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Abstract

We describe recent progress in the practical implementation of linear scaling, ab initio calcula-
tions, referring in particular to our highly parallel code CONQUEST. After reviewing the state
of the field, we present the basic ideas underlying almost all linear scaling methods, and discuss
specific practical details of the implementation. We also note the connection between linear

scaling methods and embedding techniques.
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1. Introduction

The last ten years have seen an upsurge of interest in O(N) electronic-structure methods[1]
for treating condensed matter both within tight-binding theory and within density functional
theory [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. In
these methods, the number of computer operations needed to determine the electronic ground
state is proportional to the number of atoms N in the system, instead of showing the N2 or N3
dependence characteristic of traditional methods. O(IN) methods are possible because electronic
phase coherence is localised [14, 19, 26, 27, 28, 29]. This localisation property can be expressed
by saying that the density matrix between two points, p(r,r’), decays to zero with increasing

distance between points r and r'.

Locality is the unifying theme between almost all O(N) methods, and it requires a local formula-
tion of quantum mechanics (or, at least, electronic structure theory). The density matrix p(r,r’)
mentioned above is a key quantity in this local formulation, and in terms of the Kohn-Sham

orbitals, can be written as:

p(r, rl) = Z fz"pz* (r)wi(rl), (1)

where f; are the occupation numbers. The Kohn-Sham energy can be easily rewritten in terms
of the density matrix: the Hartree and exchange-correlation energies, which are written in terms
of the charge density (n(r) = p(r,r)) do not change; the kinetic and pseudopotential energies

become:

2
Exg = —;—m/dr(vfp(r,r’))r:r' (2)

Eps = 2/dr dr'Vis(r, ') p(r, ') (3)

It can be shown that p(r,r') decreases as the separation between r and r' increase (either
exponentially, for insulators, or algebraically, for metals[27, 28, 29, 30, 31]): p(r,r') — 0 as
| r —r’ | oo. This locality implies that the amount of information scales linearly with the
size of the system; an O(NN) method can be created by making an approximation, and enforcing
locality: p(r,r’') =0,|r —r' |> R.. While the scaling of both memory and computational effort
will allow large systems to be simulated on a workstation, for very large systems containing
thousands or tens of thousands of atoms, the codes need to run efficiently on parallel computers;

this aspect is discussed later in the article.

However, the six-dimensional quantity p(r,r’) is not the ideal variable to work with, so the
assumption is made (with only the restriction that the original quantity had a finite number of

non-zero eigenvalues) that it can be written in separable form:

p(r,r') = Y ¢ia(r)Kiajsdis(r), (4)

ia,jB
where ¢;o(r) is a support function (or a localised orbital) centred on atom 4, and Kjq g is the
density matrix in the basis of the support functions. Then locality can be enforced by applying
separate cutoffs to both K,z and the set of support functions {¢;q(r)}. The minimisation of
the energy with respect to each of these quantities then drives the system towards the ground

state.
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The support functions are non-orthogonal, and forced to be confined within a localisation region,
of radius R.. They are themselves represented in terms of other basis functions (which will be
described in detail in Section 3), and it is important that they be freely varied in the search
for the electronic ground state. By increasing the cutoffs and improving the completeness of
the basis set representing the support functions, an O(N) method can be made to reproduce

traditional methods with plane wave accuracy.

The minimisation itself involves three different variables: the elements of the density matrix,
K; the support functions, ¢;,; and the charge density, n(r), which must be consistent with the
potential V(r). We have chosen to decouple these variables, fixing first the support functions
and the charge density, and minimising with respect to the density matrix, then achieving self-
consistency (while minimising with respect to the density matrix every time that the potential
changes) and finally varying the support functions. This scheme has various advantages: first, it
decouples the degrees of freedom associated with the support functions and the density matrix;
second, it allows us to treat regions of the system with fixed support functions (in an ab initio
tight binding manner) while freely varying others; third, on a practical level, it allows us to

optimise the procedures for the different minimisations independently.

The rest of the article is arranged as follows: in the next section, we describe minimisation of
the energy with respect to the density matrix, K; then we consider possible basis sets for the
support functions, and describe our choice; we then describe some practical details relating to

the implementation of our scheme and conclude the article.

