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Abstract

One problem frequently encountered in the simulation of real materials, like amorphous
solids, liquids, complex surfaces or defects, is that the positions of the constituent atoms are
not well known from experiment, and must be determined from the calculations. This can
be done with Monte Carlo or molecular dynamics simulations based on the calculation of the
total energy of the system. If the volume or cell shape of the material is not known, then
variations in cell shape have to be included in the simulation. Here we review briefly variable
cell-shape molecular dynamics methods, present a new approach, and give a few examples
of variable cell-shape molecular dynamics and structural optimization for MgSiOs, Si and

ternary Ca nitrides using forces calculated from first principles.

7.1 INTRODUCTION

With the development of new simulation methods and the increase in available computational
power, molecular dynamics has become an important tool in the simulation of matter in the
condensed state [1, 2]. In its simplest applications, molecular dynamics is used to integrate
Newton’s equations of motion for the nuclei subject to empirical forces. For example, one
would choose a Lennard-Jones potential to simulate liquid argon, or a Born-Mayer potential
to simulate NaCl. Starting with the Car-Parrinelo method, [3] it has been possible to use
in molecular dynamics simulations forces that are determined from first principles quantum-

mechanical calculations of the electronic structure.

In the simplest molecular dynamics schemes, the shape of the simulation cell and number of
particles are held constant, and the integration of Newton’s equation of motion with forces
derived from a potential conserves the energy (within the precision of the integration scheme),

and one expects to be simulating a micro-canonical ensemble. However, in laboratory conditions,
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one often controls the intensive variables temperature 7" and pressure p, instead of the extensive
variables F/ and V. Therefore more subtle molecular dynamics schemes were developed to
simulate systems at constant temperature or pressure [1, 2, 4, 5, 6, 7, 8]. In the case of constant
pressure simulations, the size and shape of the simulation cell must be allowed to change. In order
to do so, an “extended system” is constructed which includes degrees of freedom for the cell. A
microscopic simulation of the structural, mechanical, and dynamical response of material systems
to external stress of interest in tribology, material fatigue and wear, crack propagation, stress
induced phase and structural transformations, lubrication and hidrodynamical phenomena, is
more conveniently done with varying cell shapes. In this highlight we review briefly variable
cell-shape molecular dynamics methods, present a new approach, and give a few examples of

structural optimization from first principles.

7.2 VARIABLE CELL-SHAPE MOLECULAR DYNAMICS

Andersen [6] proposed to use the volume V' of a cubic simulation cell as a dynamical variable
in an extended hamiltonian, thus allowing for volume fluctuations (but not shape fluctuations)
driven by the dynamical imbalance between the imposed external pressure, pexs, and the actual
instantaneous internal pressure, pin (given by the virial theorem). As the simulation cell is peri-
odically repeated, the dynamics associated with the cell is not physical, but is a computational
trick to allow a relaxation of the cell. In the extended lagrangian for the dynamics, Andersen

included a fictitious kinetic energy term associated with the rate of change of volume,

Kl = @‘727 (1)
where W4 is a fictitious “mass” associated with the cell. He also added the term Ugel = pextV/,
which is the potential from which the constant external pressure acting on the cell is derived.
During the simulations, the volume V fluctuates about an average value such that, in the limit of
long simulation times, the time average of the calculated internal pressure is equal to the chosen

external pressure, P;, = Pext- 1 he equations of motion can be derived from the Lagrangian,
. 1 .
La=K2+ 2 Z m(k)7% (k) — Umodel — PextV (2)
k

where r(k) is the position of particle &k, and Upodel is our interatomic potential (Lennard-Jones,

Kohn-Sham total energy etc...).

