clearly significant. This scheme

has been implemented within the CASINO code both for finite and for periodic systems, and produces a

significant reduction in the computer time required to achieve a specified error bar, as one can appreciate

from Figure 3.

In order to understand our capability to do all-electron DMC calculations for heavier atoms, and to

understand how the necessary computer time scales with atomic number, we are currently carrying out

a series of calculations on the various noble gas atoms [53]. So far it has proved to be perfectly possible

to produce converged DMC energies with acceptably small error bars for atoms up to Z=36. It seems

that even xenon (Z=54) can be done (although this is still running as I write this).
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Figure 2: Cusp corrections in the hydrogen atom.
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Figure 3: Local energy as a function of move number in a VMC calculation for a carbon monoxide

molecule with a standard reasonably good Gaussian basis set. The cusp corrections are imposed

only in the figure on the right. The reduction in the local energy fluctuations with the new scheme

is clearly apparent.

4.2 Improved scaling algorithms

Let us now consider in more detail how QMC calculations scale with system size, and what one might

do in order to improve the scaling behaviour. QMC methods are stochastic and therefore yield mean

values with an associated statistical error bar. We might want to calculate the energy of some system and

compare it with the energy of a different arrangement of the atoms. The desired result might be a defect

formation energy, an energy barrier, or an excitation energy. These are evidently energy differences which

become independent of the system size when the system is large enough. To perform such a calculation

we therefore require an error bar ∆E on the energy of the system which is independent of system size,

a feature denoted here by ∆E = O(1). There are other quantities such as cohesive energies, lattice

constants, and elastic constants, for example, in which both energy and error bar may be defined per

atom or per formula unit, in which case the error bar on the whole system is allowed to scale linearly

with system size, i.e., ∆E = O(N).
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How does the computational cost C of a QMC calculation, yielding an error ∆E = O(1), scale with

the system size, measured by the number of electrons N? The result for the standard algorithm is

C = AN3 + εN4, where ε is very small [4]. In current solid simulations N ≤ 2000, and the first term in

this expression dominates, giving an N 3 scaling for the standard algorithm: double the system size and

the cost goes up eightfold. What is the best scaling we could possibly achieve? As is well known, the

best possible scaling for conventional (non-stochastic) single-particle methods such as DFT is O(N) [54].

A considerable effort has been made over the previous decade to design DFT codes which (a) scale

linearly with system size, (b) are faster than the regular cubic scaling algorithm for reasonable system

sizes, and (c) are as accurate as codes using the regular algorithm, with the latter two problems being

the most difficult. In wave function-based QMC, these additional problems do not occur ; with the

improved scaling algorithms described here the speed benefit is immediate and there is essentially no loss

of accuracy. However, for the scaling one cannot do better than O(N 2) in general, unless the desired

quantity is expressible as an energy per atom. Why is this so? One still has the ‘near-sightedness’ in

the many-body problem which is exploited in linear scaling DFT algorithms, but the difference is the

stochastic nature of QMC. The statistical noise in the energy adds incoherently over the particles, so

the variance in the mean energy increases as N (and thus the error bar as
√
N). Since the variance is

inversely proportional to the number of statistically independent configurations in the calculation, we

see that to obtain ∆E = O(1) we must therefore evaluate the energy of O(N) configurations, each of

which costs O(N) operations. This accounts for the ‘extra’ power of N in the cost of a QMC calculation.

However, O(N2) scaling is still a vast improvement over O(N 3) scaling when N can be of the order of a

few thousand, and clearly the scaling is improved further for properties which can be expressed in terms

of energies per atom. The primary task is thus to reduce the AN 3 term to AN2. The operations which

make up this term are (1) evaluation of the orbitals in the Slater determinants, (2) evaluation of the

Jastrow factor, and (3) evaluation of Coulomb interactions between particles.

The first of these operations is by far the most costly. As in O(N)-DFT methods, the solution is to use

localized orbitals instead of the delocalized single-particle orbitals that arise naturally from standard DFT

calculations. The number of such orbitals contributing at a point in space is independent of N which

leads to the required improvement in scaling. In fact, our collaborators at Lawrence Livermore have

recently shown that this approach is extremely effective in molecular QMC calculations using maximally-

localized Wannier function orbitals in the CASINO code [15]. We are currently working in collaboration

with them to develop these methods and are testing the applicability of the method in various finite and

periodic systems. One might expect this method to be more efficient for insulators than metals because

the orbitals can be made more localized, but in practice a large efficiency gain in metals also seems to be

achievable.

