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There are many situations where one would like to do electronic structure calculations but which
are too large for ab initio treatment. Usually these contain some special central region which
one is interested in, but the coupling to the remainder is too strong for one to neglect it entirely.
A common approach has been ”embedding” where one solves properly for the inner special part
of the system, but with some sophisticated treatment of the boundary to represent more or less

accurately the influence of the outer remaining part of the system.

The present article reports on two advances in this field. The first advance is a new theorem
to achieve embedding. It replaces the outer region by a non-local separable potential (mathe-
matically rather like a pseudopotential) around the boundary, which has been derived from a
Hartree-Fock or Density Functional Theory calculation of the electronic structure in the outer
region. The mathematics of the theorem is given in the appendix. Possible applications might
include large biological molecules such as chlorophyl where one has an active centre around the
Mg atom surrounded by a very large region that for some purposes may be rather inactive. The
molecule is too large for a calculation on the whole molecule, but a calculation on the central
part is sufficient provided one represents adequately the influence on it of the outer part of the

molecule, all in the context of density functional theory or Hartree-Fock.

The theorem was discovered in the course of marrying Density Functional Theory (DFT) cal-

culations in the outer region, with Configurational Interaction (CI) calculations in the central
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region. This is the second advance reported here, and really occupies the whole paper, so
that the theorem is described in that context. It was only later realised that other important

applications of the theorem may lie elsewhere.

Hence the main purpose of this article is to introduce a new method for electronic structure
calculations on systems that could not really be treated before. We have in mind a composite
system such as a transition metal impurity in silicon or in an oxide host, where one small part
has an "open shell” electronic structure at which it is necessary to take some configurations into
account beyond the usual DFT approach. We want to be able to calculate the term splitting
(in the sense of atomic energy levels) and other forms of excited states. Other examples of
such composite systems might be defects with vacancies in a covalent material where the cut
off dangling bonds may have some ”open shell” character, and in biology a molecule such as

haemoglobin containing the open shell Fe atom.

So far the only application (beside some simple tests) has been to one and two Ag atoms in solid
P20s5, a material used in dosimetry of ionizing radiation. At present only the ground state has
been considered, but it has been shown that two silver atoms have a tendency to coalesce into an
Ags molecule in the oxide. The method was developed by the group in St.Petersburg including
Vladimir Bulatov and Ilia Tupitsyn with the help of Rex Godby, Mike Payne and others in
Cambridge and the use of the CASTEP code for the DFT part of calculations. The open shell
part of the calculations has been carried out by the Multi-Configurations Self-Consistent-Field
(MCSCF) method using the code from the Swedish group of Prof.B.Roos, which has been well
used and tested on atoms and molecules including those of open shell character. Both the DFT
and MCSCEF calculations are of course fully ab initio in the usual sense with Helmann-Feynman

forces on the atomic nuclei.

The problem of course is how to marry DFT and MCSCF calculations because they represent
such very different approaches. This is accomplished using two tricks, as we will describe below,
the second of which is highly non-trivial and depends on a new theorem which may well have
applications in other types of matching calculations. But first a few remarks about the MCSCF
calculations are in order since they have not featured much in the Psi-k Newsletter. In an
electronic structure calculation on, say, a single Fe atom, one wants to take two types of effects
into account involving the mixing of several (or many) determinants in the wave function. The
first is the energy splitting between different ”terms” °F and 3P etc (in the nomenclature of
atomic energy levels) within the same 3d"4s configuration. Even in the lowest Hartree-Fock
approximation, the wave function is not a single determinant (as is sometimes alleged) but for
an atom is a linear combination of several determinants all from the same 3d”4s configuration,
with Clebsh-Gordon coefficients to make the whole an eigenfunction of L? and S? operators with
appropriate L(L+1) and S(S+1) eigenvalues. The ideas are extended to molecules and small
clusters using S? and appropriate spatial symmetry. The second effect to be demonstrated by
mixing in more determinants is electron correlations. For an atom this would mean determinants
from a higher configuration constructed from a suitable basis set of local orbitals. For a cluster

with low symmetry the two effects are mixed together.

