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8.1 Introduction

In July of this year J. Bernholc and I organised a workshop at CECAM with the theme of “Grid,

” About 25 researchers

Multigrid and Wavelet Methods in Electronic Structure Computation.
from Europe, USA and Japan came to discuss new approaches to electronic structure calculations
based upon these ideas. The goal was to develop a next generation of DFT codes for total energy
and molecular dynamics calculations which would work entirely in real-space. Rather than
traditional real-space quantum chemistry basis sets, such as Gaussians, the workshop focussed
entirely on grid based methods. The motivation being that such methods retain complete
flexibility in the form of the wave functions. Many of the methods discussed are well known in
other numerically intensive computing fields, such as finite elements, multigrids and wavelets,
but so far have not been widely used in electronic structure. From the progress reported at the
workshop it seems clear that some of these methods will indeed play an important role in the

future.

In this article I intend to give a brief overview of the motivation behind this work. Then I shall
describe in more detail one particular approach, based on the elegant mathematics of wavelet
theory. Hopefully this article will highlight some of the advances which have been made, as well

as the difficulties which have yet to be overcome.
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8.2 Motivation

The readers of this newsletter will, of course, be well aware of the capabilities of modern electronic
structure algorithms. Using the Car Parinello algorithm together with a plane wave basis set
and separable norm-conserving pseudoptentials accurate ab initio calculations are now possible
for very complex systems with several hundred inequivalent atoms. The impressive examples
shown by Parinello and others at the ¥, network conference included direct simulation of liquids,

reaction dynamics of large molecules, and determining the structure of biological molecules.

The plane wave basis sets used in these calculations have many advantages, in particular:

1. The speed of the Fast Fourier Transform (FFT).
2. The ability to compute the Hellman Feynman forces on the ions.

3. The plane wave cut-off can be easily adjusted to ensure convergence.

These have made plane wave pseudopotential methods very popular because they are fairly

simple to implement, fast, and relatively straightforward to run.

However, despite these advantages the plane wave basis set also has several disadvantages or

factors which limit potential applications. These problems include (in no particular order):

1. Each basis state extends throughout the whole unit cell.

2. The FFT requires a uniform spacing of grid points everywhere in the unit cell.

3. The boundary conditions must be periodic and hence the unit cell must be charge neutral.
4. The FFT is not convenient for massively parallel computation.

5. ‘Hard pseudopotential’ atoms, such as transition metals, are expensive to include.

Problems 1-3 are specifically due to the nature of plane waves and of the FFT. In particular,
problem 1 means that plane wave basis sets are not useful for O(N) algorithms, for which the
computational time is proportioal to system size. Standard plane wave algorithms, such as
Car Parinello, scale with N3 for large systems because of the time to keep the occupied wave
functions orthogonal to each other. The various O(N) algorithms build in the near-sightedness’
of the total energy by working with real-space representations of the density-matrix. Real space

bases are thus essential.

Problem 4, the difficulty of parallelization, is a consequence of 1, the global nature of the plane
wave basis. Of course parallel FFTs do exist, however, unless each computer node has enough
memory to store the whole FFT grid for all the occupied states for a given k point, significant
data communication between nodes is inevitable. In contrast the O(N) algorithms are naturally
parallel since the near-sightedness implies that distant regions of space are quite independent,
and so can be handled in parallel. In fact any real-space basis set makes parallelization relatively
simple by domain decomposition, reducing communication to only the data associated with the

boundaries between domains.
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Problem 5, the hard pseudopotential problem, is difficult to surmount with any completely
general basis set. Of course LMTO and LAPW methods are very successful for transition
metals. However, forces are difficult for molecular dynamics applications. Soft pseudopotential
methods are now making some transition metal systems quite feasible with Car Parinello type
methods. To some extent the real problem with these systems is the requirement of a uniform
grid spacing (problem 2 above). The higher cut off involved in adding even one transition metal
atom to a system requires a denser grid everywhere throughout the cell. On the other hand, this
problem would be overcome by using finite elements, adaptive grids or wavelets. These methods
allow the program to (automatically) allocate more grid points where needed so reducing to a

minimum the computationl cost ascociated with hard pseudopotential atoms.