2. Finding the density matrix

Within the atom-centred basis of support functions, the density matrix K;q;3 (also called the
kernel) is clearly equivalent to the density matrix in a non-orthogonal tight binding formulation.
There has been a great deal of work investigating effective O(NN) methods for finding the density
matrix in tight binding[2, 4, 5, 6, 7, 8, 9, 10, 17, 18, 21, 22, 24, 1] which gives us a strong position
to start from. However, there is an important issue, which will be addressed fully below: in the
formulation described up to this point, the basis in which the density matrix, Kjujg, is written
is non-orthogonal, while most tight binding methods have been primarily formulated with an
orthogonal basis set. We shall first describe the methods, and then address this important

question of non-orthogonality.

Tight binding techniques which have been extended to ab initio techniques fall broadly into four
categories: recursion[10]; density matrix minimisation[5, 6, 12, 24]; orbital minimisation[7, 9];
and penalty functions[23]. These have been described in some detail by Goedecker[1], so we

shall only outline the methods.

The Fermi Operator Expansion technique[10, 32, 33, 34] is a conceptually and computationally
simple way of obtaining the density matrix, at the expense of introducing a finite electronic
temperature and losing a variational principle. The Fermi matrix (a finite temperature density

matrix) can be defined as:

Fur=f () 5)
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where f(z) =1/(1 + exp(x)), the Fermi function.

Now, the Fermi function only has to cover a finite width, that is the width of the density of states
for the system in question (or the difference between the minimum and maximum eigenvalues

of the Hamiltonian). Within this range, it can be represented by a polynomial in the energy,

npl
flz) =7 C,E”, (6)
p=0
which means that the Fermi matrix F, 7 can be represented as a polynomial in the Hamiltonian,
npl R
Fur=> CpH". (7
p=0

This then gives the expression for one element of the Fermi matrix as:

DP=np;

(i | Fur | B) = > Cplia | HP | jB), (8)
p=0

Conceptually, then, the method works by fitting a polynomial to the Fermi function over the
range of the eigenvalues. Then, using the coefficients of this polynomial and moments of the
Hamiltonian, elements of the finite temperature density matrix, or the Fermi matrix, are con-
structed. To make the method O(N), the Fermi matrix can be truncated beyond a certain cutoff
radius. In practice, for stability, a Chebyshev polynomial is used[32], which leads to a recursion
relation for the coefficients:

Nipy

pur(H) = %O—I—ZCJ-T]-(H),and (9)
j=1
To(H) = I
T(H) = H
Tj1 = 2HT;(H) —Tj-.(H) (10)

Once the Fermi matrix has been truncated, the forces are not exactly equal to the derivative of
energy; there is, however, a formalism which gives a force which is the exact derivative of the
energy[33]. In some cases the error in energy due to the high electronic temperature may be
significant; a scheme is available[35] for extrapolating the T=0 energy from a high temperature

which can correct this.

Density matrix minimisation (DMM)[5, 12, 37, 36, 24] seeks to find the density matrix by
minimising the energy with respect to the density matrix elements (since Epang = 2Tr[pH]).
However, two constraints must be applied to the minimisation: (i) either constant electron
number or constant fermi energy; (ii) idempotency of p. The first is relatively easy to address;
maintaining constant fermi energy is as simple as minimising 2Tr[(p — pI)H|, with u the fermi

energy, while various schemes exist for maintaining electron number constant[38, 39].

