9 SCIENTIFIC HIGHLIGHT OF THE MONTH

Matrix Methods!

Iain S. Duff?

ABSTRACT

We consider techniques for the solution of linear systems and eigenvalue problems. We
are concerned with large-scale applications where the matrix will be large and sparse.
We discuss both direct and iterative techniques for the solution of sparse equations,
contrasting their strengths and weaknesses and emphasizing that combinations of both
are necessary in the arsenal of the applications scientist.

We briefly review matrix diagonalization techniques for large-scale problems.

Keywords: sparse matrices, sparse linear equations, direct methods, iterative methods, large-scale
applications, matrix diagonalization, eigenproblems, mathematical software.

AMS(MOS) subject classifications: 65F05, 65F50.

I This paper is based on an invited presentation at the meeting “Supercomputing, Collision Processes and
Applications” that was held at The Queen’s University of Belfast from 14th to 16th September 1998 to
mark the retirement of Professor P G Burke CBE FRS. The Proceedings will be published by Plenum
Publishing Corporation.

2I.S.Duff@rl.a,c.uk, http://www.dci.clrc.ac.uk/Person/I.S.Duff

Current reports available by anonymous ftp from ftp.numerical.rl.ac.uk in the directory “pub/reports”.
This report is in file duffRAL98076.ps.gz.

Department for Computation and Information
Atlas Centre

Rutherford Appleton Laboratory

Oxon OX11 0QX

47

9.1 Introduction

The intention of this paper is to describe current matrix methods for large-scale problems to
an audience of computational physicists and chemists. We will discuss both the solution of the
linear equations

Ax =b, (9.1

and the solution of the eigensystem
Ax = A\Bx, (9.2)

where the matrices A and B are large and sparse. The problem (9.2) is called the generalized

eigenproblem. The particular, commonly occurring, case where B =1, viz.
Ax =)x, (9.3)

is called the eigenproblem, or standard eigenproblem. The solution of the eigenproblem for all
values of A and x corresponds to finding a similarity transformation for diagonalizing the matrix
and is often called matriz diagonalization. In many cases, however, the full diagonal is not

required and only a few eigenvalues A are needed.

Although it is possible to use the solution of the eigenproblem to facilitate solutions of the linear
system (9.1), and I have known people to use this route, I should stress that the problem (9.3)
is usually much more complicated to solve than the problem (9.1), not least because (9.3) is
nonlinear in the unknowns A and x. Thus, if the solution to (9.1) is all that is required (even
for several right-hand sides b), then this should be tackled directly.

Sparse systems arise in very many application areas. We list just a few such areas in Table 9.1.

Table 9.1: A list of some application areas for sparse matrices

acoustic scattering 4 demography 3 network flow 1
air traffic control 1 economics 11 numerical analysis 4
astrophysics 2 electric power 18 oceanography 4
biochemical 2 electrical engineering 1 petroleum engineering 19
chemical engineering 16 finite elements 50 reactor modeling 3
chemical kinetics 14 fluid flow 6 statistics 1
circuit physics 1 laser optics 1 structural engineering 95
computer simulation 7 linear programming 16 survey data 11

This table, reproduced from [1], shows the number of matrices from each discipline present in
the Harwell-Boeing Sparse Matrix Collection. This standard set of test problems is currently
being upgraded to a new Collection called the Rutherford-Boeing Sparse Matrix Collection [2]
that will include far larger systems and matrices from an even wider range of disciplines. This
new Collection will be available from netlib (http://www.netlib.org) and the Matrix Market
(http://math.nist.gov/MatrixMarket).

The definition of a large sparse matrix is a matter for some debate. Suffice it to say that we
regard a matrix as large if it cannot be factorized efficiently using a code for general linear

systems from a standard package for dense systems, such as LAPACK [3]. The order of a matrix

48

that is considered large is thus a function of time depending on the development of both dense
and sparse codes and advances in computer architecture. Partly for amusement, we show in
Table 9.2 the order of general unstructured matrices which sparse methods have been used to
solve as a function of the date. I think this alone serves to illustrate some of the advances in

sparse solution methods over the last 25 years.

Table 9.2: Order of general sparse matrices solved by direct methods as a function
of date

date order

1970 200
1975 1000
1980 10000

1985 100000
1990 250000
1995 1000000

The matrix is sparse if the presence of zeros within the matrix enables us to exploit this fact

and obtain an economical solution.

There are two main classes of techniques for solving (9.1), iterative methods and direct methods.
In a direct method, we use a factored representation and solve the system using these factors
in a predetermined amount of memory and time, usually to a high degree of accuracy. In
iterative methods, we construct a sequence of approximations to the solution, often the “best”
approximation in subspaces of increasing dimension. The work is generally low per iteration
but the number of iterations is usually not known a priori and may be high, particularly if an
accurate solution is required. We consider general aspects of the solution of large sparse linear
equations in Section 9.2. We discuss direct methods of solution in Section 9.3 and iterative
techniques in Section 9.4 and compare and combine these approaches in Section 9.5. We briefly
review matrix diagonalization in Section 9.6 indicating the relationship of techniques used in this
case with those used in iterative methods for solving linear equations. We make a few comments

on software availability and concluding remarks in Sections 9.7 and 9.8, respectively.

9.2 The solution of linear equations

It is a notational convenience to denote by A~! the inverse of the matrix A so that the solution to
(9.1) is given by A~'b. However, there is almost no occasion when it is appropriate to compute
the inverse in order to solve a set of linear equations. Even if explicit entries of the inverse are
required, for example for sensitivity analysis, there are usually far more computationally efficient
ways of doing this than to compute the inverse. For example, the ith column of the inverse can
be obtained by solving a set of equations with e;, the ith column of the identity matrix, as the
right-hand side vector and, if specified entries are required, for example the diagonal of A1,

then advantage can be taken of sparsity to compute this efficiently [4].