Why are grid methods to be preferred over other real space basis sets such as Gaussian orbitals?
Gaussian basis sets are ubiquitous in quantum chemistry, and are also well known in solid state
calculations. Tight binding LMTO and screened KKR methods also provide ab initio real-space
basis sets. The main motivation for the grid based methods is their complete flexibility. The
calculation will be gauranteed to converge to the exact answer for all atomic geometries without
user input based on ‘physical intuition’. Physical intuition may help in choosing ‘good’ basis
sets, but can also be misleading if the intuition is wrong! For those of us who have difficulty in
visualizing wave functions in 100 atom non-periodic systems it is very helpful to have a single
parameter, say a grid spacing h, and know that A — 0 is always the exact answer. Standardized
Gaussian basis sets are certainly useful to obtain ‘chemical accuracy’ ~ 0.01 — 0.1eV /atom, but
for problems requiring higher precision (e.g. energy differences between polytypes, magnetic
coupling, testing DF'T functionals) it can be important to ensure that basis set error is negligible.
To some extent grids methods and Gaussians can be useful as complimentary methods, for
example using accurate grid calculations to benchmark Gaussian basis sets, or using novel grid

methods to improve the speed of Gaussian based calculations.

At the CECAM workshop several different grid based methods were discussed. These included
real-space finite difference methods [1, 2], adaptive curvilinear coordinate methods [3, 4], finite
element methods [5], multigrid methods, [6] interpolets [7], and wavelets [8, 9, 10, 11]. The
limited space here does not allow me to describe them all. Below I shall focus entirely on the
wavelet approach. Wayvelets are a simple and elegant mathematical concept, as I shall try to
show below. Applying wavelet ideas to electronic structure calculations is far from complete at
the present time (although several groups are working on development), however I shall try to
give some general ideas about how wavelet ideas can be applied in practical electornic structure

calculations.

8.3 The Wavelet Concept

‘Wavelet theory’ became a substantial field of mathematics following some key developments in
the early 1980’s. The original ideas built on physics concepts, such as scaling transfomations
and localized wave packets, developing a powerful mathematical formalism from these concepts
[12, 13]. Very quickly the wavelet ideas were applied in signal analysis and image compression
problems. Work on a variety of ordinary and partial differential equations also developed. The

first application of wavelet concepts to electronic structure calculation was by Cho et al. [§]
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.and more recently by Wei and Chou [9].

The central idea is the concept of a multi-resolution analysis. Normally in signal analysis one
samples a signal f(z) at a constant rate, corresponding to a uniform set of points, f(z,), z, = nh.
Obviously h defines a fixed resolution and Fourier components of f(z) can be found up to £7/h.
The similarity with plane wave pseudopotential calculations is clear. To do better than this one
would like to adjust the resolution i depending on whether f(z) is slowly or quickly varying in a
given place. In a multiresolution analysis one divides f(z) into component parts, where each

component contains the data expressed as well as possible at a given resolution length scale.

The multiresolution analysis process is remarkably similar to the Kadanoff block spin transfor-
mation in phase transition theory. The idea is to develop a nested sequence of Hilbert spaces
corresponding to coarser and coarser length scales. Suppose there are N function values fo(z,,),
z, = nh = nL/N. The set of all possible function values is an N dimensional vector space, Vj.
Using a block-spin idea we can easily imagine transfomations where we eliminate ‘fast modes’
and define N/2 new function values fi(z,), z, = nh for even values of n. The space of such

functions f; obeys
Vo> W (1)

Repeating the process to decimate again and again we can generate a sequence of spaces on
coarser and coarser scales
Vo> Vi>Vo>Ve> ... (2)

Space V,, has dimension N/2P. The sequence obvously ends when there is only a single data
point left. A specific example of such scaling transfomation might be an average or sum of

adjacent points
for1(@n) = fo(2n) + fp(2nta) (3)

where d = 2P the spacing of points in function f, is 2Ph. For simplicity | assume periodic
boundary conditions, n4+ N = n. The coarse grained functions f,, contain all of the information

present in the function at the given scale of resolution.