Idempotency of p (which is equivalent to requiring that the eigenvalues of p all be either zero or
one, or that p? = p) is a much harder constraint to impose during a variational minimisation,

and instead use is made of McWeeny’s purification transformation[40]:

p=3p° —2p° (11)
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Provided that the eigenvalues of p lie between -% and %, the eigenvalues of p will lie between
zero and one. McWeeny first proposed this as an iterative procedure (so that if p, = p then
Pn+1 = p), but another technique([5] is to minimise Epang = 27 [pH| with respect to the elements
of p. If this approach is taken, then we must assume that g is also separable (as p is in eq. 4):
P = 2iajB $ia(r)LigjpP;p; then we can write K = 3L% — 2L3. Approaches to DMM are varied:
pure McWeeny iteration can be used[41] (also with a modified cubic form which preserves electron
number); pure minimisation can be used[5, 6, 38]; minimisation followed by[36] or interspersed
with[37] McWeeny purification is also pursued; finally, McWeeny purification (which is not
variational) followed by minimisation (which is variational)[24]. It can be shown[24] that the
McWeeny purification approaches a manifold of idempotent density matrices perpendicularly in
its final stages, while the minimisation yields a gradient tangential to this surface (and preserves

idempotency to first order).

Another method for finding the ground state density matrix is orbital minimisation, which was
proposed from two different routes, leading to essentially the same formalism[9, 7]. Consider a
system of N electrons, described by N/2 non-interacting states {| ¢;)}. In order to avoid an
ezplicit orthonormalisation step (which scales with N? in a localised basis set and N3 in a plane

wave basis), the following functional is defined:

E = 2T¥[QH]—n[2Tx[QS] — N] (12)
N

Q = > (I-9", (13)
n=0

where S;; = (; | ;) is the overlap matrix. The orbitals {| 4;)} are represented by a basis

{| #u)}, so that:
| i) = Cip | bu)- (14)
I

Then as the energy is minimised with respect to the coefficients Cj,, the overlap matrix will
tend to the identity. The method can be made O(N) by localising the orbitals 1;, and only

allowing contributions from ¢, within a specified volume.

The drawback with the method is that it is subject to many local minima if the minimal set of
orbitals (N/2) is used; it has been extended to more orbitals, which to some extent corrects this
problem[42].

Penalty functionals apply a similar idea, but instead seek to penalise the deviation away from

idempotency[19]. The original technique defined the following functional:
Qlpspa] = Enilp] — pNlp] + aPlp] (15)
1
Pl = (0=}, (16)

where En7 is the non-interacting energy. However, it was found[43] that the branch point intro-
duced by the square root prevented minimisation using techniques such as conjugate gradients.

Instead, a general functional was introduced|[23]:

Qlp] = Elp] + aP?[p], (17)

which allows use of minimisation techniques.

95



All of the above methods have been described using orthogonal bases, but the formalism above
relies on non-orthogonal bases. Each of the methods can be reformulated in a non-orthogonal

basis, but this raises various issues:

1. Matrix expressions become more complex (e.g. we now have K = 3LSL—2LSLSL, where

S is the overlap matrix)
2. Compound matrices (such as LSL) are longer ranged

3. When using variational methods, the inverse of the overlap, S~!, is required to correct the
gradients[44]

Some choose to work within the non-orthogonal basis, and derive an approximate S _1[34, 25],
while others convert to an orthogonal basis, using a variety of methods (incomplete inverse
Cholesky factorisation[36], Cholesky decomposition[45]). All of these approaches require an
approximation (either in the S~! or in the Cholesky factorisation), with the former having the
advantage that no basis set changes are being used, and the latter that the formalism is much

simpler and shorter ranged.

We finish by noting that the localisation inherent in O(N) schemes makes them ideal for use in
embedding[46]. By this, we mean embedding of one system within another (e.g. a point defect
into perfect bulk), not embedding of one technique within another. If the system is divided into
region I (the region of interest — e.g. the point defect and its surroundings) and region II (the
embedding matrix — e.g. the perfect bulk) then the amount of region II required is equivalent
to the range of the density matrix, and we expect the energy convergence with size of region I
to scale just as the energy convergence scales with density matrix range. This is illustrated in
Figure 1, which shows the convergence of the energy for a Ge substitutional defect in diamond

Si with radius of region I.
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Figure 1. Convergence of energy with region I radius for a Ge substitutional impurity in Si expressed
relative to result for infinite region I radius.