49

9.2.1 Accuracy, stability, and conditioning

As a numerical analyst, I am of course concerned about the accuracy of the solution, a concern
which I hope is shared by the applications scientist or engineer. Before we continue our discussion
on accuracy, it might be useful to first distinguish two concepts which are often confused, namely
conditioning and stability. Conditioning is a property of the problem being solved. If the problem
is badly conditioned, then small perturbations to the given data could give large changes to the
solution, even if it is computed exactly. Stability is a property of the algorithm that is used to
effect the solution. An algorithm is backward stable if the solution it computes in finite precision

arithmetic is the exact solution of a slightly perturbed problem.

A good measure of accuracy would be to measure the difference between computed and exact
solutions in some norm, say the /o norm, but that is rather difficult since, if you already know the
exact solution, there seems little point in going to the trouble of solving the system. A measure
which is more easy to compute is the residual b — Ax, where x is the computed solution. The
residual is a measure of how well your computed solution satisfies the equation. As is common
when we do not know (or cannot control) the scaling of the system, we use a relative measure
of the residual (dividing by (||A]| ||X||) or some such quantity?). This is directly related to
the perturbation to the original data that would be needed to ensure that we have computed
an exact solution to the perturbed system and is called the backward error, a concept which
was pioneered by Jim Wilkinson (for example, [5]) and which revolutionized the thinking of
numerical analysts. Now, the backward error is related to the actual (or forward) error through
the relationship

Forward error < Condition number x Backward error (9.4)

where, as we remarked earlier, the Condition number is a property of the problem (not the
solution technique). There are many different condition numbers [6] and one of the most common
is given by

Condition number = ||A|| ||A™}]], (9.5)

often denoted by k(A).

A major problem for large sparse systems is that the condition number (even if the original
system is scaled) can be far greater than the reciprocal of machine precision. Thus the bound
(9.4) indicates that, even if we solve with a backward error of machine precision, our solution
may contain no correct digits. It is then a mute point how one decides whether the problem has
been solved or not. Usually it is apparent from the underlying problem, so often the applications
scientist can judge this better than the numerical analyst. Before you lose all faith in numerical
analysis, I should say that this is more alarming than it might at first appear. A simple scaling?
often helps and sometimes a more appropriate condition number, for example a component-wise
one, might give a more realistic bound. However, I should stress that a small (scaled) residual
does mean that we have not introduced instability in the solution process. In a sense, we are

doing as well as we can even if the solution is far from what was expected.

*When we use norm signs, ||..|| without a suffix, then the actual norm used is not of great importance, although

one would normally use consistent norms within a single analysis or computation.
3By scaling we mean choosing diagonal matrices D1 and D> so that the nonzero entries of the scaled matrix

D;AD> have similar magnitude.

50

9.2.2 Effect of symmetry

When an applications scientist or engineer is deciding which algorithm or software to choose,
one of the first questions is to ask if the matrix A is symmetric (or is Hermitian in the complex
case). This makes a crucial difference whether direct or iterative techniques are being used for
solution. For direct methods, not only are work and storage nearly halved but, particularly in
the commonly occurring positive definite case, more efficient sparse data structures and sparsity
based orderings can be used. For iterative methods, not only are the algorithms and software
more reliable and robust, but there is often some theory to guarantee convergence. For matrix
diagonalization, the normality of symmetric matrices (see Section 9.6) means that robust and

accurate methods of determining eigenvalues and eigenvectors exist.

9.3 Direct methods

Direct methods use a factorization of the coefficient matrix to facilitate the solution. The most
common factorization for unsymmetric systems is an LU factorization where the matrix A (or
rather a permutation of it) is expressed as the product of a lower triangular matrix L and an

upper triangular matrix U. Thus
PAQ = LU, (9.6)

where P and Q are permutation matrices. This factorization can then be used to solve the
system (9.1) through the two steps:
Ly = Pb, (9.7

and
Uz =y, (9.8)

whence the solution x is just a permutation of the vector z, viz.
x = Qz. (9.9)

This use of LU factorization to solve systems of equations is usually termed Gaussian elimination
and indeed the terms are often used synonymously. Another way of viewing Gaussian elimination
is as a multistage algorithm which processes the equations in some order. At each stage, a
variable is chosen in the equation and is eliminated from all subsequent equations by subtracting
an appropriate multiple of that equation from all subsequent ones. The coefficient of the chosen
variable is called the pivot in Gaussian elimination and the multiple of the pivot row or equation
is called the multiplier. Clearly, there must be some reordering performed (called pivoting) if a
pivot is zero but equally pivoting will normally be necessary if the pivot is very small (in fact if
the multipliers are large) relative to other entries since then original information could be lost
(from adding very large numbers to relatively very small numbers in finite-precision arithmetic)
and we could solve a problem quite different from that originally intended. In the sparse case,
pivoting is also required to preserve sparsity in the factors. For example, if the matrix A is
an arrowhead matrix*, then selecting entry (n,n) as pivot will give dense triangular factors

while choosing pivots from the diagonal in any order with entry (n,n) chosen last will give no

4An arrowhead matrix, A, has nonzero entries only in positions a;;, ain,and an;, i=1, ..., n

ol

fill-in (that is, there will be no entries in positions that were not entries in the original matrix).
Of course, such a choice could be bad for the numerical criterion just mentioned above. The
reconciliation of these possibly conflicting goals of pivoting has been a topic for research. We

touch on this briefly below.

If the matrix A is symmetric positive definite, it is normal to use the factorization
PAPT = LLT. (9.10)

The factorization (9.10) is called a Cholesky factorization. For more general symmetric matrices,
the factorization
PAPT = LDL?, (9.11)

is more appropriate. For a stable decomposition in the indefinite case, the matrix D is block

diagonal with blocks of order 1 or 2, and L is unit lower triangular.

