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Introduction

Non-collinear magnetism in general and incommensurate spin-density waves in particular are
complex magnetic structures which exist in a variety of systems. They often occur for topologi-
cally frustrated antiferromagnets (e.g. antiferromagnets on a triangular lattice) or materials with
competing exchange interactions as for example in the lanthanides. Non-collinear magnetism
occurs in spin-glass systems, in domain walls, and is natural for spin fluctuations at finite tem-
perature. The magnetic properties of complex magnets are commonly described within the

framework of model Hamiltonians, the simplest of which is the classical Heisenberg model.

In the last years we witnessed a multitude of investigations of non-collinear magnetism in the
context of first-principles theory. For instance several ab initio calculations have been presented
for fcc Fe [1, 2, 3, 4], where solutions of both the spiral spin-density wave and complex non-
collinear magnetic structures have been found. Non-collinear magnetic ground states have also
been found for more complicated systems such as MnSns [5], ThMny [6], UsP4, UsPdaSn [7],
YFeio_;Mo, [8], disordered systems [8, 9, 10, 11], multilayers [12, 13] and molecular magnets [14].
Recently, interesting steps have been undertaken to describe the spin-dynamics in itinerant
magnets [4, 15]. After the thorough discussion of density functional theory for a non-collinear
magnet was completed in [5], these calculations established the density functional theory as a
powerful tool to investigate these systems. For a general review see Psi-k Newsletter 14 [16] or
the paper by Sandratskii [17].

Common to all of these calculations, which have been carried out using a variety of methods,
such as the Korringa-Kohn-Rostoker (KKR) method [1, 18], the Augmented Spherical Wave
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(ASW) method [19, 20, 5] or the Linear Muffin Tin Orbital (LMTO) [2, 21] method, is the use
of the atomic sphere approximation. That means the space is divided into spheres centered
around each atom, wherein there is only one local spin-quantization axis and the corresponding
magnetization axis is spherically averaged, m(r) =~ m(r)éns. This is consistent with the intuitive
picture that each atom carries a magnetic moment and these moments (and their directions)
differ between the atoms. Such methods are very suitable to describe the inter-atomic non-

collinearity of close-packed systems.

There are, however, problems which call to go beyond the atomic sphere-type of approximation.
One of those problems is the investigation of the intra-atomic non-collinear magnetism. This
has been pioneered by Nordstrom et al. [22, 23]. Using the full-potential linearized augmented
plane wave method (FLAPW), which is free of any shape approximation of the charge- and
magnetization density as well as of the potential, the intra-atomic non-collinearity was described
taking the full continuous vector spin-density m(r) into account as it was originally formulated
by von Barth and Hedin [24]. It was shown for J-Pu that due to the interplay of spin-orbit

interaction and exchange interaction intra-atomic non-collinearity exists even for ferromagnets.

The frontier field of nanomagnetism creates a second class of interesting problems. In this case
we deal with non-collinear magnetism in fairly open structures for which the atomic sphere
approximation is known to be less suitable and often provides results with insufficient accuracy.
Typical problems are exchange-bias systems [25], technologically important for the magnetic
recording industry and the magneto-electronics [26], made out of ferromagnetic films adjacent
to antiferromagnetic ones. Recently, we have made an effort to explore this subject using the
FLAPW-method, but any other full-potential method capable to deal with magnetism would
be equally suitable. In order to deal with non-collinear magnetism of these systems, the Jiilich
group has extended the film and bulk FLAPW-program FLEUR [27] along several directions [28]:
(i) to deal with magnetic moments oriented along arbitrary and prescribed directions &%, for each
atom a, (ii) to deal with the incommensurate spin-spiral state, (iii) and to relax the direction

of the magnetic moment self-consistently.

In the following we shortly discuss the implementation of the vector spin-density formalism into
the FLAPW-program and go briefly through items (i) and (iii). (ii) the implementation of the
spin-spiral states has been nicely discussed in the paper of Andersson et al. [29] and is not
further mentioned here. At the end we discuss one application, the magnetic spin-structure or

an antiferromagnetic monolayer on a triangular lattice: Cr/Ag(111) and Mn/Ag(111).

