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Introduction

In recent years a great deal of effort has been focused on developing the so called “fully uncon-
strained” approach to noncollinear magnetism. This approach allows the magnetisation density
within a material to be calculated as a continuous vector variable of position as opposed to us-
ing the atomic moment approximation (AMA) where a fixed quantisation direction is assumed
for a volume filling sphere surrounding each atomic site i.e. the constrained approach. The
motivation for a fully unconstrained approach is to allow the magnetisation density to be cor-
rectly treated in the interstitial regions between atomic sites. While many materials have well
localised magnetisation densities for which the AMA is valid, others (including the spin spiral
ground-states of rare earths, topologically frustrated systems such as triangular monolayers and
Kagomé lattices, spin-glasses, materials containing domain walls and/or at finite temperatures)
may exhibit a de-localised magnetisation density which is more appropriately treated with a

fully unconstrained approach.

Oda et al. [1] were the first to implement such an approach within a plane-wave pseudopoten-
tial scheme. Both the atomic and magnetic structure were allowed to relax simultaneously and
self-consistently. Their method was applied only to small Fe clusters, which have less symmetry
constraints than the bulk thus making them good candidates for noncollinear magnetic arrange-
ments. Ivanov and Antropov [2] developed a wavelet technique for calculating the electronic and
noncollinear magnetic structures in the framework of spin-density functional theory again with-
out imposing shape restrictions to the magnetisation density. Their preliminary report studied

the spin-structures of Hz and Crs clusters.

In parallel with our efforts here in Vienna, Nordstrém and Singh [3], Asada et al. [4] and

Kurz et al. [5] have concentrated on developing the method within the full-potential linearised
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augmented plane-wave (FLAPW) formalism. The approach of Nordstrém and Singh [3] is fully
unconstrained in the sense discussed above while that of Asada et al. [4] and Kurz et al.
[5] is adapted to suit the film geometry for surfaces and open structures. This adaptation
imposes a constraint. The magnetisation density is treated as a continuous vector field in the
interstitial region and in vacuum, while inside each muffin-tin sphere they allow only a fixed
spin-quantitation axes. Since in the FLAPW the muffin-tin spheres are significantly smaller

than the volume filling atomic spheres this extra constraint is probably a reasonable one.

Our objective has been to implement a fully unconstrained approach within the projector aug-
mented wave (PAW) method. The PAW approach [6, 7] is an all-electron method for electronic-
structure, total-energy and force calculations which is closely related to the ultrasoft-pseudo-
potential technique [8, 9]. In the PAW approach, charge- and spin-densities are decomposed
into pseudo- and compensation densities accounting for the difference between the pseudo- and
all-electron densities (see Fig. 1). The pseudo-densities consist of a smooth part expressed
in a plane-wave representation and localised compensation charges accounting for the viola-
tion of norm-conservation [8, 9]. To account for differences between pseudo- and all-electron
densities radial support grids are used. For each of the atom-centred radial support-grids the
spin-quantisation axis is fixed - in this respect our approach resembles the unconstrained non-
collinear FLAPW technique used by Asada et al. [4] and Kurz et al. [5], but unlike to the
FLAPW method, in the PAW approach the plane-wave description is not restricted to the in-
terstitial region, but extends over the complete volume of the system. Hence variations of the
magnetisation direction are allowed also within the augmentation spheres. Our method allows
both the atomic and magnetic structures to relax simultaneously and selfconsistently. The al-
gorithms have been implemented within the Vienna ab-initio simulation package (VASP [10]).
Below we present only a brief summary of the noncollinear PAW formalism, for a detailed dis-
cussion we refer the reader to Hobbs et al. [11]. Our results for small metallic clusters derive
from Ref. [11] while the results for Cr and Mn on Cu(111) substrates are detailed in Ref. [12].
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Figure 1: Illustration of the PAW approach. The AE charge density is constructed by modifying the total soft
pseudo charge density by replacing the onsite pseudo-charge density with the onsite AE charge density. The same
concept holds for wavefunctions, total energy and the Hamiltonian.