For the Jastrow factor all that is required to achieve the improved scaling is that it be truncated at some

distance which is independent of system size. Because the correlations are essentially local it is natural

to truncate the Jastrow factor at the radius of the exchange-correlation hole. Of course, truncating

the Jastrow factor does not affect the final answer obtained within DMC because it leaves the nodal

surface of the wave function unchanged, although if it is truncated at too short a distance the statistical

noise increases. The scaling of the Coulomb interactions can be improved using an accurate scheme which

exploits the fact that correlation is short-ranged to replace the long-range part by its Hartree contribution

(in the style of the Modified Periodic Coulomb (MPC) interaction [23]).

For extremely large systems, the notionally εN 4 term might begin to be significant. This arises from N

updates of the matrix of cofactors of the inverse Slater matrix (required when computing the ratio of new

to old determinants after each electron move), each of which takes a time proportional to N 2, plus the

extra factor of N from the statistical noise. In CASINO this operation has been significantly streamlined

through the use of sparse matrix techniques and we have not yet found a system where it contributes

substantially to the overall CPU time.
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Method Si Ge C BN

LSDA 5.28a 4.59a 8.61a 15.07e

VMC 4.38(4)c 3.80(2)b 7.27(7)d 12.85(9)e

4.82(7)d 7.36(1)f

4.48(1)g

DMC 4.63(2)g 3.85(2)b 7.346(6)f

Exp. 4.62(8)a 3.85a 7.37a 12.9h

Table 1: Cohesive energies of tetrahedrally bonded semiconductors calculated within the LSDA,

VMC and DMC methods and compared with experimental values. The energies for Si, Ge,

and C are quoted in eV per atom while those for BN are in eV per two atoms. References :

a. Farid and Needs [55], and references therein. b. Rajagopal et al. [19], d. Fahy, Wang, and

Louie [56]. Zero-point energy corrections of 0.18 eV for C and 0.06 eV for Si have been added to

the published values for consistency with the other data in the table. e. Malatesta, Fahy, and

Bachelet [57], f. Hood et al. [39], g. Leung et al. [58], h. Estimated by Knittle et al. [59] from

experimental results on hexagonal BN.

Taken together the localization algorithms described above should speed up continuum fermion QMC

calculations significantly for large systems, but we can view it in another light - as an embedding algorithm

in which a QMC calculation could be embedded within a DFT one. The idea is to use the higher accuracy

of QMC where it is most needed, such as around a defect site or in the neighbourhood of a molecule

attached to a solid surface. Developments along the lines of those described here might allow such

QMC/DFT embedding calculations to be performed for the first time. This is quite simple in VMC

although a practical DMC embedding scheme would be more difficult.

5 Applications

Time and space preclude me from presenting a long list of applications, but here are some cohesive

energies of tetrahedrally-bonded semiconductors to be going on with.

6 The CASINO code

CASINO [1, 2] is a program package developed in Cambridge by the group of Richard Needs for performing

quantum Monte Carlo electronic structure calculations for finite and periodic systems. The philosophy

behind it involves generality, speed, portability and ease-of-use. Generality in this sense means that

one ought to be able to create a trial wave function for any system, expanded in any of a variety of

different basis sets, and use it as input to a CASINO QMC calculation. Clearly the wave functions

must be generated by an external electronic structure program, and this must in the past have been

persuaded to write out the wave function in a format that CASINO understands, either all by itself, or

through the transformation of its standard output using a separate CASINO utility. This is one of the

main reasons that producing a QMC code is somewhat labour intensive. Maintaining these interfaces as

codes evolve, and persuading their owners that this is a good idea in the first place, is a difficult and

sometimes frustrating task. It is nevertheless part of the philosophy that CASINO should support a

reasonably wide range of the most popular electronic structure codes, and at the present time this list

includes CRYSTAL95/98/03 [45], GAUSSIAN94/98/03 [44], CASTEP [60], ABINIT [61], PWSCF [62],
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ONETEP [63], TURBOMOLE [64] and JEEP.

The most important current capabilities of CASINO are as follows :

- Variational Monte Carlo (including variance minimization of wave functions).

- Diffusion Monte Carlo (branching DMC and pure DMC).

- Use of Slater-Jastrow wave functions where the Slater part may consist of multiple determinants of spin

orbitals.