Andersen’s method is best suited to study equilibrium properties of fluids, for which the shape
of the cell is irrelevant. To study shear flow (viscosity) in fluids or to study solids it is not enough
to change volume with constant shape. For example, a given cell shape may be compatible with
the periodicity of one crystal structure and be incompatible with another solid phase, and so
the fixed cell shape may artificially prevent the appearance of thermodynamically more stable
phases. In order to study structural phase transitions, Parrinello and Rahman [7, 8] extended
Andersen’s method to allow for changes in both the volume and the shape of the cell. They

used as dynamical variables the cartesian components
hi; =€ - a;
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of the three vectors @; defining the periodicity of the simulation cell. Here €&; are the three
orthonormal vectors that define a cartesian coordinate system. To generate the dynamics, a

fictitious kinetic energy of the cell

K= (hij)%, (3)

1
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is defined, where WFR is again a fictitious mass. Several authors have pointed out some short-
comings of the original method of Parrinello and Rahman: it is not invariant under modular
transformations (defined below), the consistency between the condition of mechanical equilib-
rium and the virial theorem is only verified in the large N limit, and it has spurious cell rotations
[9, 10, 11, 12].

For a given periodic system, there are infinite equivalent choices of the basic simulation cell.
If @; are three vectors commensurate with the periodic system, then the transformation 5} =
>k My;dy, with M an integer matrix with | det M| = 1, gives another set of vectors describing the
periodicity. It is desirable that the dynamics should not depend on the particular choice that is
made, i.e., the equations of motion should be formally invariant with respect to the interchange
between equivalent cells (modular transformations) [9, 10]. This characteristic improves the
physical content of the simulation, by eliminating symmetry breaking effects associated with
the fictitious part of the dynamics [10]. Of course, in the thermodynamic limit (N — oo) these
effects vanish, but they may be important in computer simulations, which may use only a small

number of particles. That is often the case in first-principles molecular dynamics [3].

The orientation in space of the simulation cell is irrelevant for the structural and thermody-
namical description of the system (principle of material-frame indifference [12]). However, it is
included in the dynamics if one uses the components of the cell edges as dynamical variables,
and spurious cell rotations have been obtained in actual simulations with the Parrinello-Rahman
method, namely in the simulation of molecules, whose internal degrees of freedom sometimes
cause the internal stress to be asymmetrical [13]. Methods to eliminate them have been pro-
posed, such as constraining the matrix of the lattice vectors to be symmetrical [13] or upper
triangular [14] (geometrical constraints), or by symmetrization of the infinitesimal strain at each

time step (dynamical constraint) [12].

A Lagragian that is invariant with respect to modular transformations was proposed by Cleve-

land. [9] He used

K&y = WTmTr(BATAHT), (4)
as the cell kinetic energy, where the matrix A is defined by A = {@y x @3, d3 X @y, @, X ds}, and
is related to the reciprocal lattice vectors. The interpretation of the definition in equation 4 is
not trivial. Wentzcovitch rederived similar expressions, [10] but she also suggested the use of

other dynamical variables in the simulation, namely the symmetric stress tensor ¢, and showed

that from the cell kinetic energy

%%
KW, = W2 Tr(eeT), (5)

one obtained a Lagrangian that is invariant with respect to modular transformations. The stress
tensor is defined with respect to a reference cell shape, h = (1 4 €)hg. The initial cell shape is

arbitrary, and the dependence of the dynamics on that choice can be removed by using what in
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material science is called the true stress, h = exp(e)ho instead of the engineering stress defined
previously.
The symmetrical metric tensor,

9i; = @; - @ = gji,
defines all the geometric properties of the simulation cell. Using it as a variable for the dynamics,
allows us to cast the problem in a metric language and simplifies the search for good cell kinetic

energies because only scalar expressions are acceptable. [15] A simple non-negative scalar that

is quadratic in the time derivatives of all the components of g is
. . we . L
Ko (95, i) = = (det gij) g (ylkgkzg”) : (6)
where W8 is a fictitious cell “mass” with the dimensions of mass times length=*.

The fictitious Lagrangian for the extended system in the presence of an applied external pressure

in this case is

Ly (s'(k), 5 (k), gij» §i) = 3 p m(k)3" (k) gi;57 (k) = U (s*(k), 9:5) +
W2 (det gi7) G:9°F Gr1g" — Pextr/det gij,

where the s/(k) are the atomic lattice coordinates defined by 7(k) = s/ (k)a;.