LSDF theory for noncollinear PAW

A generalisation of von Barth and Hedin’s [13] local-spin-density-functional (LSDF) theory to

noncollinear magnetism was first proposed by Kiibler et al. [14, 15] within the framework of the
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augmented-spherical-wave (ASW) method and the atomic-sphere-approximation. The effective
single-particle equations for noncollinear magnets were derived by allowing the spin-quantisation
axis to vary from site to site in crystalline systems. The orientation of the axis with respect
to the reference frame is a property of the ground-state. They predicted well defined sets of
directions for the spins, which are uncoupled from the crystal lattice unless spin-orbit coupling
effects are included in the Hamiltonian (even though such effects are small in comparison to the

spin-spin interactions).

Following Kiibler et al. [14, 15], spin-polarised density functional theory is expressed in terms
of a 2 x 2 density matrix with elements n®?(r), where o and f refer to the spin indices. The

electron density is then

Tr [no‘ﬁ(r)] = nn(r Znaa (1)
The total density matrix may then be defined as
P (r) = (n1e(r)dag + 7i(r) - 77) /2. (2)

In addition, for the density matrix, we can make a transformation to the equivalent magnetisation
density using the following formula [16]:

r) =) n(r)- 3, (3)
ap

where & = (04,0y,0,) are the Pauli spin matrices. The exact Kohn-Sham density functional

becomes (we use atomic units, b = m = e? = 1)

B o= 33 ful ] - AN + Bl + ) + Bucln®] ()

a

Epg[nt+nz] is the electrostatic energy of the electronic charge density nyy and the point charge

densities of the nuclei nz and is defined by

Eulg] 2//8Or—r’| drdr’, (5)

where p = nqy +nyz. Egz[n®?] is the electronic exchange-correlation energy and f,, are orbital
occupation numbers. The exchange-correlation energy is not known in general, but only for a
spin-polarised homogeneous electron gas with charge density nT, and magnetisation density 7.

In the local-spin-density approximation E,.[n®?] is defined by:

Enln®] = [ nn@erdn® @)ldr = [ nas(meselnn (o), () . (6)

The exchange-correlation functional leads to the nonmagnetic scalar exchange-correlation po-
tential, vz, and to the magnetic exchange-correlation field b [n“ﬂ] (r). The potential b [naﬂ] (r)
is parallel to the magnetisation density 7i(r) everywhere. The actual functional form of €,. can

be parameterised in several ways (see Hobbs et al. [11]).

In the PAW method, the AE wavefunction ¥ is derived from the pseudo-wavefunction \TJ% by

means of a linear transformation [6]:

[o5) = |T3) +Z i) — 1)) (Bs | ). (7)
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The pseudo-wavefunctions \i‘g are the variational quantities. The index ¢ is a shorthand for
the atomic site R, the angular momentum quantum numbers L = [,m and an additional in-
dex k referring to the reference energy e;. For noncollinear magnetism we define the pseudo-
wavefunctions to consist of 2N eigenspinors, where N is the total number of eigenvalues. In our

implementation, the pseudo-wavefunctions are expanded in reciprocal space into plane waves

r|lIl°‘ — _an zkr (8)

where ), is the volume of the Wigner-Seitz cell. The AE partial waves ¢; are obtained for a
nonmagnetic reference atom, the pseudo-partial waves <]~5z are equivalent to the AE partial waves

outside a core radius r, and match continuously onto ¢; inside the core radius. The core radius

r! is usually chosen approximately around half the nearest neighbour distance. The projector

functions p; are dual to the partial waves:

(Bil i) = i - (9)
Starting from Eq. (7) it is possible to show that in the PAW method, the AE total density
matrix is given by (for details we refer to Ref. [6]):

n®(r) = 2% (r) + 'n*(r) — ' (r), (10)

where 71 is the soft pseudo-density matrix calculated directly from the pseudo-wavefunctions on
a plane-wave grid (see Eq. (9) above and Eq. (15) of Ref. [6]) :