The above scaling transformation ‘coarse grains’ the function onto longer and longer length
scales. However it is not invertible, since we have not yet defined a way to go back form the
coarse grained data to a finer scale. The wavelet transformation does that, making an invertible
(and in some cases unitary) transform. What is needed is to retain information about the high
frequency components. For example to invert Eq. 3 we obviously need to retain information

about the differences:
hp+1($n+d) = fp(ibn) - fp($n+d)7 (4)

with d = 2P. This defines a new sequence of functions h, p = 1,2, ... containing only the high
frequency data. In terms of the Hilbert spaces, the N/27 dimensional space V), has been divided
into two spaces of half the size:

Vo = Vo1 © Wya (5)

where W, is the space of possible functions h,. Scaling several times, the original function N

dimensional space V) has been divided into spaces of dimension N/2, N/4, ...

Vo=WiaW,&...6 Wea Vp. (6)
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The final space Vp can contain as little as one point.

The ‘fast wavelet transform’ (FWT) of a function f,(z,) in this example is a band matrix

multiplication:
fp+1(.230) 1 1 0 0o ...... fp(mo)
hpt1(zq) 1 =10 0 ...... fp(zq)
fp+1($2d) _ 0 1 1 ... fp(;ﬂgd) (7)
p+1(.r3d) 0 1 -1 ...... fp(;ﬂgd)

This is obviously unitary, apart from an overall factor of 1/4/(2). The inverse transform is
thus also simply a matrix multiply, using the transpose of the above matrix. To scale from the
original function from fy to fp requires repeating the above matrix multiplication to p = 0,
p=1,p=2,...p= P—1. If the original data has N points, the CPU time to do this is of order
N+ N/2+ N/4+4...=2N. The FWT is thus an O(N) algorithm, rather than the O(N log N)
FEFT. The particular form for the matrix in Eq. 7 is called the Haar wavelet transform. The
Daubechies wavelet transforms are also unitary band matrix multiplications, only with a longer
bandwidth of 4, 6 or higher. Coding subroutines to do these transforms is simple. Examples are

given in Numerical Recipes (2nd Edition only!) [13] or are available form the author. [11]

What is the physical meaning of the coefficients h,(z,)? They are the coefficients of the function
expanded in a new basis, the wavelet basis. This is just like Fourier coefficients which are
expansion coefficients of a function in a basis of plane waves. Hence there exist functions

P1(2n), P2(z,) etc. such that

flzn) = Zphi(zm)dim(za) + (8)
Yo ha (@) Yom (20) + (9)

o (10)

Yo hp(Tm)PPm (2n) + (11)

2o OPm (20) fP(2m). (12)

The function has thus been decomposed by the FWT into its components on the different basis
functions ©1,,, o, .... At the longest lengthscale there is a wavelet ©¥p,,, and also a second
function, ¢p,,, usually called the scaling function. (Another more picturesque name is the
‘mother wavelet’ 1p,, and the father wavelet ¢p,,. The smaller scale wavelets 1, are then
‘daughter” wavelets. There are no sons!) Figure 1 shows the father wavelet, mother wavelet and

some daughters for the Daubechies D-4 wavelet transform.

For the Haar and Daubechies wavelet transforms these basis functions are orthonormal. This
follows simply because the wavelet transform is unitary. (Recall that unitary transformations,
such as Hermitian matrix diagonalization, always preserve the orthonormality of basis vectors).
Thus the vectors ¥, () and s,/ (x,,) are orthogonal to each other under translation, m # m/,
and under changes of scale, p # p’. The wavelets, t,,,(z,), are also orthogonal to the scaling

function ¢p,, on the longest scale.
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Figure 1: Daubechies D-4 wavelets and scaling function. From left to right: the scaling function
(or father wavelet), ¢p,, (), the longest scale wavelet (or mother wavelet), ¥p,,(z), and two

smaller scale (daughter) wavelets, 1,,,,(z). The heights have been rescaled for clarity in the plot.

