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The Van Hove Scenario

In the simplest, BCS, microscopic theory of superconductivity the gap A in the excitation spec-

trum of the superconducting state is the order parameter. At zero temperature it is determined
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where N (¢) is the normal state density of states, u=ep is the chemical potential, e is the Fermi

by the gap equation [1]:

energy, wp is the Debye frequency, and u is the coupling constant which describes the strength

of the electron-electron attraction. Here h = h/2w. Usually, N(e) does not vary much on the



small energy scale of eV and thus it may be replaced in Eq. (1) by its value at the Fermi energy,
N(er), independent of e. Then Eq. (1) can be solved and one finds the well known result
that A =~ 2 h wp exp(—m). Evidently, this argument breaks down if N(e) varies rapidly
on the scale of hwp, as it would for er near a Van Hove singularity (VHS). Typically, such a
singularity is defined by 7ex = 0 and leads to a logarithmic dependence, N (g)In(e — ey gs),
of the density of state in Eq. (1). This changes the solution of Eq. (1) dramatically giving rise
to a significantly larger gap A than the famous BCS result above. Since kpT,.=A, the larger
gap A implies larger transition temperature T;., and hence we conclude that T, is enhanced if,

without changing the coupling constant u, er approaches the Van Hove singularity at ey gg.

As was noted by Friedel [2] and Markiewicz [3, 4] the above enhancement, which could be as
much as a factor of 5 to 10, of T, may have an important role to play in the explanation of high
T, superconductivity. In short, they have argued that whatever is the mechanism of attraction,
it may be of modest strength if T, is enhanced by the nearness of er to eygg. Over the last
10 years this Van Hove Scenario retained and even increased its attraction for two reasons.
Firstly, the salient empirical fact about the high 7T, superconductors turned out to be the rise
and fall of T, with the carrier concentration n, namely doping. Evidently, such behaviour can
be readily explained if we assume that on doping er approaches and then passes a Van Hove
singularity at eypgs [4]. Secondly, in the first-principles, parameter free, calculations of the
electronic structure, for most high temperature superconductors a Van Hove singularity was
found near er [5]. The point of this contribution is to highlight recent developments, which
goes beyond merely noting that high 7, occurs in materials with €y g near er, and to report

on results of actual calculations of T, as a function of doping.

Semiphenomological Models of the Attractive Interactions

In a first-principles calculation of the electronic structure in the normal state one often seeks

the wave function in the form
Py (r) =Y Yf gér (r —R), (2)
L,R

where L and R label a complete set of orthogonal orbitals and the lattice sites, respectively, and

solves an energy eigenvalue equation for the amplitudes ¢y p:
> Hirurvi g = Bl g (3)
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In the superconducting state an excitation has an amplitude, u,, (r), that is a particle and another,
v,(r), that is a hole and these two satisfy a coupled set of Bogoliubov-de Gennes equations [4].

The analogue of Eq. (2) is the expansion [6]
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which is the analogue of Eq. (3). The pairing potential, which in the simple BCS theory is the

gap A, can be calculated from the pairing amplitude:

XrL,rL = Y1 = f(B)] uhpviep™ — f(B)) ugrp vier* (6)
v
using the relation:
ARLRL = Z Z KRL,R 1/ Ry L1, R L, XRiLy R, L (7)
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where the kernel K describes the electron-electron attraction.

In the normal state H depends on the amplitudes 97, . For instance this relationship may be
that implied by the Local Density Approximation (LDA). Thus, as is well known, Eq. (3) is
a self-consistant field problem. Typically, solving the Kohn-Sham equation using the LMTO

method takes this form.

It turns out that Eq. (5), which describes the superconducting ground state, can also be re-
garded as a Kohn-Sham equation of density functional theory with the apropriate broken (gauge)
symmetry. In fact this theory is analogous to spin-density functional theory with the pairing

amplitude, x, replacing the magnetization density m as the order parameter.

Evidently, the principle new feature of the superconductivity problem is the interaction kernel
K, which is largely unknown. Nevertheless, progress can be made by parametrizing it in terms
of phenomenological constants [6]. In fact what appears to be a useful approach is to simplify

Eq. (7) by keeping only the diagonal parts of K and using the coefficients in

Arrr1r = Krr, R’ XRL,R'L/ (8)

as adjustible parameters. In any given practical calculations, so far, only one of these parameters
was allowed to be nonzero and its value was fixed by demanding that the critical temparature
T¢, above which x gz, g1/, and therefore Agy, g1/, work out to be zero, agrees with experiments.
In short, the strategy for calculating the electronic structure in the superconducting state is to
take a Hamiltonian matrix (function of the amplitudes and orbitals) which works well in the
normal state and add to it the one parameter (K) pairing potential A.