% (x an (0 le) (7). (11)

1

The on-site density matrices 'n and 7 are treated on a radial support grid that extends up to

Trad around each ion. They are defined as (Eq. (16) and (17) of Ref. [6]):

' (r Zp {r#5), (12)

1708 (r) = 37 o (ilr) (x| ). (13)
(4:.4)
af

pi; are the occupancies of each augmentation-channel (i,7) and they are calculated from the

pseudo-wavefunctions applying the projector functions:
= X (B2 (341 ) (14)

For a complete set of projectors the charge density !7 is exactly the same as 7i within the
augmentation spheres. In the PAW approach, the pseudo-wavefunctions \i/% fulfil the following

generalised orthogonality condition:

D (TRISTR) = i, (15)

a

where the overlap operator is defined by:
S*PUR}Y] = bap (1 +> \ﬁi)%‘j(ﬁﬂ) ; (16)
i
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and ¢;; is given by:

gij = ($il$;) — (Bild;) (17)
The pseudo-wavefunctions are obtained by solving the generalised Kohn-Sham equations

3" H|IE) = ¢,5°0|09). (18)
B

Forces are usually defined as the total derivative of the energy with respect to the ionic positions

dE
dR

In the PAW method (as in the US-PP method), complications arise from the fact that the

augmentation spheres and compensation densities are allowed to move with the ions, which gives

F = (19)

rise to additional terms (similar to Pulay forces) in comparison with standard plane-wave codes.
These correction terms are described in detail by Kresse and Joubert [7], the generalisation to

noncollinear magnetisation densities is straightforward.

Applications: Small metallic clusters

Small clusters of Fe, (n < 5) have been studied extensively in the past and represent ideal
systems for testing our implementation of noncollinear magnetism. As fcc Fe is known to have
a spin-spiral ground-state, noncollinear magnetism is suggested to be important in Fe clusters,
primarily as they have less symmetry constraints than bulk materials. The magnetic ground
state of body-centred cubic chromium is a spin-density-wave state described as a long-period
modulation (~ 20 interatomic distances) of a simple type-I antiferromagnetic structure [17],

with a modest magnetic moment of M¢; ~ 0.6 up. However, there is evidence that in a case of

Figure 2: A three dimensional view of the magnetisation density surrounding Crs atoms. The iso-surface plots
indicate that the magnetisation density is spherically symmetric at all large density values. Only in the 'Bloch
wall’ region does the direction of magnetisation change, the magnetic vectors rotate in the 'Bloch wall’ but also
tend to zero in this region.
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reduced coordination (e.g. at a surface) the Cr moment is strongly enhanced - M¢y ~ 2.5 upg has
been reported [18, 19] for a Cr(100) surface. With this in mind we have investigated the likely
ground-state configurations of small Cr,, (n < 5) clusters. We expect large magnetic moments
and strong antiferromagnetic nearest neighbour coupling. In the triangular like configurations

this will inevitably lead to frustration and hence possibly to noncollinear states.

Tetrahedral Crs is rather interesting in terms of noncollinear arrangements of the magnetic
moments. We found three solutions, a metastable FM one with small bulk-like moments, a
noncollinear metastable state, which is the 3D generalisation of the 120° arrangements found in
frustrated antiferromagnetic 2D lattices with the magnetisation directions on the neighbouring
atoms forming a tetrahedral angle of ~ 109.5°, and an AFM ground-state. In both the AFM
and noncollinear states large magnetic moments are predicted. The AFM ground-state is ~
160 meV/atom (GGA) lower in energy than the noncollinear configuration. The structure is
distorted unlike the FM and noncollinear cases with very large distances of 2.97 A between
ferromagnetically coupled atoms and slightly shorter bonds in AFM pairs. The noncollinear
solution has a bond-length of 2.58 A in GGA which is intermediate between the long bonds
in the AFM and the short bonds in the FM configurations. In the noncollinear case the total
atomic magnetic moment is ~ 4.02 pyg/atom in the GGA and is symmetric on all sites. Fig. 2
shows a plot of the magnetisation density for this solution. The magnetisation density varies
smoothly with position and is localised symmetrically around the atomic sites as depicted in
Fig. 2.