Implementation of continuous vector spin-density formulation

Non-collinear magnetism has been implemented into two FLAPW codes choosing alternative
strategies: Nordstrom et al. [22] work with more physical quantities, the density n(r) and
the magnetization density m(r), and with a spin-independent LAPW basis-set but extended
by spin-dependent local orbitals. The implementation of the Jilich group is based on the
spin-density matrices and on the standard LAPW basis-set using spin-dependent radial wave
functions ug, () and their energy derivative Ouy,(r)/OE. The biggest difference, however, arises

from the motivation that Jiilich group is predominantly interested in the non-collinear magnetism
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of 3d transition metals at surfaces and in open structures. These are elements with weak intra-
atomic non-collinearity. Typically m(r) is well localized inside the atomic sphere, where m(r)
is essentially parallel to the average of the spin-density of the sphere except in regions close to
the sphere boundary where m(r) is already small. Since in the FLAPW-method the muffin-tin
spheres are used which are significantly smaller than volume filling atomic spheres and since
the choice of the sphere radii is flexible to a certain degree, but definitely smaller than half the
nearest-neighbor distance, we work with a hybrid method: The magnetization is treated as a
continuous vector field in the interstitial region and in the vacuum, while inside each muffin-tin

sphere we only allow for one direction of magnetization

m(r) Interstitial and Vacuum
m(r) = . (1)
m“(r)é§; muffin-tin sphere o
The notation here applies to the FLAPW in the film geometry [30], where the space is partitioned
into a film of finite thickness, consisting of an interstitial region and muffin-tin spheres «, and two
semi-indefinite vacuum regions on both sides of the film. The continuous vector-field description
in the interstitial region describes to a large extent the intra-atomic magnetism of 3d-metals.

This “hybrid” approach is illustrated schematically in Fig. 1.

AN T2

[/

Figure 1: Schematic illustration of the representation of the non-collinear magnetization density within
the present approach. The magnetization is treated as a continuous vector field in the interstitial region
and in the vacuum. Within each muffin-tin the magnetization has a fixed direction (thick arrows) and can
only vary in magnitude. For a better illustration the muffin-tin spheres have been chosen much smaller
than in actual calculations.

For chemical elements with a large spin-orbit interaction or off-diagonal intra-atomic Coulomb
interaction, one should extend the method to the full vector-field treatment of the magnetization
density everywhere in space. To achieve this, it would be necessary to calculate the components

of the magnetization that are not parallel to the local quantization axis in the sphere of an atom
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and to include the corresponding components of the B-field into the Hamiltonian.

The FLAPW method for collinear calculation uses two sets of radial basis functions inside the
muffin-tins for the spin directions. For each spin direction they are set-up using the spherical
part of the corresponding potential, V;(r) or V| (r), and energy parameter, Ej or Ej. It is still
possible to work with V;(r) and V| (r) in the non-collinear case, since we restrict the magnetiza-
tion to the local quantization axis. Therefore, a local spin space coordinate frame is introduced
with the z-axis parallel to the local quantization axis. V4 and V| are now spin-up and -down with
respect to the local axis. Since both, the potential and the basis functions, are set up in terms
of the local spin coordinate frame the determination of the basis functions and calculation of
the integrals of these functions with the Hamiltonian inside the muffin-tin spheres is completely
unchanged. The changes come in, when the basis functions inside the muffin-tins are matched to
the plane waves in the interstitial region, because the local spin coordinate frame S¢ is rotated

with respect to the global frame S9.

The FLAPW method uses augmented plane waves as basis functions. Therefore, each basis
function can be uniquely identified by its wave vector G and the spin direction. The basis

functions in the interstitial region are:
i(k+G
ekt )’xg, (2)

X7 is a two component spinor. The index g has been added to notify that x¥ is the representation
of this spinor in the global spin frame. This representation is used for both collinear and non-
collinear calculations. However in the collinear case, the potential matrix V, and thus the
Hamiltonian is block-diagonal in the space spanned by the two spin directions. Therefore, the
Hamiltonian can be set-up and solved separately for each of the two spin directions (blocks).
In the non-collinear case, V has off-diagonal parts which are not zero anymore. Hence, the full
Hamiltonian for both spin directions are set-up and solved in a single step. In the vacuum region
we also use the global spin frame for the representation of the basis functions. Only inside the
muffin-tin spheres the basis set is changed, because we use a local spin-coordinate frame, which
is rotated with respect to the global frame. The consequence is that, when the functions in
the sphere are matched to the plane waves at the boundary of the muffin-tin spheres, each spin
direction in the interstitial region is matched to both, the spin-up and -down basis functions, in

the sphere. Thus, the basis set has the following form:

( UGHE)r x4 Int.
45 () 4 (K BG (k) a8 (k iG+kr) 59 Vi
G o(k,T) = 4 o (k) uo (K, 2) +B5 (k) o " (kyj, 2) | e Xo ac.
Z Z [AaG (k) a(u) ( BaG k - () Ys (£ MT
Loor@ (&) Uypuia) (1) +BLogue (K) tyguia) (1) | YL(E) Xgute «
\ g'ﬂ'(a) L

(3)
where k is the Bloch vector, G is a reciprocal lattice vector, L abbreviates the quantum numbers
[ and m, w; is the regular solution of the radial Schrodinger equation, and ; denotes the energy
derivative of w;. The A- and B-coefficients are determined from the requirement, that the
wavefunctions and their derivative have to be continuous at the sphere boundary. The sum in

the muffin-tin spheres is over the local spin directions.

After the generalized eigenvalue problem including the full Hamiltonian and overlap matrix
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for both spin directions is solved, we obtain the eigenstates of the non-collinear system. The

eigenstates are given in terms of the basis functions (3).
Z Z cu 0’ <pG;U k I') (4)

Now the density matrix in the (2x2) spin-space
1
p=5(nly+o-m) (5)

is given by a very simple relation in terms of the solutions of the eigenfunctions

N
Pap = Y Vi athup- (6)

v=1

The potential matrix is defined the same way

V=V IL+o-B. (7)

Due to the non-collinear magnetism the Hamiltonian has twice the dimension as for the collinear
case, the matrix is hermitian, the unit cells become large, the symmetry can become fairly low
and often different magnetic states have very similar energies, which requires a large amount of
k-points to energetically resolve such magnetic states. Thus the calculations can become rather
demanding and the computer codes are parallelized with respect to the number of k-points and

eigenstates v.

Constraint local moments

In general [except for some high symmetry magnetic states e.g. the ferromagnetic state or a
particular class of spin-spiral states|, an arbitrary magnetic configuration prescribed by a set
of magnetization directions {&$,} are not extrema to the total energy functional E[n(r), m(r)].
To ensure that the local moments have no components M{ normal to the directions €%,, &%,
we work with the constrained DFT [31] in which the total energy for a set of prescribed direc-
tions E({€%,}) is solved, subject to the orientational constraint of the magnetic moments, that

(m®)xéq, is zero for all atoms,
E({&$;}) = min { E[n(r) ZB" “)xéf - (8)

The Lagrange multipliers B are transverse constraining fields in the direction €. They are
obtained self-consistently, simultaneously with the densities. At the end of such a calculation we
obtain the self-consistent densities and a set of local constraining B-fields {B¢ } that make the
integrated magnetization (m;"-), perpendicular to the local spin quantization axes €¢,, vanish in

each muffin-tin sphere.

The effective B-field, Bgy;, that enters the muffin-tin part of the Hamiltonian is given by

BE}(r) = Be, (n(r),m)(r)) & + BT &% = Be,(r) &fy + BT &% = BY(r) é3(x).  (9)
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In order to calculate the exchange correlation B-field, BS, (r), after the magnetization density is
calculated from the wave functions, the magnetization density is projected onto the prescribed
local quantization axis €%, and we obtain mﬁ‘(r) Since the exchange correlation B-field is cal-
culated from the projected magnetization density, it is collinear. However, when a constraining
field is added, the resulting effective B-field, B¢, f(r), is again a continuous non-collinear vector

field in the muffin-tin spheres, with pointwise local directions é%(r),
Br(r) &) + B &¢

((Be.(x))? + (B9)2)

eép(r) = ; (10)