9.3.1 Phases in solution

In both the case of sparse and dense matrices, the factorization (9.6) is more expensive than
the forward elimination and backsubstitution phases, (9.7) and (9.8) respectively. This is less
significant if several sets of equations with the same matrix but differing right-hand sides need
to be solved. The higher cost of the factorization can then be amortized over the cost of the
multiple solutions. In the sparse case, a further distinction is important. Often much of the work
concerning handling sparse data structures and choosing pivots can be performed once only for a
particular matrix structure and the subsequent factorization of matrices with the same structure
can be performed much more efficiently using information from this first factorization. In some
cases, the differences in execution time can be quite dramatic as we illustrate in Table 9.3 where
there is an order of magnitude difference in time for the three phases. The code MA48 is a
general sparse unsymmetric solver from the Harwell Subroutine Library and GRE 1107 is a test
matrix from the Harwell-Boeing Sparse Matrix Collection. The ability to refactorize efficiently
subsequent matrices is not present in all software packages but is very important particularly
when solving nonlinear systems when the Jacobian will retain the same structure although the

numerical values change.

Table 9.3: Execution times (in seconds) for code MA48 for matrix GRE 1107 on a
single processor of a CRAY Y-MP

First factorization .66
Subsequent factorizations .075
Back and forward substitution .0068

9.3.2 Sparsity preservation and numerical stability

In the sparse case, it is crucial that the permutation matrices of (9.6) are chosen to preserve

sparsity in the factors as well as to maintain stability and many algorithms have been developed

52

to achieve this. For general unsymmetric matrices the most popular method is called “Markowitz
with threshold pivoting”. Threshold pivoting ensures that pivots are within a certain threshold
of the largest entry in the row or column. The threshold is often an input parameter and a
typical value for it is 0.1. We control sparsity by choosing the pivot to be an entry satisfying
the threshold criterion that has the fewest product of number of other entries in its row and
column. The suggestion of using this sparsity control is due to [7]. In the symmetric case, the
Markowitz analogue is minimum degree where one chooses as pivot a diagonal entry with the

least number of entries in its row.

9.3.3 Arithmetic complexity

Although the LU factorization has a similar O(n3) complexity® to matrix inversion for dense
systems (and storage requirements of O(n?)), the complexity of the factorization process and
storage requirements for sparse matrices depend on the structure and can be significantly less.
For example the LU factorization of a tridiagonal matrix can be done in O(n) operations
whereas the calculation of the inverse is at best O(n?). Furthermore, the storage for the
factors of a tridiagonal matrix are the same as the original matrix (3n — 2 reals) but the
inverse of a tridiagonal matrix is dense. In fact, if we consider structure only and do not
allow numerical cancellation, the inverse of an irreducible sparse matrix® is always dense [8].
An archetypal example, is a five-diagonal matrix” as obtained, for example, from the finite-
difference discretization of a two-dimensional Laplacian. If the discretization has k grid points
in each direction (so that the order of the matrix is k?), the LU factorization would require O (k%)
if considered as a dense system but O(k*) if considered banded (and the storage requirement
reduced from k* to k3). Although this figure is often quoted when comparing the complexity
of LU factorization with other methods on such matrices, by using a nested dissection ordering
algorithm, the work and storage can be reduced to O(k3) and O(k?log k) respectively. The bad
news is that one can prove that, for a wide range of matrices including the five-diagonal one, this

is asymptotically the best that can be done for any direct method based on LU factorization.

9.3.4 Indirect addressing and the use of the BLAS

For arbitrarily structured sparse matrices, complicated data structures are needed for efficient
execution (for example, [9]). Although this is hidden from the user of the sparse code, it can
significantly affect the efficiency of the computation. Even for computers with hardware indirect
addressing, access to data of the form A(IND(I)), I = 1, K carries a heavy penalty in terms of
additional memory traffic and non-localization of data. When this is added to the fact that most
loops are of the order of number of nonzero entries in a row rather than the order of the system,
general sparse codes can perform particularly badly on some high performance computers relative
to their dense counterpart. Much recent research on sparse direct techniques has been to develop

algorithms and codes that use the same kernels as dense codes at the innermost loops.

®See, however, the comments on Strassen’s algorithm which follow.
8 A matrix is irreducible if it is not possible to reorder the matrix rows and columns so the reordered form has

a nontrivial block triangular form.

"By five-diagonal matrix, we mean a matrix that has nonzeros only in five diagonals.

53

The BLAS, or Basic Linear Algebra Subprograms, are well established standard operations
on dense matrices and vectors, and include computations such as scalar products, solution of
triangular systems, and multiplication of two matrices ([10], [11], [12]). The important thing is
that the interface to each subprogram has been standardized and most vendors have developed
optimized code for these kernels. For example, the matrix-matrix multiplication routine (_.GEMM)
performs at close to peak performance on many computers, even those with quite sophisticated
architectures involving vector processing, memory hierarchy, caches etc. Much of the recent
work in dense linear algebra has centred round the use of these kernels. However, in spite of
some early work by [13] and others, it is only quite recently that it has become appreciated
that these dense linear algebra kernels can be used effectively within direct methods for sparse

matrices.

Table 9.4: Performance of _GEMM kernel in Mflop/s on a range of machines (single

processor performance)

Machine Peak _GEMM
Meiko CS2-HA 100 88
IBM SP-2 266 213

Intel PARAGON 75 68
DEC Turbo Laser 600 450
CRAY 2 459 449
CRAY YMP 333 313

We show, in Table 9.4, the performance of the Level 3 BLAS kernel _GEMM on a range of computers
with various floating-point chips and memory organizations. In many cases, this kernel attains
about 90% or more of the peak performance of the chip and in every case more than 75% of
peak is achieved. This remarkable performance is obtained by the fact that a (dense) matrix-
matrix multiply performs 2n? arithmetic operations but only requires 3n? data references. This
enables data that is brought into the memory hierarchy (say onto an on-chip cache) to be reused,
thus amortizing the cost of transferring it from main memory or even further afield. Since the
memory level closest to the floating-point unit can usually supply data at the same speed as the

unit computes, we can then get close to the speed of the floating-point unit.