- Trial wave functions expanded in plane waves or Gaussian basis sets (s, sp, p, d, f or g functions centred

on atoms or elsewhere) produced using DFT, HF, or various multideterminant methods).

- Trial wave functions expanded in various kind of spline functions generated by post-processing plane-

wave DFT solutions.

- Numerical atomic calculations with the orbitals and their derivatives interpolated from a radial grid.

- 2D/3D electron phases in fluid or crystal wave functions, with arbitrary cell shape/spin polariza-

tion/density (including excited state capability).

- 2D/3D electron-hole phases with fluid/crystal/pairing wave functions with arbitrary cell shape/spin

polarization/density (including excited state capability). Variable electron-hole mass ratio. 2D layer

separation between holes and electrons possible.

- Improved ‘linear scaling’ mode through use of Wannier orbitals and localized basis functions.

- Computation of excitation energies corresponding to either promotion or addition/subtraction of elec-

trons.

- Computation of distribution functions such as the pair correlation function and density matrices (elec-

tron and electron-hole systems only for the moment).

- Calculation of electron-electron interactions using either Ewald and/or our ‘modified periodic Coulomb

interaction’ [23] which is faster and has smaller Coulomb finite size effects.

- Written in strict compliance with the Fortran90 standard using modern software design techniques.

- Parallelized using MPI—tested in parallel on Hitachi SR2201, Cray T3E, SGI Origin 2000, SGI Altix,

IBM SP3, Fujitsu Primepower, Alpha servers and SunFire Galaxy, Linux PC clusters. Also set up for

workstation use on DEC Alphas, SGI Octane and O2, Linux PC with various compilers. MPI libraries

not required on single processor machines.

- Flexible input with full documentation and interactive help system.

It is worth sketching a brief history of the CASINO code. Its development was inspired by a Fortran77

development code (known simply as ‘the QMC code’) written in the early 1990s in Cambridge by Richard

Needs and Guna Rajagopal, assisted by many helpful discussions with Matthew Foulkes. This was later

extended by Andrew Williamson up to 1995 and then by Paul Kent and Mike Towler up to 1998. Various

different versions of this were able to treat fcc solids, single atoms and the homogeneous electron gas. By

the late 1990s it was clear that a modern general code capable of treating arbitrary systems (e.g. at least

atoms, molecules, polymers, slabs, crystals, and electron phases) was required, not only for the use of

the Cambridge QMC group, but for public distribution. At that time, a user-friendly general publically

available code did not exist, at least for periodic systems, and it was felt to be a good thing to create

one to allow other researchers to join in the fun. So beginning in 1999 a new Fortran90 code, CASINO,

was gradually developed in the group of Richard Needs largely by Mike Towler, considerably assisted

from 2002 by Neil Drummond (some routines from the old code were retained, translated and reused,

although most were gradually replaced). Various additional contributions have been made over the years

by Andrew Porter, Randy Hood, Dario Alfè, Andrew Williamson, Gavin Brown, Chris Pickard, Rene

Gaudoin, Ben Wood and others. The main aims of the new code were generality, speed, ease-of-use and
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transferability over a wide range of computational hardware. It is hoped that these objectives have been

largely attained, but the code continues to be actively developed.

6.1 Availability of CASINO

We are making CASINO available to a number of groups now. However the technology of QMC can

hardly be said to be mature, and largely for this reason it has been decided not to distribute the code

under a GNU public licence in the admirable way that, for example, the ABINIT [61] project is run.

We do not ask for any payment for academic use of the code, but we ask users to sign an agreement

concerning its use. The practical upshot of this is that users may not redistribute the code, they may not

incorporate any part of it into any other program system, nor may they modify it in any way whatsoever

without prior agreement of the Cambridge group.

The CASINO distribution comes with extensive documentation and examples but clearly it remains a

research code and learning how to use it is a significant task. This is particularly the case if the user

does not have relevant experience such as familiarity with VMC and DMC calculations and knowledge of

band structure methods for solids and DFT/molecular orbital theory. Available manpower is sufficiently

limited that we find supporting users can take a large amount of our time and so we have to limit the

number of such groups that we can work with directly. We find that most people need quite a lot of help

and the project turns into a collaboration, but of course we cannot enter into too many projects of this

type as our time is limited. We do have people visiting Cambridge to learn about the codes and how to

do calculations, and this seems to work well.