In conclusion, therefore, the MCSC method uses an expansion in determinants for the wave

function, where each determinant is constructed out of localized orbitals (usually atomic-type
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orbitals) chosen to give good convergence for term splittings and correlation, based on experience
in quantum chemical calculations. The Achilles heel of the MCSCF method is, of course, that
the number of determinants grows exponentially with the size of the system which makes it

impossible for solid applications by itself.

We now turn to the two tricks needed to marry the MCSCF and DFT methods. The first trick
is illustrated in Fig.1, where space is divided into three regions, with the region I containing the
”open shell” part of the system and regions II and III amenable to DFT calculations. In the
case of Fe as a substitutional impurity in Si, region I would be the Fe atom, region II the four
Si neighbours plus the twelve other bonds that they make to further neighbours, while III is the
rest of the Si in the supercell (Fig.2). The MCSCF calculations are carried out in the whole of
regions [4+11I, while the DFT calculations comprise regions II4II1. The overlap region II treated
by both methods will serve to match the two types of calculation. From DFT calculations of
regions IT4+IIT an influence of III onto II is extracted which will serve as an embedding potential
for MCSCF calculations of regions I+II. Similarly, from MCSCF calculations of the regions I4+I1
the influence of I onto II is extracted to be used as an embedding potential for DF'T calculations
for regions IT+I11.

@ II | II1

Figure 1: The three regions.

The method is not confined to impurities or defects in a bulk solid. For example regions II
and III may be a solid with a surface in the usual ”slab” representation, while region I is an
adatom on the surface. For hamoeglobin region I would be the Fe atom, region II its close

neighbourhood, and region III the distant part of the molecule.

We turn now to the second trick, which is the crucial one, with the new theorem and wider

application.

It concerns what we do at the outer surface of region II when doing the cluster calculations on
I+11, to represent the fact that there is the region IIT outside the boundary. Let us introduce
the issue like this: when people have wanted to do an electronic structure calculation related
to something in bulk amorphous Si, they have sometime used a finite cluster and terminated
the dangling bonds of the outermost Si atoms with hydrogen atoms. It was found that the
covalent bond between an outer Si atom and its H atom is rather similar to that between two
Si atoms. Thus from the point of view of the outer Si atom, the H does a fairly good job of
replacing the bulk amorphous Si that has been chopped off to make the finite cluster. The new

theorem enables us to construct a non-local separable hermitian potential operator Vs'ep to do
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Fe Si(B) Si(C)

Figure 2: An Fe impurity atom in a Si host crystal.

the job exactly. The V/

sep 18 @ hydrogen-like potential in the sense that it carries one electron,

not four, and hence terminates the cluster. But Vj,, is also silicon-like in that its filled ” valence”
eigenstate is a silicon directed sp hybrid type valence orbital, whose bond to an outer Si atom
of the region II is exactly the same as that from a proper Si atom. At the same time the empty

”conduction band” states of Si are preserved in V.

The precise definition of region II for our system when calculating on region I+1I is therefore as
shown by Fig.3. It includes the inward pointing hybrid and terminating potential VY,  of Si(B).

sep

But in calculating region IT+IIT the Si(B) atom is a full Si pseudopotential (Fig.2). Similarly
the Fe atom could be represented by a constructed terminating potential in the LDA calculation
on system IT+III but in this case it would be easiest and best just to use an Fe DFT potential,

at least for a ground state calculation.

The theorem in its simplest form runs like this. Suppose we have the Hamiltonian

1
Hy = —§v2+v, (1)

where V is an ordinary potential, and this Hy has eigenvalues €, and eigenfunctions 1,

Hopn, = €nthn. ()

We can now construct

H = Hy+ Vsep (3)

such that its eigenvalues and eigenstates are as follows
Hy!, = eptl, n>1
Hyp =E¢
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Figure 3: A pseudo-Si directed valence orbital modelling the influence of region III.

where E and ¢ are given. From (1) and (3), the desired Vj,, is

VZep =V + V9€P (5)

the lowest eigenstate is the desired ¢ with desired E, and all the higher eigenvalues €,(n > 1)
are preserved. The theorem shows that Ve, has the form

3
Viep = D 1fi) Ui (/] (6)
2,j=1
where
fi=¢, fo=11, and f3 = Hoo, (7)

and where the U;; involve E, €1, and various scalar products of f;. The precise form of the Uj;

and the proof of the theorem are given in the mathematical appendix.