R

Figure 3: A three dimensional view of the magnetisation density surrounding Fes atoms. The iso-surface plots

indicate that the magnetisation density is spherically symmetric at all large density values on the apical atoms
only, but is slightly ’squashed’ at the central atomic sites. Only in the ’Bloch wall’ region does the direction of

magnetisation change, the magnetic vectors rotate in the 'Bloch wall’ but also tend to zero in this region.

A case of particular interest in the work of Oda et al. [1] is the Fes bipyramidal structure
in which they found the roughly FM ground-state to contain tilted magnetic moments on the
apical atoms of the bipyramid. Intuitively such solutions seem to be unphysical as they break

the normal collinear symmetry and one would expect the total energy to be higher.
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For the Fes bipyramidal cluster our calculations have been able to stabilise a noncollinear solution
some ~ 14 meV/atom below the collinear results. In the noncollinear ground-state as well as in
the metastable collinear ferromagnetic state, the bond-lengths in the central triangle are slightly
longer than between the central and the apical atoms. This somewhat squashed but otherwise
undistorted structure agrees with the results of Oda et al. [1], but disagrees with the work
of Castro and Salahub [20]. The tilt angle of the magnetic moment is ~31.3° in GGA, to be
compared to ~29.7° in the LDA calculation of Oda et al. How such frustration might arise is
not immediately clear. Certainly, the coupling between the apical atoms must play a crucial role
in establishing the frustration. As the moments on the apical atoms tilt in opposite directions,
it appears that the exchange interactions between the apical atoms is antiferromagnetic and
hence acts against the ferromagnetic nearest neighbour coupling between apical and central
atoms. Hence a rotation of the apical moments relative to those in the central triangle allows the
magnetic energy to be optimised. A detailed analysis of the exchange coupling would be valuable
to obtain better understanding of the conditions responsible for the frustration. Finally, Fig. 3
shows the magnetisation density surrounding the atomic sites. The figure illustrates, firstly, that
the magnetisation density varies smoothly with position, secondly, that the spin-direction only
changes at the 'Bloch wall’ between atoms where the charge- and spin-densities are small and
thirdly that the magnetisation density is roughly uniform in the magnetic region of the atoms.
However, one can just see that for the central atoms the magnetisation density deviates from

being spherically symmetric and exhibits a somewhat ’squashed’ appearance.

Applications: Cr and Mn overlayers on the Cu(111) substrate

@)

Figure 4: (a) Noncollinear magnetic structure of triangular layers corresponding to the frustrated XY-models
with nearest-neighbour interactions. The relative directions of the magnetic moments (neglecting spin-orbit
coupling) are indicated by the arrows. + and — signs indicate the helicities assigned to the elementary triangles
(cf. text). The primitive (v/3 x v/3) unit cell is indicated by the thin lines. (b) Row-wise antiferromagnetic
structure of triangular layers. Arrows indicate the relative directions of the magnetic moments, the thin lines
show the ¢(2 x 2) unit cell.

One of the simplest examples of a frustrated two-dimensional spin system, where no perfectly
collinear magnetic arrangement can be accommodated, is the antiferromagnetic planar (XY)

model with nearest-neighbour interactions on a triangular lattice. Antiferromagnetic interactions
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are a source of magnetic frustration on the triangular lattice. The ground states of such systems
tend to consist of spins ordered on three interpenetrating sublattices with lattice vectors of
length v/3a while spins on different sublattices are orientated +120° to each other (see Fig.
4). Wannier [21] proved that by considering the ground state energy of any single elementary
triangle and minimising the energy with respect to two of the spin angles one obtains ground

states for the triangle in which the spins form +120°.