7 Discussion and conclusions

In this article I have provided a very brief review of the VMC and DMC methods, highlighted some

recent innovations, and introduced our implementation in the CASINO code. I have tried to make the

case that QMC is a useful addition to the toolbox of the computational electronic structure theorist.

That said, it’s important to be honest about the problems with QMC. If it is such a wonderful technique,

why doesn’t everyone use it? As an example of why not, see the web site of David Ceperley’s group

archive.ncsa.uiuc.edu/Science/CMP/topten/topten.html where there is a well-known page entitled

‘Top Ten List of reasons why quantum Monte Carlo is not generally used in chemistry’. The list contains

the following twelve reasons.

1. We need forces, dummy!

2. Try getting O2 to bind at the variational level.

3. How many graduate students lives have been lost optimizing wavefunctions?

4. It is hard to get 0.01 eV accuracy by throwing dice.

5. Most chemical problems have more than 50 electrons.

6. Who thought LDA or HF pseudopotentials would be any good?

7. How many spectra have you seen computed by QMC?

8. QMC is only exact for energies.

9. Multiple determinants. We can’t live with them, we can’t live without them.

10. After all, electrons are fermions.

11. Electrons move.

12. QMC isn’t included in Gaussian 90. Who programs anyway?

This apparently first appeared on the web in 1996, so it might be worth examining whether any progress

has been made in these areas in the last seven years. Here is an attempt at a commentary :
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1. We need forces, dummy!

Of course it is true that for QMC to be considered a general method, one ought to be able to calculate

forces (i.e., derivatives of the energy with respect to nuclear displacements) in order to optimize structures

or to perform dynamical simulations. In fact almost all QMC calculations up to the present time have

been done within the Born-Oppenheimer approximation. The nuclear positions are thus fixed during

the calculation and the wave function depends parametrically on the nuclear coordinates. The fixed

nuclear positions are normally taken from geometry optimizations done with alternative methods such

as DFT, on the principle that DFT is more reliable for geometries than for total energy differences.

Calculating forces using a stochastic algorithm is a difficult thing to do. A straightforward application of

the Hellmann-Feynman theorem (where the force is given by the gradient of the potential energy surface

with respect to nuclear positions) leads to estimators with a very large variance. While a convincing

general algorithm has yet to be demonstrated for QMC calculations, some progress has been made. The

literature contains a variety of interesting contributions to this problem, which may be roughly classified

into three groups :

- finite differences using correlated sampling techniques which take advantages of correlations between

statistical samples to reduce the overall statistical error, e.g. [65].

- methods which use the standard Hellmann-Feynman formula. This is not normally useful in QMC

as the Hellmann-Feynman estimator (at least with bare nuclei) has an infinite variance associated with

it. One way of getting round this is to use some renormalized expression for the force, see e.g. [66].

Furthermore, the Hellmann-Feynman expression does not give the exact derivative of the DMC energy if

the nodal surface is not exact and depends on the nuclear positions. This is due to an additional nodal

term rising from the action of the kinetic-energy operator on the discontinuity in the derivative of the

wave function at inexact nodal surfaces [67].

- direct attempts to calculate analytic derivatives, see e.g. [68].

Currently one cannot calculate accurate forces for large systems with QMC. However, some progress has

been made and one has to be reasonably optimistic that a better general method for calculating forces

will be devised in the near future. Also worth mentioning is the interesting recent attempt to design a

coupled QMC and DFT molecular dyanmics algorithm by Grossman and Mitas [69].

2. Try getting O2 to bind at the variational level.

I haven’t managed to do so either. However, one can choose not to be overly concerned with QMC

calculations done at the variational level. The binding energy of the oxygen molecule comes out very

accurately in DMC [70, 71].

3. How many graduate students lives have been lost optimizing wavefunctions?

To give a feel for the time scale involved in optimizing wave functions, I can tell you about the weekend

recently when I added the entire G2-1 set [72, 73] to the examples included with the CASINO distribution.

This is a standard set of 55 molecules with various experimentally well-characterized properties intended

for benchmarking of different quantum chemistry methods see e.g. Ref.[74]. Grossman has published

the results of DMC calculations of these molecules using pseudopotentials [70], while we are doing the

same with all-electron calculations [71]. It took a little over three days using only a few single-processor

workstations to create all 55 sets of example files from scratch including optimizing the Jastrow factors

for each molecule. While if one concentrated very hard on each individual case one might be able to pull

a little more energy out of a VMC simulation, the optimized Jastrow factors are all perfectly good enough

to be used as input to DMC simulations. I suggest that the process is sufficiently automated these days

that graduate students are better employed elsewhere; certainly we have not suffered any fatalities here

in Cambridge.