N[

different from the local quantization axis &%;. Stocks et al. [15] noticed this problem and ap-
proximated B} by an r-dependent functional form B} = ¢® BS,(r), where ¢* replaces BY
as the parameter to be determined. This approximation simplifies é%(r) to é}(r) =~ &% =
(&%, + c*&%)//1+ (c*)2, and Bgs(r) = V1 + (c®)2 B,.(r) €% becomes again collinear within
each sphere. The constraining B-fields, B}, that enter are often rather small and the approxi-
mation suggested by Stocks might be a very good one, although we have not further investigated
that. On the other hand due to the introduction of the r-dependence in the constraining fields,
the approximation makes the constraining fields inconsistent with the defining equation, Eq. 8.
Therefore, we introduce a collinear effective B-field, Bg;,(r) = Bg;;(r)(é%) in the sphere, by
approximating &%(r) by its average direction over the muffin-tin sphere (€%), which is inde-
pendent of r. (8%) = (&%, + c*&%)//1+ (c*)? is defined by replacing the exchange correlation
B-field By(r) in Eq. 10 by its average over the muffin-tin sphere, (By.), and ¢® is now defined
as the ratio ¢* = B¢ /(Bgc). For this choice of direction for the effective B-field, the average
effective B-field perpendicular to (&%), (&%) 1, is zero, (B ;) = 0.

Summarizing we can write

1 ) : ) 1 . .
T (ca)Q(Bﬁc(r) +c*BY)(e})  with  (&f) = ————== (&, +"&%). (11)

Bey(r) = 1+ (c@)2

Thus in constrained local moment calculations one works with two slightly different local spin
coordinate frames. One of them is given by the direction &%, to which the local moment is
constrained to, and the other is defined by the average direction (é%) of the effective B-field.
After the eigenvalue problem has been solved, the solutions are represented within the spin
coordinate frame defined by (&%), since the Hamiltonian has been setup within that coordinate
frame. Hence, when the density matrix is constructed, it is also given with respect to that frame.
In order to obtain the density matrix in the spin frame defined by €%;, it needs to be rotated.
To achieve this we first apply the spin-rotation matrix that rotates the density matrix from the
coordinate frame (€%) to the global spin frame, and then we rotate it again from the global

frame to the frame given by €%;.

Relaxation of the orientation of magnetic moments

In the previous section we have explained how a calculation can be performed where the local
magnetic moments are constrained to a set of prescribed directions &%,. In this section we will

show, how the magnetic configuration given by the €3, can be relaxed to find a (local) minimum
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of the total energy E{é%,}. In such a calculation we also apply the approximation of a collinear
magnetization density inside each muffin-tin sphere, m(r) = m®(r)é%,, only the directions &%,
(and consequently m®(r)) are relaxed. In order to relax the magnetic configuration it is necessary

to calculate the total (integrated) perpendicular output magnetization:

(0 ) = [ m? () ' (12)

This quantity is easier to calculate than the perpendicular magnetization density mﬁ‘_y out(T)s
since only the spherical part, miout(T), of the perpendicular magnetization density is needed
to calculate the integrated quantity. The integrated parallel magnetic moment is calculated just
as in a collinear calculation,

<mﬁ’0Ut> = Maé%f = /MT mﬁ,out(r) dsr = /MT mﬁ,out(r) é%/[ d37". (13)

The output direction ég‘&(;) = ((m9 o) + (mf )/ |(mT ;) + (mf )| at each site a differs

normally from the input direction (the orientation of the spins at the beginning of the iteration

step 1), égﬁ(i). For the next iteration ¢ 4+ 1, the input direction éia,;(iﬂ) is changed independently

o

T out) |- I our imple-

of the charge density and the size of the magnetizations, |(m{ ,,;)| or |(m
mentation the parameters describing the orientation are the azimuthal and polar angles ¢ and
0, respectively. As a first and successful approach we used straight mixing to determine the
input orientation for the next iteration step: For example the angle goz-o;(iH) being used in the

next iteration is chosen as:
b .+1 b ] b ]
e = 1B ol + B, (14)

where (3 is a mixing parameter, which is chosen to obtain fast convergence. Convergence of the
charge and magnetization density, and the directions can be done simultaneously, i.e. after each
self-consistency iteration of the densities a new set of angles is determined. The mixing scheme
as well as the mixing parameters are chosen independently for the densities and the directions.
However, when a Broyden mixing scheme is used for the densities, the Broyden “memory” has

to be deleted regularly (every 10 iterations) while the directions are still changing quickly.