3. Support Functions
3.1 Representing Support Functions

As emphasised in Sec. 1, the localised orbitals ¢;q(r) have to be freely varied in the search for
the DFT ground state. This raises the technical problem common to all quantum calculations
— the representation of the orbitals, i.e. basis sets. A peculiar feature of the basis sets needed in
the scheme we have outlined is that the orbitals to be represented vanish outside the localisation
region, and the basis functions clearly need to have the same property. Before discussing the ap-
proaches that have been taken to this, it is useful to consider briefly the conflicting requirements

that basis functions have to satisfy.

First, they should ideally be well adapted to the function to be represented, which means that
only a few basis functions should be needed to represent the orbitals. Second, the representation
should be systematically improvable; this means not just that the basis set must be complete,
but that the convergence should be rapid as the size of the basis set is increased. As a rider to
this, the computational effort should not increase too fast as one increases the number of basis
functions, and ideally no faster than linearly. Third, the operations to be done with the basis
functions should be mathematically simple, so that the number of computer operations is small.
Fourth, since some parts of a total-enegy calculation have to be done on spatial grid, which
generally causes problems like breaking of translational symmetry, the basis must be designed
so that as little as possible has to be done on the grid.

Several types of basis sets have been used or proposed for linear-scaling DFT calculations.
When CONQUEST was first written, the support functions were represented as numerical values
on a grid. A grid basis set gives a natural way of representing orbitals that vanish outside
specified regions. Nevertheless, it is the ultimate in maladaption, and needs fine grids and
large amounts of memory in order to achieve good precision. The kinetic energy is particularly
troublesome. In more conventional DFT/pseudopotential schemes based on grid basis sets,
high-order finite-difference methods are used to give an accurate representation of the Laplacian
operator. Because of this, grid basis sets were replaced in CONQUEST by a scheme akin to finite

elements.

This finite-element scheme represents the ¢;,(r) in terms of piecewise continuous polynomials,
using a technique sometimes referred to as B-splines. Full details of the scheme, with demon-
strations of its effectiveness, are presented in a published report[47], so here we give only a brief
summary. In one dimension, the B-spline basis consists of localised functions 6,(z), centred on
the points of a grid, s, with spacing a. The basis functions are all images of each other, displaced
by an integer number of grid spacings, so that 65(z) = 0y(z — X;). The basis function 0y(x)

vanishes identically outside the range —2a < = < 2a. Inside this range, it is put together out of

97



cubic polynomials:

1-322 42z if 0<|z|<a
Oo(z) = (2 —|z))? if a<|z|<2a (18)
0 if 2a < |z|

and has the property that it and its first two derivatives are continuous everywhere. In fact, the
only discontinuities are in the third derivative at the points |z| = 0, a and 2a. The representation

of a continuous function

F(@) = Y bb4(a) (19)

can be made arbitrarily precise by systematically reducing the grid spacing a. This is exactly
analogous to increasing the plane-wave cut-off Gpax when taking a plane-wave calculations to

convergence.

In practice, of course, we work in three dimensions, and the three-dimensional B-splines O¢(r)

are defined as Cartesian products:
@(r - Rs) = 0(1' - Xs)o(y - Ys)e(z - Zs) ) (20)

where (X, Ys, Zs) are the Cartesian components of R, and the support functions are represented

as:

Pia = Zbiasgs(r) . (21)

In the current scheme, the blip-grid on which the ©4(r) are sited is defined separately for each
atom, and moves with that atom. To enforce the vanishing of ¢;,(r) outside the support region,
we include in eqn (21) only those O4(r) that are non-zero only for points within the region.
The reason for making the blip-grid move with the atom is that this ensures that each ¢;,(r) is

represented always in terms of the same set of basis functions.

Blip functions therefore give us a scheme that is closely related to plane waves, but at the same
time respects the strict localisation of the support functions. It also shares another feature with
plane waves, and that is that as the blip spacing is decreased, the computational effort grows
linearly only with the number of blip functions. This is because the number of blip functions

that are non-zero at each point in space does not increase as a decreases.

But this is certainly not the only spatially localised basis set that is closely related to plane
waves. An alternative is the spherical-wave basis proposed by Haynes and Payne[48]. Spherical
waves are the energy eigenfunctions of a particle confined to a spherical box, where the radius
of the box is the support region radius R.e;. The properties of this basis set have been explored
in detail in Ref. [48, 49], where tests on molecules (Hy, HCl, Cly, SiHy) and bulk silicon show

reasonable convergence properties relative to plane wave results.

