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Abstract

We report on progress in the Questaal, a CCP9 flagship electronic structure package written for
electronic structure methods of the future. Questaal has a density-functional implementation with
many features similar to other large scale packages, but its unique features are in its implementation
of Green’s function methods. Questaal has a two-track implementation of Green’s functions: through
many-body perturbation theory and through Dynamical Mean Field theory. The first path is based
on the Quasiparticle Self-Consistent GW (QSGW ) approximation. This is important because QSGW
does not rely on DFT, which dramatically improves on the quality and reliability of MBPT. We show
how, in contrast to DFT-based GW, QSGW predicts one-particle properties such as energy band
structures, and two-particle properties such as susceptibilities, in a consistent and uniform manner,
provided spin fluctuations are not strong. DMFT provides the essential additions to QSGW to
handle spin fluctuations. We show how extensions to QSGW can provide a high-fidelity description
of both one-and two particle properties for a remarkably wide range of properties and materials
systems. We show how some extensions of QSGW +DMFT provides a promising path for ab initio
description of unconventional superconductivity.

Questaal is a suite of several codes. One is a layer code, based in density functional theory, that
implements non-equilibrium transport in Landauer-Buttiker approximation. Some novel features
and applications are outlined. There is also emerging a new functionality, phonons and the electron-
phonon interaction based on MBPT. This represents a significant advance over the usual DFPT
approach.
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1 Introduction

This highlight summarises some features of Ques-
taal as it is currently implemented[1], and it also
points to new developments that will soon be-
come operational, in particular a new basis set,
advances in predicting properties of unconven-
tional superconductors, and modelling of spin-
torque and JMRAM devices. While its present
form as a CCP9 community code is fairly recent,
Questaal is a long established code. It got its
start in the 1980’s, in O.K. Andersen’s group in
Stuttgart. Andersen, who formulated the mod-
ern theory of linear band methods, developed a
standard package based on the LMTO-Atomic
Spheres approximation. It has evolved a great
deal since then, with many innovations have
been built into Questaal and its antecedents. It
was one of the first noncollinear magnetic codes
and the original ab initio description of spin
dynamics was implemented in it, as were the
first calculations of electron-phonon interaction
for superconductivity, of instanton dynamics,
of impact ionisation, of exact exchange and ex-
act exchange+correlation; the first GW imple-
mentation based on an all-electron method, and
extensions to include spin fluctuations through
Dynamical Mean Field Theory, and an early
density-functional implementation of nonequilib-
rium Green’s functions for Landauer-Buttiker
transport. Questaal is a community code which
descended from these prior developments – de-
tails about the project can be found in a recent
review [1].

2 Present Status

Present-generation advanced electronic structure
codes for solids are grounded almost entirely on
DFT and many-body methods that extend a
DFT starting point (DFT++). But because
DFT, in practice, depends on an uncontrollable
ansatz, such a model is ill-suited as a foundation
for realising the fully predictive paradigm of the
future. Our vision is to create a scalable soft-
ware package fully constructed around a Green’s
function framework, without reliance on DFT or
extensions to it, capable of accurately predicting
an intrinsically diverse range of static and dy-
namical materials phenomena in an integrated
and hierarchical manner. Creating such a code
offers a completely fresh approach to the many-
body problem, one that starts from a point far
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Figure 1 – (top) Ionisation potential, IP, of TM atom
and (bottom) heat of formation ∆E of transition-
metal dimers computed within the Random Phase
approximation,selecting various choices of starting
point. Note the dramatic difference between Hartree-
Fock and PBE starting points. Of the common semi-
empirical functionals, HSE06 (not shown) is the clos-
est to QSGW. In QSGW errors are slightly larger
than “quantum chemical” accuracy which can be
achieved with high-level quantum-chemical methods
for small molecules. Data were compared to reference
CCSD(T) for the ionisation potential and experiment
for ∆E.

superior to DFT, and moreover, one that can
be systematically improved. It is much better
positioned to achieve the prescriptive design of
functional materials, because as successful as
DFT is, extensions to improve on it cannot be
systematic. The result is inevitably a patchwork
quilt of extensions, as is found today.

The twin features of most established codes
(planewave basis, and density functional theory)
that have contributed so much to the success of
electronic structure theory, and still do, will even-
tually constrain the power and reach that more
powerful Green’s function methods can offer in
these codes. A testament to the success of DFT is
its widespread adoption and extensions through
a plethora of specialised strategies and patchwork
of extensions that, e.g., correct quasiparticle lev-
els or level alignments, incorporate dispersion
forces, improve reaction energies, improve the
charge density or magnetic properties, or include
dynamical fluctuations to handle strong correla-
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Figure 2 – Energy bands in TiSe2 (in eV), for the
undistorted P 3̄c1 structure. (a): solid lines are LDA
results, with red and green depicting a projection onto
Ti and Se orbital character, respectively. Blue dashed
line shows shifts calculated in the GW approximation
based on the LDA. (b): blue dashed line shows results
from GW based on the LDA (same self-energy as in
panel (a)), with an extra potential ∆V LDA deriving
from a charge density shift computed from the rota-
tion of the LDA eigenvectors. Solid lines are QSGW
results, with the same colour scheme as in panel (a).

tions. However, it is increasingly recognised that
unsystematic and uncontrollable errors inherent
in DFT ultimately limit what such a strategy can
do. The adverse consequences are well known to
DFT++ practitioners; they are especially appar-
ent when materials are correlated or chemically
heterogeneous.