(7)

7.3 ANISOTROPIC EXTERNAL STRESS

A constant applied anisotropic stress is in general non-conservative, and thus there is no con-
served extended hamiltonian in a constant anisotropic stress simulation [9, 16]. Of course some
experimental situations are essentially non-conservative, and therefore best simulated by an

appropriate non-conservative dynamics [9, 16].

Molecular dynamics simulations with an applied anisotropic stress were first proposed by Par-
rinello and Rahman [8]. Ray and Rahman [17] later showed that the original formulation was
valid only in the limit of small deformations, and they proposed an extension valid for finite

deformations, in which it is the thermodynamic tension [17, 18]

V —1 __car -1
r = grhoh™ ol (") A, (8)

cart

calt is the external stress in

where hg and Vj are the reference lattice and its volume, and o

cartesian coordinates. The physical interpretation of the thermodynamic tension is not trivial.

7 the external stress in contravariant

The thermodynamic variable conjugate to the metric is o.3;,

lattice coordinates. [15] Keeping it constant when the cell deforms leads to a conservative

external stress, if one uses the potential

1
Ucell (g) - §ngtgij7 (9)

The metric notation is quite compact when compared with the definition of 7 in Eq. 8.
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7.4 STRUCTURAL OPTIMIZATION

A problem encountered in the simulation of materials is the determination of the equilibrium
structure of a crystal at a given pressure (or anisotropic stress) predicted by a given model
U (si(k),gij) of its total energy. This can, in principle, be achieved by the minimization (under
the appropriate constraint) of U, which is quite difficult because it is a multivalleyed function of
many variables. A practical strategy is to use a simulated annealing to bring the configuration
to a deep valley, followed by a search of a minimum in that valley. The annealing step can
be carried out by the variable cell shape molecular dynamics described previously coupled to
a thermostat, brownian dynamics forces, or a periodic rescaling of the velocities. The local

minimization can be done efficiently if one has the gradient of the function to be minimized.

If we want to obtain the crystal structure at zero temperature and for an applied pressure of

Pext, We must minimize its enthalpy,

H (si(k),gij) =U (Si(k),gij) + Pexty/det g;;.

The gradient of the enthalpy with respect to atomic positions is

oH  0U
dsi(k)  0s'(k)

= _E(k)7

which is minus the covariant components of the force on that atom. Notice that in molecular
dynamics derived from the Lagrangian of Eq. 7, it is the contravariant components, F*(k) =

giij(k) that appear in the equation of motion. The gradient of the enthalpy with respect to

OH ou 1 T
= —~Pex K d t 17

These gradients can be fed into any gradient based minimization algorithm to optimize the

the metric is

crystal structure for a chosen external pressure pext.

7.5 APPLICATIONS

Table I shows a comparison of calculated and experimental structural constants for MgSiOs, a
mineral with a distorted perovskite of geological importance. The calculations were done using
the strain tensor as the dynamical variable, and a damped dynamics minimization scheme. [19]
The structure is orthorhombic with lattice constants, a, b, and ¢, the other lines in the table give
the atomic coordinates. The last column gives what the values would be for an undistorted per-
ovskite structure. It is clear from the table that one can optimize quite complicated structures,

and that LDA is successful in the prediction of ground state properties of complex silicates.