This scheme has the nice feature that a total-energy calculation can be converged in exactly
the same way as a plane-wave calculation, by systematically increasing the plane-wave cut-off
wavevector Gmax. However, it has serious objection, which may make it difficult to use in
practical calculations. This is that as the size of the basis set is increased, the computational
effort grows as the square of the number of basis functions. This is because the number of basis

functions that are non-zero at any point in space is proportional to the total number of basis
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functions, so that matrix elements ($;o|O|¢;3) of any operator O for any two atoms i and j
grows very rapidly. Since we know in advance that at least 100 spherical waves will be needed
per atom, the number of operations needed to calculate each such matrix element is likely to be

at least 104, and this may make the calculations too slow.

Finally, we mention the pseudo-atomic basis sets used in SIESTA[50]. The basic philosophy is
similar to that originally developed by Sankey and Niklewski [51]. The basis functions are the
atomic orbitals obtained from a self-consistent DFT calculation on the free atom, except that,
in order to ensure that the funcitons vanish identically outside the region radius, the free-atom
calculation is done in the presence of a confining potential. In the original Sankey-Niklewski
scheme, the confining potential is simply an infinite potential beyond the radius Riez. This
makes the localised orbitals go to zero linearly as r — Ryeq, so that there is a discontinuity in
the first derivative, which may well exacerbate the breaking of translational symmetry in the
parts of the calculation done on a spatial grid. This gives a motivation for making the confining
potential go to infinity more continuously as r — Ryeg, and this freedom is being exploited in the
latest SIESTA basis sets[52]. In addition, in order to obtain satisfactory precision, it is essential
to go beyond minimal basis sets, and to include at least two basis functions for each angular

momentum (so-called ‘double-zeta’ basis sets), and to include also polarisation functions.

The different approaches to the problem of basis sets taken with linear-scaling DF'T schemes thus
reflect the tension between the four criteria outlined at the start of this Section, and particularly
the tension between good adaptation of the basis set to the form of the orbitals, and resulting
economy in memory use, on the one hand, and systematic improvability onthe other hand. As
in more conventional DFT methods, there cannot be a ‘best’ approach to basis sets, since the
physical problem being addressed and the resources available will place different weights on the
criteria. Our view is therefore that there is great merit in a flexible approach, in which different
types of basis set are employed for different problems, or at different stages of a given problem.
We also believe it may be possible to combine different schemes, for example pseudo-atomic
orbitals and B-splines, in the same way as mixed basis sets have long been used in conventional
DFT /pseudopotential calculations.

3.2 Blip Operations

As described above, the support functions are represented in a basis of blip functions (or B-
splines), defined on a grid that moves with each atom. We need to to perform integrals involving
the support functions to generate matrix elements (such as Sjqjs = [ drésa(r)$;s(r)). For the
overlap matrix and the kinetic energy part of the Hamiltonian, the integration can be performed

analytically in terms of the b, coeflicients. For example, S, js can be expressed as:

Siajs = D _ biambjpnSimjn » (22)
m,n
where:
Sim,jn = /dI‘ G)im('ajn ’ (23)

However, some parts of the Hamiltonian matrix cannot be calculated analytically, and inte-
gration must be approximated by summation on a grid. This ‘integration grid’ is completely

distinct from the blip grid, and is a single fixed grid covering the whole simulation cell. For a
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uniform cubic grid of spacing hint, a matrix element such S;, jg would be approximated as:
Sia,jg = OWint Z ¢ia(r£)¢jb’(r£) ) (24)
£

where dwint = hf’nt is the volume per grid point, and r; is the position of the £th grid point. As
shown elsewhere [20], hin; should generally be about half of hpjp.

Analytic evaluation, if possible, is preferable, but the double summation required (see eq. 22)
brings a computational cost. Our strategy is to evaluate analytically the on-site (i = j) matrix
elements of overlap and kinetic energy, and to use grid summation for all others. The thinking
here is that the on-site terms are large, so that accuracy is important; but there are few of them,

so that the cost of analytic evaluation is small.