As a footnote to the complexity issue, we should record the fact that methods have been
developed for multiplying dense matrices in O(n®) operations, where « < 3, based on Strassen’s
method [14]. _GEMM has been implemented using this algorithm (for example, [15]) and so the
use of this kernel in dense Gaussian elimination can reduce the complexity accordingly. Note
that the added complexity of Strassen’s algorithm and the need to pay more care to stability
[16] means that this is not the panacea to the “n® problem”. Also the lowest value of « that has
been so far obtained is 2.376 so that dense matrix computations still quickly become infeasible

when the matrix order becomes very large.

The trick is now to develop sparse matrix techniques that can take advantage of these fast
dense matrix kernels. Of course, it is possible just to solve the sparse system using a code for

dense systems, and some people have advocated this approach arguing that the greater “peak”

54

speed and memory of modern computers makes this feasible. I must stress that the complexity
discussions we had earlier makes this really non-viable for all but the smallest sparse matrices.
We illustrate the wide difference in execution times for sparse and dense codes on sparse matrices
by the results in Table 9.5. Although there are now much faster machines than a CRAY Y-MP,

the matrices used in this table are quite small by current standards.

Table 9.5: Comparison between MA48 (a sparse code) and LAPACK (SGESV) (a dense
code) on a range of matrices from the Harwell-Boeing Sparse Matrix Collection.

Times are for factorization and solution (in seconds on one processor of a CRAY Y-MP)

Matrix Order | Entries || MA48 | SGESV
FS 680 3 680 2646 || 0.06 0.96
PORES 2 1224 9613 || 0.54 4.54
BCOSSTK27 | 1224 | 56126 | 2.07 4.55
NNC1374 1374 8606 | 0.70 6.19
WEST2021 | 2021 7353 || 0.21 | 18.88
ORSREG 1 | 2205 14133 || 2.65 | 24.25
ORANI678 | 2529 | 90158 | 1.17 | 36.37

9.3.5 Frontal and multifrontal methods

A more viable approach is to order the sparse matrix so that its nonzero entries are clustered near
the diagonal (called bandwidth minimization) and then regard the matrix as banded, treating
zeros within the band as nonzero. However, this is normally too wasteful as even the high
computational rate of the Level 3 BLAS does not compensate for the extra work on the zero
entries. A variable band format is used to extend the range of applicability of this technique. A
related, but more flexible scheme, is the frontal method which owes its origin to computations

using finite elements.

Here we assume that A is of the form

where each element matrix A/ has nonzeros in only a few rows and columns and is normally
Y
ij
denote the (7, 7)th entry of A and Al respectively, the basic assembly operation when forming
A is of the form

held as a small dense matrix representing contributions to A from element /. If a;; and a

aij < aij +al). (9.12)
It is evident that the basic operation in Gaussian elimination

aij <= aij — aiplapp] ap; (9.13)

may be performed as soon as all the terms in the triple product (9.13) are fully summed (that

is, are involved in no more sums of the form (9.12)). The assembly and Gaussian elimination

55

processes can therefore be interleaved and the matrix A is never assembled explicitly. Variables
that are internal to a single element can be immediately eliminated (called static condensation)
and this can be extended to a submatrix from a set of elements, that is a sum of several element
matrices. In this scheme, all intermediate working can be performed within a dense matrix,
termed the frontal matriz, whose rows and columns correspond to variables that have not yet

been eliminated but occur in at least one of the elements that have been assembled.

We can partition the frontal matrix, F, as:

Fi1 Fypo
Fo1 Foo

F = (9.14)

where the fully summed variables correspond to the rows and columns of the block Fy1, from

where the pivots can be chosen. The kernel computation in a frontal scheme is then of the form

Fog ¢ Foy — Fo F['Fyy (9.15)

and can be performed using Level 3 BLAS. (We note that this expression is notational and the

inverse of Fy; is not explicitly calculated.)

The frontal method can be easily extended to non-element problems since any set of rows of
a sparse matrix can be held in a rectangular array whose number of columns is equal to the
number of columns with nonzero entries in the selected rows. A variable is regarded as fully
summed whenever the equation in which it last appears is assembled. These frontal matrices
can often be quite sparse but are suitable for computations involving Level 3 dense BLAS. A

full discussion of the equation input can be found in [17].

If the frontal scheme is combined with an ordering to preserve sparsity and reduce the number
of floating-point operations and if a new frontal matrix can be formed independently of already
existing frontal matrices, we can develop a scheme that combines the benefits of using Level 3
BLAS with the gains from using sparsity orderings. This is developed in multifrontal schemes
where the computation can be viewed as a tree, whose nodes represent computations of the form
(9.15) and whose edges represent the transfer of data from the child to the parent (data of the
form of the F9y matrices generated by (9.15)). Another approach that combines sparse ordering
schemes with higher level dense BLAS is the supernodal approach (for example, [18]).

9.3.6 Parallelization of direct methods

In the late 80’s and early 90’s, it was almost impossible to obtain research funding in linear
algebra unless parallelism was mentioned in the abstract if not the title. The topic was also
embraced by computer scientists who could theorize on what the complexity of elimination
techniques might be on a range of hypothetical computers and exotic parallel metacomputers
with O(nP) processors. I daresay some of this work was useful as other than an intellectual
exercise, but the last few years have seen a more mature study of realistic parallel algorithms
that can be implemented on actual available computers and can (and are sometimes) even used

by applications people or industry.

56

Although algorithms and software for the parallel solution of dense systems of equations have
been developed (for example, the ScaLAPACK package of [19]), the irregularity of sparse matrix
structures makes it much more difficult to efficiently parallelize methods for sparse equations.
The PARASOL Project is an ambitious attempt in this direction.