Freestanding triangular Cr and Mn monolayers

Fig. 5 summarises our results for the magnetic moments and total energies of the three possible
magnetic configurations as a function of the nearest-neighbour bond-length. In both Cr and Mn
monolayers, a ferromagnetic high-spin phase with a magnetic moment of nearly 4 up is stable
only at expanded interatomic distances. In Cr monolayers the magnetic moment breaks down
rather suddenly at a bond-length of about 2.57 A, the ferromagnetic minimum being about 280
meV higher in energy than the non-magnetic minimum. In Mn monolayers we find a transition
from a ferromagnetic high-spin phase at bond-lengths larger than 2.47 A to a ferromagnetic
low-spin phase at closer interatomic distances. The low-spin phase (M < 1.5 up) looses its

magnetic moment only at strongly reduced bond-lengths.
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Figure 5: Total energy and magnetic moments of the ferromagnetic p(1 x 1), the antiferromagnetic c¢(2 x 2), and
the noncollinear (v/3 x v/3) phases of freestanding triangular Cr and Mn monolayers as a function of the nearest
neighbour bond-length. The vertical lines mark the lateral interatomic distance of a Cu(111) substrate.

The row-wise antiferromagnetic ¢(2 x 2) Cr monolayer has an equilibrium bond-length of 2.70 A
at a magnetic moment of 3.75 pyp. Under compression the magnetic moment is strongly re-
duced, it disappears at a bond-length of 2.31 A corresponding roughly to the bond-length of the
nonmagnetic phase. The noncollinear 120° phase represents the magnetic ground state, the equi-

librium bond-length is about 2.65 A, at these distances, the magnetic moment is slightly smaller
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than in the antiferromagnetic phase. Under compression, the noncollinear magnetic moments
are gradually reduced. They disappear at distances somewhat smaller than the equilibrium

distances in the nonmagnetic phase.

In Mn monolayers the relative stability of the antiferromagnetic and noncollinear phase is re-
versed (see Fig 5), the equilibrium bond-lengths and magnetic moments being almost the same
in both phases. Under compression the magnetic energy difference is quickly reduced, at bond-
lengths smaller than about 2.35 A, both phases are energetically almost degenerate. The anti-
ferromagnetic ground-state in Mn is somewhat surprising, to investigate this point further we

now consider triangular Cr and Mn overlayers on Cu(111).

Triangular Cr and Mn overlayers on Cu(111)

For overlayers adsorbed on Cu(111) substrates the same three magnetic configurations have
been considered. For comparison, the vertical lines in Fig. 5 show the lateral lattice constant of
the Cu(111) substrate. We find that triangular Mn-layers show an almost ideal epitaxial match
to the substrate, whereas adsorbed Cr-layers undergo a small compressive strain. In both the
antiferromagnetic and the noncollinear phases, the magnetic moments are reduced compared to
the freestanding monolayer. The important point is that for Mn/Cu(111) the antiferromagnetic

phase remains energetically favoured.

Figure 6: Vector field of the magnetisation density for the noncollinear phase of Cr on Cu(111). The relative
direction of the magnetisation density (neglecting spin-orbit coupling) is indicated by the arrows, the length of
each arrow is proportional to the absolute value of the local magnetisation density.

The different behaviour of triangular layers of Cr and Mn is clearly related to the rather long-
range nature of the exchange interactions in the Mn layers, as already pointed out by Spisdk
and Hafner [22]. In the noncollinear phase, first and third neighbours carry magnetic mo-
ments with a relative 120° orientation, but second neighbour-moments are ferromagnetically

aligned (see Fig. 4). In the row-wise antiferromagnetic structure out of six nearest and next-
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nearest-neighbour atoms four are aligned antiferromagnetically and two ferromagnetically in
each shell. All six sites in the third-neighbour shell show ferromagnetic alignment. If the
exchange-interaction is antiferromagnetic for the first two shells and ferromagnetic for the third

shell, the frustration may be weaker in the collinear phase.