The transformation from the coefficients b;os to the values of ¢;s(r;), where r; is a grid point, is
called a blip-to-grid transform[47, 21] — using the separable form of blips shown above in eq. 20,
this is extremely similar in concept to an FFT, and can be evaluated extremely efficiently. The
integration can be performed efficiently by creating small blocks of integration grid points, and
making partial contributions to matrix elements between all atoms touching the block with a

single BLAS call, as discussed below.

4. Practical Details

In this section, we address the practical implementation of CONQUEST on massively parallel
machines, as well as some of the practical problems which we have encountered in the course of
writing CONQUEST, related both to efficiency on parallel computers and to robustness[21, 25, 53].

4.1 Implementation

The division of workload between processors is an important part of all parallel codes — indeed,
load balancing is a large subject in its own right. Nominally, the computational effort and

storage requirements of CONQUEST are divided up as follows:

1. Every processor has responsibility for a group of atoms (storing the blip coefficients for

each atom and transforming their values onto the integration grid) — the primary set.

2. Every processor has responsibility for rows of matrices of these atoms (storing values and
performing multiplications for these rows).

3. Every processor has responsibility for an area of the integration grid (storing data on this

area and performing integrations) — the domain.

Practically, the assignment of groups of atoms and areas of the integration grid will have a large
effect on the efficiency of the code — typically, we want the groups of atoms and grid points to
be compact and local and we want the two groups to overlap as much as possible (to restrict
communication). Below, we describe a key technique in achieving flexibility in load balancing

as well as efficiency in computation — small groups.
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4.2 The Use of Small Groups

In CONQUEST, there are two key areas of effort: matrix multiplication, and grid operations
(integration, blip-to-grid transforms etc). In both of these areas, there are two natural levels
of organisation: individual (e.g. grid point or matrix element); and global (all atoms or grid
points). We have found that it is vital for efficiency to create an intermediate level of organisation
— small groups of the entities (we call a small group of atoms a partition and a small group of

integration grid points a block).

To understand the use of small groups, let us take an example of matrix multiplication, where

we perform:

Cij = Y _ AirBy;. (25)
%

Here, each processor is responsible for calculating all elements C;; for atoms 4 for which it is
responsible — its primary set. It already has the values A;; stored locally, but will have to
fetch the values By; for the atoms k outside its primary set. Following the two natural levels
mentioned above, there are two extremes we can consider for fetching the elements By; (and
hence interleaving communication and calculation): individually (fetch a single element, compute
the partial contribution to Cjj, repeat — fine interleaving); and globally (fetch all elements By,
which will be required, then do all computations — coarse interleaving). The first of these will be
overly expensive in communications (all communication involves a latency or start-up cost, so
that a significant gain is made by transferring long messages) while the second will potentially
be expensive in memory. Somewhere between these two extremes there will be a good balance

between memory required on-processor, and the latency of short communications.

Partitions of atoms (and hence matrix elements) are extremely useful as they simplify the task
of finding the compromise between the two extremes given above. For example, if a processor
is responsible for several partitions, then transferring the Bj; according to the partitions will
split up the calculation in a natural way; this will be explored more in the next section, and has
been extensively discussed in a recent paper[53]. Another area where these groups are helpful
is in integration: we use the highly optimised BLAS routines on all integration grid points in a

block to yield extremely efficient integration routines; this is touched on later.

4.3 Matrix Multiplication

Recently, we have studied the efficiency of sparse matrix multiplication on highly parallel
machines[53]. Each processor takes responsibility for several partitions of atoms, formed into
its primary set. For a given matrix multiplication, we form a halo consisting of all atoms (or
partitions) within range of any primary set atom, and loop over these atoms during the mul-
tiplication. It is also helpful to form a covering set: a super set of different matrix haloes.
This simplifies searches and indexing for various different matrix multiplications. We have also
identified a multiplication kernel: a piece of code that is repeatedly called, and which can be
optimised on different machines. We have achieved 10% of peak speed on a Cray T3E, which is

respectable given the pattern of matrices.