PARASOLS® is an ESPRIT IV Long Term Research Project (No 20160) for “An Integrated
Environment for Parallel Sparse Matrix Solvers”. The main goal of this Project, which started
on January 1 1996, is to build and test a portable library for solving large sparse systems of
equations on distributed memory systems. There are twelve partners in five countries, five of
whom are code developers, five end users, and two software houses. The software is written in
Fortran 90 and uses MPI for message passing. The solvers being developed in this consortium
are: two domain decomposition codes by Bergen and ONERA, a multigrid code by GMD, and
a parallel multifrontal method (called MUMPS) by CERFACS and RAL. The final library will

be in the public domain.

It is common, when examining implementations on parallel computers, to stress the speedup, or
how many times faster the application runs on multiple processors than a single processor,
although it is recognized that a more important measure is the execution time relative to
the fastest method on a uniprocessor. However, an often more important reason for parallel
computation is the the benefit of having access to more memory. This is particularly true on
machines which have memory entirely local to each processor and which use message passing
to share data between processors. In this case, the more processors; the more memory. A side
effect of this is that it may only be possible to run a large problem on several processors so a
comparison with a uniprocessor code is inappropriate. Furthermore, the memory system may be
inefficient when stressed (for example, because of memory paging) and so the speedup may be
superlinear. We illustrate this amusing effect by some runs of a parallel multifrontal code from
the PARASOL Project on a PARASOL test problem on an IBM SP2 and an SGI Origin 2000
in Table 9.6. The speedups on the Origin reflect the true parallelism of the software, whereas

those on the SP2 include a memory effect.

9.4 Iterative methods

In contrast to direct methods, iterative methods do not normally modify the matrix and do not
form any representation of the inverse. Furthermore, most iterative methods do not require the
matrix to be represented explicitly, sometimes it is sufficient to be able to form the product of the

matrix with a vector, although this may restrict the preconditioning available (see Section 9.4.1).

Iteration techniques such as successive approximation have been around since the first days of
scientific computing and the early iterative techniques for solving sparse linear equations were
based on such approaches (Gauss-Seidel, SOR etc). While these methods are still used (for
example, as smoothers in multigrid techniques), it is true to say that most modern methods for

the iterative solution of sparse equations are based on Krylov sequences of the form

sp{v,Av,A%v,...}, (9.16)

8For more information on the PARASOL project, see the web site at http://www.genias.de/parasol.

o7

Table 9.6: Results for the symmetric version of the MUMPS code on CRANKSEG2.

Working Time for
Machine | processors | factorization
16 1045.3
SP2 24 457.3
32 139.7
1 635.4
2 411.0
3 275.7
Origin 4 220.4
5 175.1
6 158.3
7 142.9
8 135.7

with the approximate solution at each step the “best” solution that lies in the subspace of

increasing dimension. What constitutes “best” determines which of the many methods is defined.

The residual at the i-th iteration of an iterative method can be expressed as
r) = p,(A)r(©@), (9.17)

where P; is a polynomial such that P;(0) = 1. If we expand r® in terms of the eigenvectors
of A we see that we want P; to be small on the eigenvalues of A so that the spectrum of A
is crucial in determining how quickly our method converges. For example, if there are many
eigenvalues close to zero or if the spectrum is widely distributed, the degree of polynomial will
have to be high in order to be small on all eigenvalues and so the number of iterations required

will be large.

A major feature of most Krylov based methods for symmetric systems are that they can be
implemented using short term recurrences which means that only a few vectors of length n
need be kept and the amount of computation at each stage of the iterative process is modest.
However, Faber and Manteuffel (1984) have shown that, for general matrices, one must either
lose the cheap recurrences or lose the minimization property. Thus for the solution of general
unsymmetric systems, the balance between these, added to the range of quantities that can be
minimized and the differing norms that can be used, has led to a veritable alphabet soup of
methods [20], for example GMRES(k), CGS, Bi-CGSTAB(¢), TFQMR, FGMRES, GMRESR,

9.4.1 Preconditioning

The key to developing iterative methods for the solution of realistic problems lies in

preconditioning, where by this we mean finding a matrix K such that

58

1. K is an approximation to A.
2. K is cheap to construct and store.

3. Kx = b is much easier to solve than the system (9.1).

We then solve the preconditioned system
K 'Ax =K !b, (9.18)

where we have chosen K so that our iterative method converges more quickly when solving
equation (9.18) than equation (9.1). Lest this seem too much of a black art (which to some
extent it is), if K were chosen as the product of the factors LU from an LU factorization
(admittedly violating point 2 above), then the preconditioned matrix B = K~ A would be the
identity matrix and any sane iterative method would converge in a single iteration. From our
earlier discussion, we would like the preconditioned matrix B to have a better distribution of

eigenvalues than A.

The preconditioning can also be applied as a right-preconditioning AK~! or as a two-sided
preconditioning Kl_lAKQ_ ! when the matrix K can be expressed as a product K;Kjs. Common
preconditioners include using the diagonal of A or a partial or incomplete factorization of
A. A recent simple discussion of the merits of different forms of preconditioners and their
implementation can be found in the report [21] that is a preprint of a chapter in a forthcoming
book [22].

A very interesting aspect of this is that convergence can occur in very few iterations if the
eigenvalues are well clustered. This is, of course, true whether the matrix is dense or sparse.
In the dense case, a direct method will require O(n?®) work whereas a single matrix vector
multiplication only O(n?). Thus, if our iterative method converges in only a few iterations,
it may be a very attractive method for solving the dense system. An example where dense
systems with well clustered eigenvalues are found is given by [23]. However, as in the case of
sparse systems, preconditioning is normally needed to obtain a good eigenvalue distribution.
This is less attractive in the dense case because another n? multiplications are required and, if
it is required to solve for the preconditioning matrix, our subproblem is as hard as the original
problem. It is sometimes possible, however, to develop sparse preconditioning matrices for the
dense problem (for example, [24]) so that the cost of this preconditioning is small compared to
the multiplication by the original matrix. In some cases, the structure of the problem can be
used to reduce the matrix-vector multiplication itself, for example by using multipole methods
[25].