4. It is hard to get 0.01 eV accuracy by throwing dice.

With modern computers and efficient computer codes, there are a great many systems where one can get
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sufficient accuracy in a reasonable time. Obviously this becomes increasingly difficult for heavier atoms

and large systems, but as discussed previously, satisfying the electron-nuclear cusp condition accurately

in all-electron calculations or using pseudopotentials helps a lot.

5. Most chemical problems have more than 50 electrons.

QMC calculations for several thousand electrons (per simulation cell) have been published, and this

number will only increase with the new improved scaling techniques currently being introduced, and with

the increasing power of available computational hardware.

6. Who thought LDA or HF pseudopotentials would be any good?

Very accurate QMC results using LDA/HF pseudopotentials have been published. Such pseudopotentials

seem to work best for sp-bonded systems, and it is not clear that particularly good results can be obtained

in systems containing, for example, transition elements. As previously explained, we are developing an

on-line periodic table containing a new set of smooth non-divergent Dirac-Hartree-Fock pseudopotentials

expected to be particularly satisfactory for QMC calculations.

7. How many spectra have you seen computed by QMC?

Almost none. The calculation of excited state properties is a difficult problem for most other methods

; one can sometimes compute the energies of individual excited states pretty accurately with QMC, but

the calculation of complete spectra is too difficult for the moment. It is very difficult in general to treat

frequency-dependent properties.

8. QMC is only exact for energies.

The problem here is to find unbiased expectation values of operators that do not commute with the Hamil-

tonian. In standard DMC, the time evolution generates the mixed distribution f(R) = ΨT (R)Ψ0(R),

where Ψ0(R) is the best (lowest energy) wave function with the same nodes as the trial function ΨT (R).

To obtain the exact energy with respect to the distribution Ψ2
0(R) it is necessary to project by means of a

mixed estimator, which in practice just involves summing the local energies over the positions generated

in the DMC simulation:

EDMC =

∫

Ψ0(R)ĤΨT (R) dR
∫

Ψ0(R)ΨT (R) dR
≈ 1

M

M
∑

i=1

EL(Rm) (25)

If another operator Ô commutes with the Hamiltonian, then any eigenstate of Ĥ is (or may be chosen

to be) an eigenstate of Ô and the same mixed estimator can be used to work out its expectation value.

If Ô and Ĥ do not commute, then the mixed estimator does not give the ground state eigenvalue of Ô.

It is a good approximation to it however, and normally lies somewhere between the variational estimate

and the exact value.

In general, the best thing to do to improve the expectation value of an operator that does not commute

with the Hamiltonian is to improve the trial wave function. One may additionally use the extrapolation

method [75] which approximates the true estimator as a linear combination of the mixed and variational

ones, but it is not aesthetically pleasing and may not be particularly accurate in all cases. Note however

that if the operator is just a simple local function of R and not, for example, a differential operator, then

various methods can be used to obtain the ground state eigenvalue exactly. Among them are the future-

walking algorithm (clearly explained in Ref. [3]) based on estimating the ratio Ψ0

ΨT
using the asymptotic

offspring of the DMC branching term, and the related time-correlation method [76]. Both of these

methods are somewhat delicate however, and lead to signal-to-noise ratios that decay to zero at large

time. Neither are likely to prove useful for large systems. More recently introduced bilinear methods [77]

show promise but have not yet been fully developed into a practical general scheme. Probably the best

scheme for the moment is the ‘reptation QMC’ method of Baroni and Moroni [78].

9. Multiple determinants. We can’t live with them, we can’t live without them.
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As we have seen, multiple determinants are occasionally required to preserve important wave function

symmetries, but more often one sees that using a linear combination of a few determinants can give a

significantly lower DMC energy. Clearly this is because the nodal surface of this wave function is in some

sense closer to the true one than that of the single determinant trial function. This is a problem not least

because most electronic structure codes are not capable of generating optimized multiple determinant

wave functions using e.g. the multi-configuration self-consistent field (MCSCF) method. Of the eight

codes in the list supported by CASINO, only two (GAUSSIAN and TURBOMOLE) support multideter-

minant calculations, and to my knowledge there is no periodic code that does so. In an earlier section

we observed that the number of determinants likely to be required in large systems effectively rules this

out as a general solution. Orbital optimization and the backflow method are likely to prove more useful.