We illustrate the practical performance of the CONQUEST code in Figure 2. Here we show the

time taken for various aspects of the calculation for increasing system sizes on a Cray T3E-
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1200. As the technique is variational, the time to self-consistency will improve after the slow,
initial search. We see that for fixed number of atoms per processor, the time taken is almost

constant, showing that the matrix multiplication (which forms the bulk of the workload for these

calculations) scales extremely well in parallel.
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Figure 2. Time taken for CONQUEST calculations for a single density matrix minimisation (left axis,
bottom three lines) and for a complete search for self-consistency, starting from scratch, fixed support

functions.

4.4 Integration and Grid Operations

In the light of the recent developments with matrix multiplication, we have been considering the
efficiency of blip-to-grid transforms and the indexing associated with this and with integration.
Let us first consider what kind of operations this requires. The matrix elements made from
support functions, projector functions, or their derivatives such as Siq i3 = (dial®ig), Pia,jp =
(dialx;jp), and (Via|V;s), are calculated by a summation over integration grid points. For

example, S, jg is calculated by

Sia,js = Wint »_ Pia(ri)djs(ri) (26)

r;
Here, wipt is the volume per grid point and r; is integration grid which is common to the support
region of ¢ and that of j. The above summation for a given set of indices (i,&) and (j,8) can be
regarded as a matrix multiplication, where r; serves as the column index of the left matrix and
as the row index of the right matrix. As explained in Ref. [21], we use a BLAS-3 routine dgemm
to do these matrix multiplications and we have introduced the term ‘blocks’ for the effective use

of this routine. A block is an assembly of integration grid points and the above summation is
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divided into the summation of partial contributions from all blocks and the calculation of the
partial contribution by dgemm for each block. As we will see later again, we refer to an atom
whose support region contains at least one integration grid point in a block b as a neighbour
atom of a block b for support functions. For these calculations, we must have the list of the pairs
of atoms (%,7) for each block b, both of which are neighbour atoms of the block. In practice, a
block is a cuboid? containing n, x Ny X 1, points and its size should be determined by comparing
the gain in the speed of dgemm by increasing the size of matrices and the loss by unnecessary

operations from zero values in ¢, (7).

To perform the integration, we also must know the values of support or projector functions on
integration grid. For support functions, we have to calculate the values from a set of coefficients

{bias}, where s is the index of blip grid.
bia(T1) = Y biasO(r — Ris). (27)
S

Here, R;; is the position of blip grid and we call this type of operations blip-grid transforms.
Blip-grid transforms are performed only for r; in the blocks which include one or more integration
grid points in the support region the atom :. We refer to these blocks as neighbour blocks of

the atom 1.

In short, we need to consider the optimal way of performing the following tasks:

1. Making lists and tables to perform blip-grid transforms and the calculation of matrix
elements: making lists of neighbour atoms of blocks; making lists of neighbour blocks of

atoms; and so on.
2. Blip-grid transform

3. Calculation of matrix elements

It should be noted that the matrices calculated in this way are used to calculate other matrices,
LSL, LSLSL, SLSLH and so on.

In the new method, we use the same data structure shown in the previous sections. In the method
for performing matrix multiplications, each node has a set of small groups called partitions, and
each partition has its members, i.e. atoms. Obviously, we can regard a block as a small group of

integration grid points. Each processor is responsible for a set of blocks which we call domain.

Table 1. How small groups are made up for different members.

members small groups | primary sets
atoms partitions bundles
integration grid points blocks domains

Each processor has one domain and one bundle. Hereafter, we refer to a node which performs

operations with respect to atoms as a bundle-responsible node, and the node doing operations

3This is not necessary in principle, and non-orthorhombic cells and hence blocks will be addressed in the future
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regarding integration grid as a domain-responsible node. In performing the above three tasks,
we have a lot of communications between bundle-responsible nodes and domain-responsible
nodes. In blip-grid transforms, for example, bundle-responsible nodes first calculate ¢, (7;) for
integration grid points r; in the support region of the atoms 7, because bundle-responsible nodes
have a set of blip coefficients {bjon}. Then, they must send these values to domain-responsible
nodes which have integration grid r;. In the calculation of matrix elements, each domain-
responsible node accumulates the partial contributions to matrix elements from all blocks in
the domain, and these contributions are sent to bundle-responsible nodes, which accumulate the
contributions sent from their halo nodes to make their matrix elements. How to organise these

communications is the key point for performing the operations in this section, efficiently.