Figure 1 shows the results of a first principles simulation of Si under pressure using the metric
as variable. A similar simulation using the Parrinello-Rahman Lagrangian was done previously.
[20]

It is well-known that silicon undergoes several phase transformations with increasing pressure,
and its pressure-volume phase diagram has been extensively studied [21]. Starting from a dia-
mond lattice, the structure changes at ~11 GPa into 3-Sn, and between 13 and 16 GPa trans-
forms into simple hexagonal. Other densely packed phases appear at around 38 GPa. In the first
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Calc.(Pbnm) Exp.(Pbnm) Undistorted

a 4.711 4.777 4.909
b 4.880 4.927 4.909
c 6.851 6.898 6.942
Mg, 0.5174 0.5131 0.500
Mg, 0.5614 0.5563 0.500
o) 0.1128 0.1031 0.000
0} 0.4608 0.4654 0.500
0? 0.1928 0.1953 0.250
03 0.1995 0.2010 0.250
0? 0.5582 0.5510 0.500

Table 1: Experimental and theoretical parameters of the zero pressure Pbnm phase of MgSiOs.
This phase (four MgSiO3 units) has Si atoms located at (1/2,0,0), (1/2,0,1/2), (0,1/2,0), and
(0,1/2,1/2), Mg’s at £(Mg., Mg,,1/4),£(1/2— Mg,, Mg,+1/2,1/4), and two sets of inequiv-
alent O’s at +(0},0,,1/4),+(1/2— 0,0, + 1/2,1/4) and £(02,02,0%),+(1/2 - O%,0} +
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Figure 1: The volume (in atomic units) of an eight-atom Si cell is shown as a function of the
molecular dynamics step in a first-principles simulation with an applied pressure of 25 GPa.
The volume starts by oscillating around the volume of the initial diamond phase, but after 200

steps shows a rapid decrease to values near the equilibrium value at 25 GPa.

~ 0.7 ps (200 steps) of the simulation, we observed (Fig. 1) that the volume of the simulation cell
was fluctuating around a value that corresponds to the volume of the metastable diamond struc-
ture of Si at 25 GPa (V ~ 885 a.u. for the 8 atoms of the conventional cubic unit cell). There
was then a rapid drop in the volume, accompanied by a rapid rise in the ionic temperature to
around 3500K (well above the melting point). The simulation was interrupted after 1000 steps,
well before equilibrium with the thermal bath was reached. After the transition, the volume

of the cell oscillated around 650 a.u., slightly below the volume of the stable simple hexagonal
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Experimental Theoretical Experimental Theoretical

compound AsNCajs AsNCajs PNCas PNCas
a (A) 6.716 6.720 6.709 6.707

b (A) 6.711 6.715 6.658 6.659

¢ (A) 9.520 9.526 9.452 9.451

Ay 0.0329 0.0400 — 0.0464
Ay 0.0321 0.0400 — 0.0459
5 0.0209 0.0265 — 0.0396
o 0.0399 0.0510 — 0.0747
72 0.0048 0.0100 — 0.0220
A 0.0000 0.0032 — 0.0084
Ao 0.0170 0.0263 — 0.0449

Table 2: Experimental and numerical results for the lattice and distortion parameters of AsNCags

and PNCas.

structure at that pressure, but above the density of the close-packed structures. Remembering
that at atmospheric pressure Si contracts upon melting, and considering the high temperatures
of the simulation, our results indicate that at high pressures, the liquid phase may still be denser

than the solid phase.

Table 11 shows the results of an optimization of the structure of ternary calcium nitrides using
the metric as variable, [22] compared to the experimental results. [23] The material is an anti-
perovskite, and again the distortions from the ideal crystal (small parameters in the table) is
correctly predicted by the calculations. This last results are from a Lisbon-Antwerp collaboration

that received psik support.

7.6 CONCLUSIONS

Variational cell-shape molecular dynamics can be used in structural optimization, or the sim-
ulation of phase transitions. It is only recently that it started being applied to real materials
with forces and stresses derived from first principles total energy calculations. As the dynamics
of the cell is fictitious, the choice of the kinetic energy associated with the cell motion is not
unique. In fact even a choice of the dynamical variables associated with the cell motion has to
be made. The original choice for the cell variables were the cartesian components of the cell
vectors, but choosing the strain tensor or the metric tensor has some advantages. We expect
that first-principles variational cell-shape molecular dynamics will become a very useful tool in

the study of equilibrium structures in crystals at a fixed pressure.
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