As a test system for this implementation we have chosen fcc-Co (cf. Fig. 2), because it is well
known that fcc-Co has a ferromagnetic ground state. The self-consistent determination of the
relative ground-state angles between these two atoms was started using a converged charge
density for the particular relative angle of § between the orientation of the magnetic moments.
Then the variation of the orientation is carried out as described above. We used 8 = 3.0, which
means that the mixing is even more than 100% for the directions of the local moments. The
change of the angle between both spins is shown in Fig. 3. From Fig. 3 it can be seen clearly, that
the convergence of the orientation is very fast. In the above example the expected ferromagnetic
state is reached after only 5 iterations. Due to the fast change of the directions, the charge
n(r) and magnetization density m)(r) are not converged anymore and further 15 iterations are
needed basically to converge those quantities. After 20 iterations both, the densities and the
directions are converged. This shows that by separating the orientational degrees of freedom
of the magnetic moment from the charge-density and the size of the magnetization during the

iteration-progress, the convergence of the orientation of spins can be considerably accelerated.

70



Ol Qo || Y

(J 4

Figure 2: Fcc-lattice with the bet-unit cell (bold lines) containing two atoms. The arrows indicate the

direction of the magnetic moments at each site in this unit-cell.

self-consistent determination of magnetic structure of Co
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Figure 3: The calculations were performed for fcc-Co with the experimental lattice-constant of ag = 6.70
a.u. using a bct unit-cell, containing two Co-atoms. The graph shows the evolution of the relative angle
between both magnetic moments (see Fig. 2.) plotted as a function of the number of iterations.
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Application: Monolayers of Cr and Mn at Ag(111)

Background

In the past ultra-thin 3d transition-metal films, grown on oriented single-crystal noble-metal
substrates, attracted much attention as they exhibit itinerant magnetism and are thus physi-
cal realizations of two-dimensional magnetic models. Most experimental and theoretical work
focused on overlayers on (001) substrates. The theoretical studies [33] have predicted greatly en-
hanced magnetic moments in the overlayer and even more importantly two competing magnetic
phases in the monolayer: the ¢(2 x 2) antiferromagnetic structure for V, Cr, and Mn mono-
layers and the p(1 x 1) ferromagnetic structure for Fe, Co, and Ni monolayers. As a result of
this investigation we can conclude that the magnetic in-plane nearest-neighbor (n.n.) exchange

interaction of V, Cr, and Mn is antiferromagnetic.

Antiferromagnetic interactions on a triangular lattice are the origin of frustrated spin systems.
A triangular lattice is provided for example by (111) oriented fcc substrates, e.g. Ir(111) [34]
or noble metals or by (0001) oriented hcp substrates, e.g. Ru(0001) [35]. The classical n.n.
Heisenberg model predicts a two-dimensional non-collinear ground state for the triangular lattice,
commonly called the Néel state. This configuration has three atoms in a (v/3 x v/3)R30° unit cell
with the magnetic moments of the three atoms aligned at +120° with respect to the neighboring

atoms.

In fact, triangular antiferromagnets can be crystallized e.g. in the form of stacked antiferro-
magnets. A typical compound is LiCrOg [36] and this is a compound with localized spins. It
seems that in many cases the magnetic interaction of localized spins are well described by the
(n.n.) Heisenberg model. The systems we are investigating are itinerant antiferromagnets on
a triangular lattice and it is by no means clear how far a short-ranged n.n. interaction or even
how far the Heisenberg model can go in giving a sufficiently good description of the physics of

itinerant magnets on a triangular lattice.

Therefore we investigated the ground-state spin structure of Cr and Mn monolayers beyond the
Heisenberg model by performing ab initio calculations based on the density functional theory.
We concentrate here on the discussion of unsupported (free standing) (111) monolayers (UML)
of Cr and Mn with the lattice constant of Ag(111). Repeating the investigations with and

without an Ag substrate does not alter the results qualitatively.

Results

The following different magnetic structures are compared: (i) The ferromagnetic p(1 x 1) struc-
ture. (ii) The row-wise antiferromagnetic structure as shown in Fig. 4a. The unit cell of this
configuration contains 2 atoms (cf. Fig. 4c). The ferromagnetic structure and the antiferromag-
netic structure is connected by a continuous rotation as indicated in Fig. 4c. (iii) The 120°
configuration or the Néel state, respectively, which the n.n. Heisenberg model predicts to be
energetically preferable for antiferromagnetic materials. The corresponding (v/3 x v/3)R30° unit
cell is shown in Fig. 4d. It is again possible to go from the ferromagnetic structure to the 120°

configuration by a continuous rotation, rotating two atoms by the same angle ¢ but in opposite
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Figure 4: Magnetic structures of hexagonal monolayers: a) The row-wise antiferromagnetic structure.
b) The non-collinear 120° configuration. The ferromagnetic structure can be transformed by a continuous
rotation into structure a) as indicated in ¢) and into structure b) as indicated in d).