9.4.2 Parallelization of iterative methods

In contrast to direct methods, each step of an iterative method is relatively easy to parallelize

since the only numerical computations involved are:

o Av

L] VTW

59

eV —aw
and, for the preconditioning:
e Klv

The first operations can be performed with high efficiency on parallel computers, for example
[26], although scalar products require synchronization and much communication. The achilles
heel for performance is, however, usually in the efficient implementation of the preconditioning,
on which much research is still being done (see for example, [22]). We should add that it is
vital that the preconditioner is effective in reducing the number of iterations because, if the

convergence is so slow as to be meaningless, no amount of parallelism can make it viable.

9.5 Direct or iterative or 7

I am often asked whether it is better to use an iterative or a direct method to solve a set of
linear equations. The answer is often quite simple, and not just because of the predilection of my
research interest. One should use a direct method! This is even more true if you have several
right-hand sides to solve with the same coefficient matrix. However, since your computer is
unlikely to be blessed with an infinite amount of memory (unless you are a theoretician from the
80’s), the range of problems for which such a technique is applicable is limited, significantly so
if your underlying problem is three-dimensional. In such cases, one has to resort to an iterative
method. However, since for all but the simplest cases, your chosen iterative method (even with

a standard preconditioner) is unlikely to converge ... what do you do?

The answer is to use a technique that combines elements of both direct and iterative methods.
Sophisticated preconditioners come into this category. The most obvious method to combine
these approaches is the block Jacobi method where the matrix is treated as a block matrix,
the solution of the subproblems corresponding to the diagonal blocks are performed using a
direct method, and the system is solved using a block Jacobi algorithm. Clearly this inherits
much of the parallelism of the point case but should have better convergence properties. Indeed a
variant corresponding to using a block Jacobi scheme on the normal equations, termed the block
Cimmino algorithm, has proven quite effective (for example, [27]). As in the point case, we can
sacrifice parallelism a little and gain faster convergence through the use of a block Gauss-Seidel

method. The counterpart to block Cimmino is then block Kacmarz (for example, [28]).

In the framework of the solution of partial differential equations, a more general technique for
combining direct and iterative methods is to use domain decomposition [29, 30], where the
problem is divided into separate domains (either overlapping or non-overlapping) and the local
problems can be solved using direct methods, which of course is trivial to do in parallel since
these subproblems are decoupled. In the case of non-overlapping domains, usually the main
issue is the solution of the problem for the interface variables. It is normal to use an iterative
method for this but the main problem is then to define a preconditioner, particularly if the

matrix corresponding to the interface problem is not computed explicitly.

One way in which direct methods can be used as preconditioners for iterative methods are to

perform only a partial factorization, as is the case for ILU(k) preconditioners, where a limited

60

amount of fill-in is allowed to the matrix factors so that an incomplete factorization is performed.
Another approach is to perform a “full” factorization but one of a reduced or simpler problem

to the original, for example for a simpler differential equation than the original.

Multigrid methods have become very popular in recent years largely because of their provably
optimal performance on simple elliptic problems. In these techniques, a sequence of grids is
used. The solution is required on the finest grid. A few passes of a simple iterative method are
performed and the residual is projected onto the next coarser grid. A correction is obtained by
projecting back the solution of the residual equations on this coarser grid to the finer grid. Since
the solution of the residual equations can be performed using an even coarser grid, multiple
grids can be used. The essence of the method is that the simple iterative method (or smoother)
tends to efficiently remove error components that vary as quickly as the grid size and the use of
coarser grids enables the smoother components of the error to be reduced. While the individual
sweeps of the smoothers can be parallelized, it is harder to parallelize across the grids but there

has been some recent work on this, for example by the PARASOL Project mentioned earlier.

9.6 Matrix diagonalization

What physicists call matrix diagonalization, numerical analysts call the eigenproblem. In the
case of small matrices, there are many techniques for both symmetric and unsymmetric matrices
that involve computing transformations of the matrix to diagonal form usually in a two-step
process, the first step transforming the matrix to tridiagonal or Hessenberg form, respectively.
Although the use of high Level BLAS in these computations improves their efficiency, the
transformations involved destroy sparsity in a way that is not normally as recoverable as in the
case of LU factorization. Additionally, in the large sparse case, normally only a few eigenvalues
and eigenvectors are required. Thus for large sparse matrices, we use other methods for obtaining

the eigenvalues.

In fact the basis of eigensolution techniques for large sparse matrices is the same as we just
discussed for the iterative solution of sparse equations, namely the Krylov sequence (9.16).
Clearly, this is a generalization of the classical power method for computing eigenvalues and
eigenvectors, but differs significantly because the previous powers are taken into account so that
the size of the subspace increases as iterations are performed. Additionally, in the Krylov based

methods, we are free to choose appropriate bases for the subspaces.

In our brief discussion that follows, we will be concerned with the standard eigenproblem (9.3),
although we note that normally the generalized problem (9.2) is first converted to a standard one,
for example on a matrix of the form (A —¢B) !B or L''AL~7, when B = LL” is symmetric

positive definite.

Whereas for linear systems, we seek solutions of the form

Qryk,

where Qx = [q1Q2....qx] is the basis of the Krylov subspace of dimension k, for the eigenproblem,

we solve a reduced eigenproblem for the projected subspace
Q}AQ;. (9.19)

61

For the eigenproblem, we can again use preconditioning techniques to accelerate convergence. In
this case, the subspaces are generated for a simple function of A so that the eigenvalues required

are better represented in subspaces of the form (9.19) of low dimension.

Since the kernels of Krylov subspace methods for finding eigenvalues are exactly those listed for
the iterative solution of linear equations at the end of Section 9.4, eigenvalue calculations are

also relatively easy to parallelize with possible bottlenecks in preconditioning.