The use of the theorem in our example is not completely straightforward. The ¢ is our desired
sp? type hybrid directed valence orbital, pointing towards an outer Si atom of region II. But we
do not know a priori what ¢ is, nor its appropriate E. What we can get from a DFT calculation
on pure Si is a set of identical bonding orbitals ¢; centered at each bond j in the crystal. The
set of all ¢p; span the same functional space as the set of Bloch functions of the the valence
bands 1y and ¢p; is constructed as linear combinations of 1;. The ¢p; can be chosen to be as
localized as possible, or to have maximum bond order. The ¢; are not mutually orthogonal
(unlike the Wannier functions) but one can define matrix elements between them and an energy
E from which the valence band structure can be generated again. The ¢, can be thought of
as the sum of two hybridised sp3-like orbitals on the two atoms, but there is no unique way of
splitting up ¢, in that way. Therefore the theorem is applied to the pair of atoms and a pair
of Vyep are produced which together give E and ¢ exactly. The calculations proceed iteratively
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from approximate atomic V’s in (1) which have been tuned to give some quantity such as the
correct lowest excited states of Si or the bottom of the conduction band of bulk Si and this is

of course conserved by the operation of the theorem.

As already remarked, the method in its simplest form has been applied to Ag atoms in P2O5
including their movement to coalesce into Agy dimers. Both the 3d'° and 3d%4s configurations

had large amplitudes in the ground state and were particularly involved in the dimer formation.

Finally, the group in St.Petersburg WOULD WELCOME COLLABORATORS to apply and
develop the method further. Please contact Prof Igor Abarenkov at e-mail: aiv@iva.usr.pu.ru .

Mathematical appendix

We now define the V., and prove the theorem by constructing the required H of equations (3)
and (4). It is convenient to change the notation slightly and to refer to all the eigenvalues and

eigenstates of H by ¢ and ¢’ and we have €], = ¢, for n > 1. Thus the Vp of (6) now has

fi =41, fo=11, and f3 = Hoyy. (8)

We start by considering the unitary transformation U

U=1-2P (9)

where P is the projector operator
P =algy +91) (1 + ¢
a =1/[2(1+ (1f1))]

with the properties

Pt =P, and P?!=P (11)

from which the unitary property UU' = I follows readily. Here we employed the fact that by
adjusting the phase factors of 1; and/or 9] the scalar product (11 |¥]) can always be made real.
We also have

(HoP)" = PHo = alfi + fa) {e1fo + 3 (12)

We now construct the set of 4], by the unitary transformation U operating on the set of 1)y,:

o) = Ultpn)- (13)

We can now write down the H that has the required eigenstates and eigenvalues

H =) [$n)en (Wnl = D [n) en (vl + 191) (€ —e1) (4]

= UHU™T + |4}) () —e1) (W]

84



where we have written €/, = €, + (€], — €,) and used the fact that €/, = €, except for n = 1.
From(10) and (14) we now have

Viep = [UH U™ — Hol + [41) (€ —e1) (1], (15)

and it remains to simplify the term in square brackets which will turn out to have the required
form (6), (8) as the last term of (15) already does. We have from (9), (11)

UHU™' — Hy = —2PHy — 2H,P + 4PH,P (16)

where from (12) PHy already has the required form (6), and so does HyP = (PHy)". Finally
for (16), (15) we need

PHOP = a®|sh1 + 1) (1 + o1 [Holpr + 1) (b1 + 1], (17)

where the inner matrix element has the value

(1 + Yilerpr + Hoyt) = (f2 + filerfz + f3), (18)
which we denote by b. Thus

PHoP = a®b(|f1) (fil + |f1) (fo] + |f2) (fi] + |f2) (fo]) (19)

and collecting everything from (15) to (19) gives Vi, in the required form (6) with (8), where
all the U;; coefficients (not to be confused with the operator U in (9)) depend on scalar products
of the f; which are all calculable.
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