Fig. 6 shows the magnetisation density calculated for the noncollinear phase of Cr on Cu(111).
The local direction of the magnetic moment is indicated by the arrows, the length of the arrows
being proportional to the absolute value of the magnetisation density. In addition, around each
site iso-surfaces of the magnetisation densities are drawn. At a first look one tends to conclude
that the magnetisation densities are fairly well localised and as the iso-surfaces are also almost
spherical at reasonably large values, the conclusion that the AMA is a reasonable choice in this
system seems to be appropriate. However, the regions around the atoms in which the direction
of magnetisation is approximately constant are distinctly smaller than the muffin-tin spheres
of the FLAPW method or the overlapping atomic spheres of the LMTO approach. Interesting
new aspects of this study are seen precisely in the bonding and interstitial regions where the

direction of the magnetisation changes.
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Figure 7: Enlarged view of an outward spiral-vortex and an anti-vortex. Cf. text.

In Figs. 7 and 8 we recognise characteristic patterns in the vector field of the magnetisation
density: Inside the elementary triangles to which a positive helicity has been assigned, the vector
field forms a vortex which may be a clockwise or a counterclockwise spiral or show a circular
pattern, inside the triangles with negative helicity we find anti-vortex patterns related to each
other by 120° rotations. Detailed views of the three types of vortices are show in Figs. 7 and 8.
Spiral vortices are formed inside the triangles where the direction of the magnetisation is aligned
(for the given alignment of the magnetisation directions with respect to the crystal lattice) along
the bond directions, pointing either away from or into the triangle. In both cases the direction of
magnetisation in the bond centres is perpendicular to the bonds, in the former case the vectors
point out of the triangle and an outward spiral is formed, in the latter case the vectors point
towards the centre of the triangle such that an inward spiral is formed. A circular vortex is
formed within those triangles where the magnetisation at the lattice sites is perpendicular to
one of the edges of the triangle. In the bond centres, the magnetisation is in this case aligned
along the bond directions. An example for an anti-vortex structure realized in triangles with
negative helicity is shown on the right side of Fig. 7. In this case the direction of magnetisation

is perpendicular to two of the bonds (pointing either out of or into the triangle) and parallel
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to the third bond. To the three different types of vortices correspond anti-vortex structures

Figure 8: Enlarged view of a circular vortex and an inward spiral-vortex. Cf. text.

description of the magnetisation density within the FLAPW approach used by Asada et al. [4]
and Kurz et al. [5] and the present PAW description. In the FLAPW-approach, the direction
of magnetisation changes discontinuously at the muffin tin sphere boundaries. In the PAW
description, the direction of magnetisation changes continuously and is (for the present choice of
the global alignment) at these points either parallel or perpendicular to the bond, depending on
its local environment. It is also interesting to point out that the bond-centres form a Kagomé
lattice dual to the triangular lattice of the atoms. The six triangles surrounding a hexagon of
the Kagomé lattice contain an alternating anti-vortex or vortex, the existence of three different
types leading to further symmetry breaking analogous to the positive and negative helicities.

This point certainly deserves further investigation.

Expected Impact

The approach described above has clearly been developed with the intention of studying problems
in which magnetisation density is not well localised on atomic sites, in addition to more conven-
tional cases. Examples of such weak localisation, for which the atomic moment approximation
is more questionable, occur in materials such as disordered magnetic intermetallic compounds,
amorphous alloys and structures with antiferromagnetically coupled atoms on sublattices neces-
sarily leading to frustration (e.g. triangular layers and Kagomé lattices). As advancing computer
technology allows us to explore more complex atomic structures such an approach will hopefully

prove invaluable.
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