A recently investigated phenomenon is that of non-normality [31]. Formally a matrix is normal
if
A*A = AA*

and so all symmetric (or Hermitian) matrices are normal. The most important feature of
normal matrices are that there exists a unitary matrix Q such that Q*AQ is diagonal. This in
turn means that the eigenproblem is well-conditioned in the sense that a small perturbation
to the matrix produces a small perturbation of the eigenvalues. However, for non-normal
but diagonalizable matrices the diagonalization X ' AX, implies nothing about the condition
number, k(X), of X, so that, by the Bauer-Fike theorem, if

X 'AX =D = diag{\1, .-, An}
and y is an eigenvalue of the perturbed matrix A + E, then
min A — i < w(X)| Bl

A similar result holds for non-diagonalizable matrices.

This means that even a matrix very close to A might have very different eigenvalues. This

phenomenon can be viewed in a diagram containing contours of the resolvent
—1
[[(A = AL) "]

and pseudo-eigenvalues are defined by regions in the plane where the resolvent is large. There is
now some debate about whether physical processes are governed by pseudo-eigenvalues rather
than eigenvalues but certainly one should be very wary of making a qualitative judgement of a
process or its stability on the strength of a single or few eigenvalues [32]. One should note that

a complex symmetric matrix is not Hermitian and can be non-normal.

9.7 Sources of Software

The origins of much specialist work in numerical software stem from the requirement of
computational physicists and chemists, and libraries and collections of software were developed
to avoid duplication of effort and provide a sound base of portable codes. I would not advise
the applications scientist or engineer to try to reverse this historical trend by coding his or her

own matrix algorithm, even using a numerical recipes crib sheet.

There are many sources of software for sparse matrices, from the do-it-yourself approach
of the Templates book for iterative methods [33] (a similar one for eigenproblems is

forthcoming), to supported proprietary codes as are present in the Harwell Subroutine Library,

62

http://www.dci.rl.ac.uk/Activity/HSL [34]. Some codes are available through netlib,
http://www.netlib.org, and others from the Web pages of the researchers developing the
code. The problem with the latter source is that, in addition to a lack of quality control, the
researcher in question will often have no compunction against editing the code almost as you

are downloading it.

We discuss sources of sparse matrix software in [35] and a recent report by [36] discusses, in
some detail, software for iterative methods for solving linear systems. The reports by [37] ([38],

[37]) discuss sparse eigenvalue software.

9.8 Brief Summary

We have presented a few obvious, and hopefully some less obvious, comments on the solution
of large sparse systems and large eigenproblems. We have emphasized the similarity between
iterative solution techniques and matrix diagonalization procedures, and indicated briefly how
direct and iterative methods can be combined to solve really large problems. We see considerable
promise in both frontal and multifrontal methods on machines with memory hierarchies or vector
processors and reasonable possibilities for exploitation of parallelism by multifrontal methods. A
principal factor in attaining high performance is the use of dense matrix computational kernels,

which have proved extremely effective in the dense case.

Finally, we have tried to keep the narrative flowing in this presentation by avoiding an excessive
number of references. For such information, we recommend, for linear systems, the recent review
by [35], where 215 references are listed. [39] has written a book on large-scale eigenproblems
with an emphasis on computational aspects and more recent references on iterative solution of

equations and eigenproblems can be found in [40] and [41] respectively.

Acknowledgement

I would like to thank my colleagues, Valérie Frayssé and Luc Giraud from CERFACS, and
Nick Gould, John Reid, and Jennifer Scott from the Rutherford Appleton Laboratory for their
comments on a draft of this paper and to Walter Temmerman of the Daresbury Laboratory for

checking its accessibility to my main target audience.

References

[1] Duff, I. S., Grimes, R. G. and Lewis, J. G. (1989), ‘Sparse matrix test problems’, ACM
Trans. Math. Softw. 15(1), 1-14.

[2] Duff, I. S., Grimes, R. G. and Lewis, J. G. (1997), The Rutherford-Boeing Sparse Matrix
Collection, Technical Report RAL-TR-97-031, Rutherford Appleton Laboratory. Also
Technical Report ISSTECH-97-017 from Boeing Information & Support Services and
Report TR/PA/97/36 from CERFACS, Toulouse.

63

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., DuCroz, J., Greenbaum, A.,
Hammarling, S., McKenney, A., Ostrouchov, S. and Sorensen, D. (1995), LAPACK Users’
Guide, second edition, STAM Press.

Erisman, A. M. and Tinney, W. F. (1975), ‘On computing certain elements of the inverse
of a sparse matrix’, Communications of the Association for Computing Machinery 18, 177-
179.

Wilkinson, J. H. (1961), ‘Error analysis of direct methods of matrix inversion’, J. ACM
8, 281-330.

Higham, N. J. (1996), Accuracy and Stability of Numerical Algorithms, SIAM Press,
Philadelphia.

Markowitz, H. M. (1957), ‘The elimination form of the inverse and its application to linear

programming’, Management Science 3, 255-269.

Duff, I. S., Erisman, A. M., Gear, C. W. and Reid, J. K. (1988), ‘Sparsity structure and
Gaussian elimination’, SIGNUM Newsletter 23(2), 2-8.

Duff, I. S., Erisman, A. M. and Reid, J. K. (1986), Direct Methods for Sparse Matrices,
Oxford University Press, Oxford, England.

Lawson, C. L., Hanson, R. J., Kincaid, D. R. and Krogh, F. T. (1979), ‘Basic linear algebra
subprograms for Fortran usage’, ACM Trans. Math. Softw. 5, 308-323.

Dongarra, J. J., Du Croz, J. J., Hammarling, S. and Hanson, R. J. (1988), ‘An extented
set of Fortran Basic Linear Algebra Subprograms’, ACM Trans. Math. Softw. 14, 1-17.

Dongarra, J. J., Du Croz, J., Duff, I. S. and Hammarling, S. (1990), ‘A set of Level 3 Basic
Linear Algebra Subprograms.”, ACM Trans. Math. Softw. 16, 1-17.

Duff, 1. S. (1981), The design and use of a frontal scheme for solving sparse unsymmetric
equations, in J. P. Hennart, ed., ‘Numerical Analysis, Proceedings of 3rd IIMAS Workshop.
Lecture Notes in Mathematics 909’, Springer Verlag, Berlin, pp. 240-247.