10. After all, electrons are fermions.

The solution to the fermion sign problem, which in this context means finding a way to bypass the fixed-

node approximation in DMC, is one of the most interesting and important problems in computational

physics. A solution to this would allow one to provide exact numerical solutions to the many-electron

Schrödinger equation for fermionic systems (such as those containing electrons). It might seem strange to

say that a stochastic or Monte Carlo method could solve such a problem exactly, since there is always a

statistical error associated with the result, but we rely on the central limit theorem to provide an estimate

of the probability that the exact results lies within a given interval. If we need to have the error to be

less than this amount, this implies that the computer time will scale proportional to one over the square

of the error.

We have seen that in DMC random walks serve to filter out the higher energy modes of some initial

distribution, so that for very large imaginary time, the probability distribution of the random walkers is

given by the ground state. The problem is that the ground state in question is actually the bosonic ground

state which has the same sign everywhere in configuration space. It is only by imposing an additional

boundary condition for the electronic Hamiltonian in the form of the fixed nodal surface that we are

able to prevent collapse to the bosonic state, and maintain the positive and negative regions which are

required for an antisymmetric wave function. The simplest methods which allow diffusing configurations

to cross nodes and change the nodal surface, such as release-node Monte Carlo [79], are very inefficient

because the ‘signal’ quickly becomes overwhelmed by the ‘noise’. Methods which overcome this problem,

such as fermion Monte Carlo [7, 8, 9] have been shown to be apparently stable for small test systems, but

suffer from scaling problems with system size. It should never be forgotten that a genuine solution to the

fermion sign problem in the context of continuum Monte Carlo methods must not only give the exact

answer, but must also scale as some low-order polynomial with system size, and work generally rather

than just for certain special cases. No proposed solution (and there are many in the literature) has all

these characteristics. Recall that in some sense we already know how to solve the Schrödinger equation

exactly for any system. One can in principle just do, for example, a full CI expansion in a complete basis

set. The only trouble is it would take forever to compute and so this is not a viable solution.

That said, the fixed-node approximation is a good one, and one can normally recover well in excess of

95% of the correlation energy from a DMC calculation. For most problems this turns out to be accurate

enough. Another approach - which is not a genuine solution to the sign problem but which might be

the best practical thing to do - would be to optimize the nodal surface in some way, e.g., by optimizing

the orbitals in the Slater part of the trial wave function (recalling that in some cases more than one

determinant might be required for symmetry purposes). This ought certainly to be feasible and work is

under way to develop an appropriate algorithm and implement such a facility in our CASINO code.

11. Electrons move.

Quite so.

12. QMC isn’t included in Gaussian 90. Who programs anyway?
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Nor in Gaussian94, ’98 or ’03. Neil Drummond and I and some of our collaborators like programming.

So, quite a lot of progress has been made in the theory and practical implementation of quantum Monte

Carlo over the last few years, but certainly many interesting problems remain to be solved. For its most

important purpose of calculating highly accurate total energies, the method works well and currently

has no serious competitors for medium-sized and large systems. The CASINO program [1, 2] has been

designed to allow researchers to explore the potential of QMC in arbitrary molecules, polymers, slabs

and crystalline solids and in various electron and electron-hole phases.
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[16] S. Manten and A. Lüchow, J. Chem. Phys. 119, 1307 (2003).

[17] E. Schrödinger, Ann. Phys. 79, 361 (1926).

[18] N.W. Ashcroft and N.D. Mermin, Solid State Physics, (Saunders, 1976), p.330.

[19] G. Rajagopal, R.J. Needs, A.J. James, S.D. Kenny, and W.M.C. Foulkes Phys. Rev. B 51, 10591

(1995).

[20] G. Rajagopal, R.J. Needs, S.D. Kenny, W.M.C. Foulkes and A.J. James Phys. Rev. Lett. 73, 1959

(1994).

188



[21] P.P. Ewald, Ann. Phys. 64, 25 (1921).

[22] M.P. Tosi, in Solid State Physics, Vol. 16, edited by H. Ehrenreich and D. Turnbull (Academic, New

York, 1964), p. 1.