This orthogonality persists after any number of scaling transforms. An amazing consequence of
this is that there is a continuum limit N — oo in which the Daubechies wavelet is defined for all
z, Ypm (), not just on a set of discrete points. These continuum functions are compact (vanish

exactly outside a finite interval), and are again orthonormal under all integer translations and
scaling by powers of 2:

[ o @ () = SpimiByy (13
with
Ppm () = 27P/24p(27P2 — m). (14)

The Daubechies wavelets (plus the scaling functions) defined in this way form a complete or-

thonormal set of functions. Using the Haar wavelet transform of Eq. 7 the base wavelet turns
out to be just:

+1 0<z<1/2
Plr)=49 -1 12<z<1 . (15)
0 otherwise
It is easy to see that this function obeys the orthogonality relations 13 under scaling by any
power of two, or under translation by any integer. The Daubechies D-4 wavelets in Fig. 1 do
not have a simple analytic formula, but can also be proved to be orthonormal under scaling and
translation. Unlike the Haar wavelet they are also continuous functions, but unfortunately are

not differentiable. Higher order Daubechies wavelets (D-6, D-8 | ...) exist and are smoother,

at the expense of being wider in their range of support.

These wavelet bases are useful because of the way they separate contributions from different
length scales. If a function is smooth then the high frequency components (h,(z,,) for small p)
will be negligible. However, unlike simple Fourier filtering of the high frequencies the wavelets

also retain spatial information. If f(z) has rapid variation in some region, say near zg, and is
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smooth elsewhere then the wavelet coefficients h,(z) will be negligible except near zo. Retaining
the big coefficients near zg and dropping the others one can represtent f(z) very compactly.
Because high frequencies are retained where needed the function retains its sharp fetures, while
saving storage by eliminating high frequenciy components where the function is smooth. It is for
this reason that wavelets have found important applications in image compresson algorithms.
One minimizes storage by efficiently representing the regions where the image varies slowly,
while still retaining sharp edges where the function varies rapidly. Typically wavelet methods
can effectively reduce image data set sizes to of order 1%. In the electonic structure context the
analog is clear. One wants to represent the regions where the wave function is smooth using
relatively few coefficients, while retaining high frequency components where the wave function

has rapid variation, e.g. near the atomic cores.

8.4 Cubic B-spline Wavelets

There are many different types of wavelet optimized for various properties. The Daubechies
wavelets have the advantage of compactness (vanishing exactly outside some interval) and or-
thonormality. However the Daubechies wavelets are not very smooth, as Fig. 1 shows for the
D-4 wavelets. The higher order Daubechies wavelets are smoother, but at the expense of ex-
tending over a longer range. Wei and Chou recently applied D-6 wavelets to electronic structure

calcualtions.

I have chosen to work with wavelets derived from cubic B-splines [14]. These are a good compro-
mise between smoothness and compactness. They are not orthogonal, but this is not necessarily
a problem in quantum mechanics applications. A B-spline (basis-spline) is a localized function
made out of smoothly joined polynomials [15]. For evenly spaced points (called spline knots),

spacing h, and using cubic polynomials the basic B-spline is simply

(2+z/h)*/6 —2h <z < —h
(4 —6(z/h)* = 3(z/h)*)/6 —h<2<0
(4—6(z/h)2+3(z/h)?)/6 O0<z<h
(2 —(z/h))?/6 h <z < 2h.

bo(z) = (16)

By construction bg(z) is compact and twice differentiable. Making a set of N functions by

translation (again with periodic b.c.),

bom () = bo(z — 21n)) (17)

for x,, = mh, yields an N dimensional Hilbert space. A function in this space is of the form
flz)= meb()m(a;). (18)

Any such function is obviously a cubic polynomial between the knots, z,,, and is continuous
and smooth at the knots. l.e the function is a spline function, such as those found by spline
fits interpolation of N evenly spaced data points, f(z,,)). The Hilbert space spanned by the

B-splines is the space of all such spine functions.

This Hilbert space is convenient for doing quantum mechanics since all functions in the space

are necessarily twice differentiable. Furthermore smooth wave functions are well represented in
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this basis set because they are locally close to polynomial. A simple estimate of the error in such
a basis comes from calculating the kinetic energy of a plane wave (z) = exp (ikz) represented
in the basis. The energy is e(k) = k?/2 + O(k°h®), showing a very rapid convergene as h — 0,

similar to that of a high order finite difference scheme.