Strassen, V. (1969), ‘Gaussian elimination is not optimal’, Numerische Mathematik 13, 354—
356.

Douglas, C. C., Heroux, M., Slishman, G. and Smith, R. M. (1992), GEMMW: A portable
level 3 BLAS Winograd variant of Strassen’s matrix-matrix multiply algorithm, Technical
Report RC 18026 (79130), IBM T. J. Watson Research Centre, P. O. Box 218, Yorktown
Heights, NY 10598.

Higham, N. J. (1990), ‘Exploiting fast matrix multiplication within the Level 3 BLAS’,
ACM Trans. Math. Softw. 16, 352—-368.

Duff, I. S. (1984), ‘Design features of a frontal code for solving sparse unsymmetric linear
systems out-of-core’, SIAM J. Scientific and Statistical Computing 5, 270-280.

64

18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Demmel, J. W., Eisenstat, S. C., Gilbert, J. R., Li, X. S. and Liu, J. W. H. (1995),
A supernodal approach to sparse partial pivoting, Technical Report UCB//CSD-95-883,

Computer Science Division, U. C. Berkeley, Berkeley, California.

Blackford, L. S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J.,
Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D. and Whaley, R. C. (1997),
ScalLAPACK Users’ Guide, STAM Press.

Saad, Y. (1996), Iterative methods for sparse linear systems, PWS Publishing, New York,
NY.

Duff, I. S. and van der Vorst, H. A. (1998), Preconditioning and parallel preconditioning,
Technical Report RAL-TR-~1998-052, Rutherford Appleton Laboratory.

Dongarra, J. J., Duff, I. S., Sorensen, D. C. and van der Vorst, H. A. (1998), Numerical
Linear Algebra for High-Performance Computers, STAM Press, Philadelphia.

Rahola, J. (1996), Efficient solution of dense systems of linear equations in electromagnetic
scattering calculations, PhD Thesis, CSC Research Reports R06/96, Center for Scientific
Computing, Department of Engineering Physics and Mathematics, Helsinki University of

Technology.

Alléon, G., Benzi, M. and Giraud, L. (1997), ‘Sparse approximate inverse preconditioning

for dense linear systems arising in computational electromagnetics’, Numerical Algorithms
16(1), 1-15.

Rahola, J. (1998), Experiments on iterative methods and the fast multipole method
in electromagnetic scattering calculations, Technical Report TR/PA/98/49, CERFACS,

Toulouse, France.

Erhel, J. (1990), ‘Sparse matrix multiplication on vector computers’, Int J. High Speed
Computing 2, 101-116.

Arioli, M., Duff, I. S., Ruiz, D. and Sadkane, M. (1995), ‘Block Lanczos techniques for
accelerating the Block Cimmino method’, SIAM J. Scientific Computing 16(6), 1478-1511.

Bramley, R. and Sameh, A. (1992), ‘Row projection methods for large nonsymmetric linear
systems’, SIAM J. Scientific and Statistical Computing 13, 168-193.

Chan, T. F. and Mathew, T. P. (1994), Domain Decomposition Algorithms, Vol. 3 of Acta
Numerica, Cambridge University Press, Cambridge, pp. 61-143.

Smith, B., Bjorstad, P. and Gropp, W. (1996), Domain Decomposition, Parallel Multilevel
Methods for Elliptic Partial Differential Equations, 1st edn, Cambridge University Press,
New York.

Chaitin-Chatelin, F. and Frayssé, V. (1996), Lectures on Finite Precision Computations,
SIAM Press, Philadelphia.

Trefethen, L. N., Trefethen, A. E., Reddy, S. C. and Driscoll, T. A. (1993), ‘Hydrodynamics
stability without eigenvalues’, Science 261, 578-584.

65

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Barrett, R., Berry, M., Chan, T., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V.,
Pozo, R., Romine, C. and van der Vorst, H., eds (1993), Templates for the Solution of
Linear Systems: Building Blocks for Iterative Methods, STAM, Philadelphia.

HSL (1996), Harwell Subroutine Library. A Catalogue of Subroutines (Release 12), AEA
Technology, Harwell Laboratory, Oxfordshire, England. For information concerning HSL
contact: Dr Scott Roberts, AEA Technology, 477 Harwell, Didcot, Oxon OX11 O0RA,
England (tel: +44-1235-432682, fax: +44-1235-432023, email: Scott.RobertsQaeat.co.uk).

Duff, 1. S. (1997), Sparse numerical linear algebra: Direct methods and preconditioning,
in I. S. Duff and G. A. Watson, eds, ‘The State of the Art in Numerical Analysis’, Oxford
University Press, Oxford, pp. 27-62.

Eijkhout, V. (1998), ‘Overview of iterative linear system solver packages’, NHSE Review.
http://www.nhse.org/NHSEreview/98-1.html.

Lehoucq, R. B. and Scott, J. A. (1996b), An evaluation of subspace iteration software
for sparse nonsymmetric eigenproblems, Technical Report RAL-TR-96-022, Rutherford
Appleton Laboratory.

Lehoucq, R. B. and Scott, J. A. (19964), An evaluation of Arnoldi based software for sparse
nonsymmetric eigenproblems, Technical Report RAL-TR-96-023, Rutherford Appleton
Laboratory.

Saad, Y. (1992), Numerical Methods for Large Eigenvalue Problems, Manchester University
Press, Manchester, UK.

Golub, G. H. and van der Vorst, H. A. (1996), Closer to the solution: Iterative linear
solvers, in 1. S. Duff and G. A. Watson, eds, ‘The State of the Art in Numerical Analysis’,
Oxford University Press, Oxford, pp. 63-92.

van der Vorst, H. A. and Golub, G. H. (1996), 150 years old and still alive: Eigenproblems,
in 1. S. Duff and G. A. Watson, eds, ‘The State of the Art in Numerical Analysis’, Oxford
University Press, Oxford, pp. 93-119.

66