[23] L.M. Fraser, W.M.C. Foulkes, G. Rajagopal, R.J. Needs, S.D. Kenny, and A.J. Williamson, Phys.

Rev. B 53, 1814 (1996) ; A.J. Williamson, G. Rajagopal, R.J. Needs, L.M. Fraser, W.M.C. Foulkes,

Y. Wang, and M.-Y. Chou, Phys. Rev. B 55, R4851 (1997).

[24] W. Kohn, Rev. Mod. Phys. 71, 1253 (1999).

[25] N.D. Drummond, First Year Ph.D. Report, University of Cambridge.

[26] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.M. Teller, and E. Teller, J. Chem. Phys. 21,

1087 (1953).

[27] R.J. Jastrow, Phys. Rev. 98, 1479 (1955).

[28] Z. Radnai, N.D. Drummond, M.D. Towler, and R.J. Needs, unpublished.

[29] S. Fahy, in Quantum Monte Carlo Methods in Physics and Chemistry, Nato Science Series C: Math-

ematical and Physical Sciences, Vol. 525, edited by M.P. Nightingale and C.J. Umrigar (Kluwer

Academic, Dordrecht, The Netherlands, 1999), p. 101.

[30] C. Filippi and S. Fahy, J. Chem. Phys. 112, 3523 (2000).

[31] P.R.C. Kent, R.J. Needs, and G. Rajagopal, Phys. Rev. B 59, 12344 (1999).

[32] J.B. Anderson, J. Chem. Phys. 63, 1499 (1975).

[33] T. Kato, Commun. Pure Appl. Math. 10, 151 (1957).

[34] D. Ceperley, J. Stat. Phys. 63, 1237 (1991).

[35] W.M.C. Foulkes, R.Q. Hood, and R.J. Needs, Phys. Rev. B 60, 4558 (1999).

[36] J.C. Grossman and L. Mitas, Phys. Rev. Lett. 74, 1323 (1995).

[37] R.P. Feynman and M. Cohen, Phys. Rev. 102, 1189 (1956).

[38] Y. Kwon, D.M. Ceperley, and R.M. Martin, Phys. Rev. B 58, 6800 (1998).

[39] R.Q. Hood, P.R.C. Kent, R.J. Needs, and P.R. Briddon Phys. Rev. Lett. 91, 076403 (2003).

[40] W. Kutzelnigg and J.D. Morgan, III, J. Phys. Chem. 96, 4484 (1992).

[41] D. Prendergast, M. Nolan, C. Filippi, S. Fahy, and J.C. Greer, J. Chem. Phys. 115, 1626 (2001).

[42] E. Hernandez, M.J. Gillan, and C.M. Goringe Phys. Rev. B 55, 13485 (1997).
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[51] S. Manten and A. Lüchow, J. Chem. Phys. 115, 5362 (2001).

[52] M.D. Towler and R.J. Needs, unpublished.

[53] M.D. Towler, A. Ma, and R.J. Needs, to be published.

[54] S. Goedecker, Rev. Mod. Phys. 71, 1085 (1999).

[55] B. Farid and R. J. Needs, Phys. Rev. B 45, 1067 (1992).

[56] S. Fahy, X.W. Wang, and S. G. Louie, Phys. Rev. B 42, 3503 (1990).

[57] A. Malatesta, S. Fahy, and G.B. Bachelet, Phys. Rev. B 56, 12201 (1997).

[58] W.-K. Leung, R.J. Needs, G. Rajagopal, S. Itoh, and S. Ihara, Phys. Rev. Lett. 83, 2351 (1999).

[59] E. Knittle, R. Wentzcovitch, R. Jeanloz, and M.L. Cohen, Nature 337, 349 (1989).

[60] M.D. Segall, P.L.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne,

J. Phys.: Cond. Mat. 14 2717 (2002).

[61] First-principles computation of material properties: the ABINIT software project, X. Gonze, J.-

M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah,

F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty, D.C. Allan. Computational Mate-

rials Science 25, 478-492 (2002).

[62] S. Baroni, A. Dal Corso, S. de Gironcoli, and P. Giannozzi, http://www.pwscf.org.

[63] C.K. Skylaris, A.A. Mostofi, P.D. Haynes, O. Diéguez, M.C. Payne, Phys. Rev. B 66, 035119 (2002)

; A.A. Mostofi, P.D. Haynes, C.K. Skylaris and M.C. Payne, J. Chem. Phys. 119, 8842 (2003).
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