The cubic B-splines can be made into a wavelet basis set by considering changes of scale. Defining
bi(z) = bo(z/2) (19)

gives a function exending over range wider by a factor of 2, from -4h to +4h. This function has
spline knots at at the even numbered points # = 2nh. Translating this function, by, = b1(z—2,,)
for n = 0,2,4,..., gives a Hilbert space of dimension N/2. This space is exactly contained in
the original N dimensional space, since any spline function defined at N/2 evenly spaced knots
is obviously a special case of splines defined at N knots. We thus have a situation exactly like

Eq. 1. In fact one can easily verfy that the B-splines obey the ‘scaling equation’

bi(2) = b0($8— 2h) 4 bo(xQ— h) n SbZ(x) 4 b0($2—|— h) 4 bo(z ;— Qh)‘ (20)

Taking a function defined on the original N basis functions bg,,, and projecting a function onto
the N/2 dimensional space defined by the by,, is exactly analogous to the coarse graining in
Eq. 3. The corresponding wavelets represent the high frequency information not included in the

coarse graining. In this case a suitable compact, smooth and symmetric wavelet is

ey = ATy gy Dl D), (21)

Repeating the scaling proceeduce produces wavelets on longer and longer length scales wq, w3
etc, similar to the Daubechies wavelets. After a B-spline wavelet transform the original function,

Eq. 18 is thus expanded in terms of this wavelet basis as follows:

f(z) = Y him i () +
> homwam (z) + ...
—}-thm'wpm(;r) + prmbpm(.r) (22)

quite analogously to Eq. 12. The B-spline functions bp,,(z), are wp,,(z) are shown in Fig. 2.

One can also scale the other way, to finer and finer scales. This defines wavelelts wg,,, w_1,,,
W_gm,. ... Since wpy, corresponds to a spatial resolution h = 2PL /N this is equivalent to adding
points giving higher and higher resolution in the wave function. The basis set is clearly complete
in this A — 0 limit.

8.5 Electronic Structure with Wavelets

Applying these wavelet bases to electronic structure problems is simple in principle, but not so
easy in practice. The first change from a plane wave pseudopotential method into a wavelet

basis is to replace the usual FFT evaluation of the Bloch wave functions

e () = % %: e oxp [i(k + G) 1] (23)
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Figure 2: Cubic B-spline scaling function and wavelets of increasing resolution.

with a corresponding fast wavelet transform. In the case of B-spline wavelets this is

1

¢nk(r) = \/ﬁ (pzm hpmnkwpm(r) + %: menkam(r)> . (24)

where P is the coarsest scale of wavelets included in the basis set. Here for brevity p = (p1, p2, p3)

and the three dimensional wavelets are just products of 1-d wavelets

wpm(r) = Wpym, (rl)wp2m2 (TQ)wpsms (7“3) : (25)

For general unit cells it is convenient to change variables so that
r = ria; + rqa; + ras (26)

where a; etc. are the Bravais lattice vectors. In terms of the r; the unit cell is then just the

unit cube 0 < r; < 1.

Instead of the FFT one uses the wavelet transform Eq. 7 (actually the inverse of Eq. 7) to
expand out the long scales and hence evaluate 1,x(r) in real space. From ,k(r) one can
obtain the charge density n(r), Coulomb potential and so on. Since the wavelet fransform is
similar in speed to the the FF'T (actually N not Nlog N)) this is clearly a competitive method.
Furthermore the wavelet transform can be made even faster is one can make use of the fact that
most of the wavelet expansion coefficients (the h,,, in Eq. 12) will be negligible. Thus with a
wavelet basis one can hope to save in terms of memory used (only non-zero Ay, need be stored)
as well as CPU time.

Several groups are now working on wavelet methods in electronic structure [8, 9, 10, 11]. Other
closely related approaches, such a multi-grid methods, finite elements and interpolets are also
under development. In principle these efficient basis sets can also be combined with the advan-
tages of massively parallel and/or order N algorithms. It will be exciting to see just what sort of

physics problems will be solvable in the future with these powerful combinations of techniques!
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