In searching neighbour atoms of blocks or neighbour blocks of atoms, and in the way of labelling,
we can completely follow the scheme used in matrix multiplications. For each block b in the
primary set, there are atoms 7 in the system whose distance from b is less than the cutoff radius
of support functions or projector functions. We refer to these atoms as neighbour atoms of b.
The atoms 7 which are neighbours of at least one block in a domain form a set which we call halo
atoms of the domain. The set of partitions containing at least one halo atoms are refered to as
halo partitions, and the set of nodes having at least one halo partitions as halo nodes. Further,
we can define a covering set made of partitions as the one which includes all neighbour atoms
of one or more blocks in a domain. We call this a domain covering set (DCS) of partitions.
Following this way of naming, a grand covering set used in matrix multiplications can be refered
to as a bundle covering set (BCS) of partitions. Similary, as we need a list of neighbour blocks
of atoms in a primary set, we define the terms, such as neighbour blocks of the atom i, halo
blocks of a bundle, and a BCS of blocks. Even in increasing the size of a simulation cell, if we
increase the number of processors and keep the form of each domain, the number of members in
covering sets is obviously constant. Thus, with the covering sets, the cost of searching neighbour
atoms or blocks is proportional to N, not to N2. This advantage of the new code is important

for the calculations on very large systems.

5. Future Prospects

In many ways, linear-scaling DFT is now established as a viable technique. Within the CON-
QUEST project, we have shown how practical linear-scaling performance can be achieved on
systems of many thousands of atoms. Most of the practical problems presented by the search
for the self-consistent ground state for such large systems are now solved, or are close to being
solved. The practical challenges of implementing the algorithms on large parallel computers,
including PC clusters, have also been addressed in detail. However, one issue that is not yet
solved to our satisfaction is that of the basis sets for representing support functions, and this is

the main reason why CONQUEST has not yet been applied to major scientific problems.

But the ideas embodied in CONQUEST can be seen as part of a larger current of thought that

is being followed by many condensed-matter groups - a move away from extended orbitals
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and extended basis sets and towards a formulation in terms of localized orbitals and localized
basis sets. The key issue of how to make effective localized basis sets, which is so crucial to
CONQUEST, was explored in depth in the very recent CECAM workshop on ’Localized orbitals
and linear-scaling calculations’, which was part-funded by Psi-k. A clear message from this
workshop was that the new atomic-like basis functions being developed by several groups can
often compete very effectively with plane waves, while demanding far less memory and often far
fewer cpu cycles. By contrast, CONQUEST is currently based on finite-element methods that are
deliberately related to the plane-wave approach. The exciting recent progress with atomic-like
basis sets is already making an important impact in the SIESTA[52] and PLATO[54] codes and
in other codes, and will undoubtedly be important for the future of CONQUEST and for linear-
scaling DFT in general. We have high hopes that the SIESTA-CONQUEST collaboration, now in

its early stages, will accelerate progress in this area.

Finally, we want to emphasize the very broad importance of linear-scaling ideas. One reason
for this importance is the close relation between linear scaling and the ’embedding’ problem,
i.e. the problem of performing quantum calculations on a limited region which is ’embedded’
in a much larger surrounding region. Since embedding also demands a localized formulation of
quantum mechanics, and can be seen as the problem of embedding the density matrix in one
region into that of a surrounding region, it is pretty well guaranteed that progress in linear
scaling can be exploited for the embedding problem. Another completely different reason for
the broad importance of linear scaling is its implications for quantum Monte Carlo. It is already
clear that many of the current linear-scaling ideas can be directly transferred to improve the
system-size scaling of QMC. By the same token, we expect that the long-standing problem of
QMC embedding will also be helped forward by some of the new ideas. The future looks exciting!
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