T. versus Doping

The first implementation of the above procedure [6, 7] was based on H corresponding to the
eight-band model of Andersen et al. [8] for the high T, cuprates (YBayCuzO7). Interestingly,

from the point of view of our present concern the bands resulting from this H featured a
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Figure 1: The normal-state density of states in the neighbourhood of the Fermi level for the
eight odd (thick dots) and eight even (thin dots) CuOg plane-bands of YBasCusO7, as well as
their sum (full curve). The two logarithmic van Hove singularities are due to the saddle-points
of the odd plane-band near respectively X and Y. Here ’'odd’ and ’even’ refer to the symmetry of

the wave functions with respect to the mirror plane between the two CuO4 layers of the bilayer.

120

100

80

T (K) 60

40

20 —

-0.15 -0.1 -0.05 0 0.05
-0n (e)

Figure 2: T, versus deviation of the number of holes from that at optimal doping for the
CuO- bilayer of YBaoCuzO7. The thick solid curve with triangles corresponds to the intra-
layer nearest-neighbour Cu dg2_,2—Cu dg2_,2 scenario (d—wave superconductivity), while the
thin solid curve with diamonds represents the on-site Cu dg2_,2—Cu d,2_,» scenario (s—wave
superconductivity). On both curves T.’s corresponding to different hole concentrations are

marked.



prominent (bifurcated) Van Hove singularity. A consequence of this is the two sharp peaks in

the density of states shown in Fig. 1.

On introducing the electron-electron attraction, the scenario which turned out to be most inter-
esting was the one in which the interaction, K, operated between electrons, with opposite spins,
on nearest neighbour Cu sites, occupying dj>_,» orbitals. The coupling constant which gives
T.=92K turned out to be K=0.68 eV. With this one phenomenological constant fixed, a number
of other physical properties, such as the low temperature specific heat and the quasi-particle

spectra, were calculated in good, quatitative agreement with experiments [6].

At this stage the scene was set to investigate the influence of Van Hove singularities on the
superconducting properties in the context of a realistic description of the electronic structure
in the normal state. To mimic the effects of doping the chemical potential was changed as one
would in making a rigid band argument but of course the interaction constant K was kept the
same. The very encouraging result for the T, vs. doping is shown in Fig. 2. Evidently, the Van
Hove scenario works and, suprisingly, the width of the peak is in good agreement with the width

of 0.15 holes per layer found empirically.

Effects of Disorder

A serious, general, objection one can raise against the above arguments is that doping, inevitably,
brings with it disorder which will smear out, and render ineffective, the Van Hove singularity.
To investigate the force of this criticism Litak et al. [9] have studied the effect of disorder
scattering on the Van Hove scenario on the basis of a model with reduced realism. In fact, they
have used a one band, extended, negative U Hubbard model which, in the Hartree-Fock-Gorkov
approximation, gave rise to a simplified version of the Bogoliubov-de Gennes equation in Eq.
(5). The disorder was introduced into the problem by allowing the site energies, ¢;, to take
values /2 and -6/2 randomly, and it was treated in the Coherent Potential Approximation
(CPA) [10]. The calculations were performed for nearest neighbour hopping on a square lattice
for which the normal state featured the well known prototype of Van Hove singularity at the
band center. The way the corresponding peak is smeared by disorder is illustrated in in Fig. 3,
where we show the density of states for different strength, §, of disorder as calculated by the

CPA procedure in the normal state.

Thus the question is "how does this gradual broadening of the central peak affects the doping
dependence of the transition temperature 7,.7”. For the particular case at hand this is answered
in Fig. 4 where we show the results of the CPA calculation for the superconducting state.
Evidently, with increasing disorder the enhancement of T, by the Van Hove singularity fades
gradually in agreement with the experiments depicted in Fig. 5. Thus, we conclude that simple
calculations support the suggestion that the high 7; in the cuprates comes about as a result of
a relatively weak pairing force being enhanced by the closeness of a Van Hove singularity to the

Fermi energy.



0/t=0.6 —
0.35 §/t=1.0 ---- 7
0/t=2.0 —
0.30 §/t=2.6 ++--
0.25 il
N(E) 0.20 |- .
0.15 il
0.10 .
0.05 il
0.00 : _— :
-8 -6 -4 -2 2 4 6 8

0
E/t

Figure 3: Density of states N(E) for a normal state with various disorder strengths § = €4 —ep
(Aos Bos)-
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Figure 4: Critical temperature T, vs. band filling n for d wave superconductors with a number

of disorder strengths 4.
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Figure 5: Critical temperature T as a function of oxygen

deﬁciency ¢ for YO_gCaO_gBag(Cul,yZny)307_5 with Yy = 0 (<>), Yy = 0.02 (—l-), Yy = 0.04 (D),
y = 0.06 (x) [11].
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