directions, as indicated in Fig. 4d. If this rotation is continued up to ¢ = 180°, the system arrives
at an additional collinear antiferromagnetic structure, or more accurately an antiferrimagnetic
structure, which will be denoted as the 180° configuration. A k-point set that corresponds to
180 k-points in the full two-dimensional Brillouin zone has been used for the unit cell containing
two atoms, while the k,-point set for the (v/3 x v/3)R30° unit cell corresponds to 121 k;-points
in the full Brillouin zone. It has been checked very carefully that the total energy differences cal-
culated in the two different unit cells are comparable (in particular with respect to the kj-point
convergence), by comparing the energy difference between the non-magnetic and ferromagnetic

configuration in both unit cells.

The results of the calculations are presented in Fig. 5. The plots show the total energy as a
function of the rotation angle ¢. The left panels show rotations that transform the ferromagnetic
structure into the row-wise antiferromagnetic structure. The right panels show the rotations
according to Fig. 4d. The scales of the left and right panels are equal, they differ, however,

between Cr (upper panels) and Mn (lower panels).

Consider first Cr: Starting from the row-wise antiferromagnetic solution (Fig. 5 upper left panel),
and rotating towards the ferromagnetic structure, the energy shows a cosine-like behavior, as the
n.n. Heisenberg model predicts for an antiferromagnet. The total energy along the rotation path
in the unit cell of Fig. 4d (Fig. 5 upper right panel) reveals a pronounced minimum at 120°. This
minimum and shape of the energy curve matches nicely the expectation from the Heisenberg
model. It is clearly visible that the 120° configuration is the lowest energy configuration among
all configurations studied here. Thus, the magnetic Néel state is the ground state of the Cr

UML predicted by the present investigation.

Now turning to Mn and comparing the results in the two-atom unit-cell (Fig. 5 lower left panel)
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Figure 5: Calculated energy as function of the rotation angle of the local moment for the UML of Cr
(upper panels) and Mn (lower panels) with the Ag(111) geometry.

with those of Cr (Fig. 5 upper left panel) we find that the behavior of Mn and Cr is very similar,
i.e. the energy curve is cosine-like and Mn prefers to be antiferromagnetic. The calculations
reveal, however, two surprises: (i) The lowest energy configuration among all magnetic structures
investigated is the row-wise antiferromagnetic configuration. (ii) The total energy of the Mn
system with 3 atoms per unit cell does not exhibit a minimum at 120°, as should be expected from
the n.n. Heisenberg model, but a local maximum. Apparently, the 180° configuration is lower in
energy than the Néel state (120° configuration). In summary, the lowest energy configuration,

among all magnetic structures investigated, is the row-wise antiferromagnetic configuration.

From these results we can draw two conclusions:

(i) Since the row-wise antiferromagnetic configuration is lower in energy than the Néel state, the
exchange interaction beyond nearest neighbors is important. Thus we cannot a prior: exclude
the possibility of even more complicated spin structures that have been ignored so far. The most
probable ones are the incommensurate spin-spiral states along the high-symmetry lines in the
two-dimensional Brillouin zone for the spin-spiral wave vectors. We have investigated the total
energy along those high-symmetry lines and found that the row-wise antiferromagnetic state
(high-symmetry point in the two-dimensional Brillouin zone) has the lowest energy among all
spin-spiral wave vectors on high-symmetry lines.

(ii) Within the Heisenberg model the energy E((p) is either proportional to cos (£¢) or cos (£2¢).
A functional form consisting of these terms cannot fit the local maximum at 120° for Mn.
Motivated by the perturbative treatment of the Hubbard-model [37] in case of strong Coulomb-
interaction in which the Heisenberg Hamiltonian is derived in second order perturbation, and the
lowest order correction to the Heisenberg model is due to four-spin interactions, we suggested in

Ref. [38] that the maximum at 120° is due the four-spin interactions. The classical Hamiltonian
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describing the four-spin interaction reads

Hispin = — Y Kiji[(SiS;)(SkS1) + (S;8%)(SiS:) — (SiSk)(S;S0)]- (15)
ikl

Within the n.n. approximation (Kjjx; = K), the energy of the four-spin interaction in the

three-atom unit-cell exhibit exactly a functional form E(yp) o cos 3¢p.
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