Figs. 1 and 2 adopt two examples from Ref. [1]
to illustrate this point. Ambiguities in the start-
ing point (selection of one-body Hamiltonian
used to make, e.g. GW ) make it difficult to
know what errors are intrinsic to the theory and
which are accidental. The literature is rife with
manifestations of this problem; see e.g. Ref. [2].
Fig. 1 shows the ionisation potential of 3d tran-
sition metal atoms and the heat of formation of
3d-O dimers,∗ computed by the molgw code [4].
Note how results depend sensitively on whether
the one-body Hamiltonian generating W or GW

∗We focus on these properties because it is known,
e.g. from Ref. [3], that the RPA tends to systematically
overbind, and the error is connected with short-ranged
correlations. The ionisation potential and the dimer for-
mation energy, both of which benefit from partial cancel-
lation of such errors, are much better described.

is based on PBE or Hartree Fock. Quasiparticle
self-consistency[5, 6, 7] largely removes the am-
biguity so that the errors intrinsic to the GW
approximation can be best elucidated. It should
moreover, yield better RPA total energies on av-
erage than those calculated from other starting
points, because the path of adiabatic connection
is optimally described [7]. With the exception of
Cr (an outlier because of strong spin fluctuations;
see §6), results in the Figure largely support this
argument.

Fig. 2 shows the energy band structure of
TiSe2, a layered diselenide with space group
P 3̄m1. Below Tc=200K, it undergoes a phase
transition to a charge density wave, forming a
commensurate 2×2×2 superlattice (P 3̄c1) of the
original structure. It is well known that LDA-
based GW has a tendency to slightly under-
estimate the gap which can be problematic in
narrow-gap systems†. TiSe2 is an unusual case
because GW based on LDA significantly over-
estimates the band gap. Self-consistency sig-
nificantly modifies the Hartree potential, which
reduces the gap; and so TiSe2 suffers from the
opposite problem than is usual. This correction
turns out to be a common feature in polar com-
pounds generally (see e.g. Fig. 3 in Ref. [6]),
but the gap is small in TiSe2 so the difficulty is
more easily uncovered.

Finally, self-consistency is essential for any
proper description of magnetism: local moments
that form are sensitive to it. For an example,
see the discussion of VO2 in §5.

A corollary to the success of DFT++ is the
pervasive use of planewave (PW) basis sets for
implementation, because they can be system-
atically converged. However, it has long been
known that many-body effects in a PW basis
are painfully slow to converge, and the difficulty
becomes increasingly acute the stronger the cor-
relations (which are naturally localised). Even
with leadership-class computing resources, severe
computational demands limit the scope of acces-
sible properties. This results in a multiplicity
of strategies to truncate, interpolate, transform,
approximate, or otherwise avoid the problem of

†GLDAWLDA is often problematic when LDA inverts
the gap; for example in PbTe the L+

6 and L−6 are inverted
(see Fig. 13 of Ref. [1]). When GW is added to LDA
perturbatively, the ordering at L is corrected, but the
inversion in the gap cannot be topologically disentangled
since off-diagonal parts of the self-energy are omitted.
This problem occurs in many narrow-gap semiconductors.
Ge is another example; see Fig. 5 of Ref. [8].
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Figure 3 – Questaal strategy for solving the many-
electron problem. For systems with weak spin fluctu-
ations, low-order extensions QSGW yield uniformly
accurate electronic structure (left track). Materials
with strong spin fluctuations usually require a nonper-
turbative approach (right track). Either can generate
G, which is needed to predict derived functional prop-
erties (G++). These properties can feed back at a
higher level of theory and improve G (vertical dashed
line).

slow convergence[9, 10, 11, 12, 13]. This sug-
gests that the most successful scalable electronic
structure codes of the future will not be using
a PW basis for many-body methods. Taken to-
gether with the unsystematic character of DFT,
methods that employ a rapidly converging near-
sighted basis and algorithms that do not depend
on DFT can provide an ideal and uniquely capa-
ble computational platform upon which to build
the electronic code of the future.

3 Questaal’s promise

Questaal, with a new compact real-space basis
of Jigsaw Puzzle Orbitals to be described be-
low, offers a very promising—perhaps the most
promising—path to surmount these limits with-
out sacrificing precision. The best beyond-DFT
methods start from the GW approximation and
then divide mostly into two “flavors”: nonlo-
cal but low-order many-body perturbation the-
ory, and nonperturbative but local approaches
(Fig. 3). These two tracks approximately co-
incide with actual functional materials. Those
with strong spin fluctuations are best suited to
the right track (Fig. 3) and those without strong
spin fluctuations to the left track. This assertion
is mostly (but not strictly) true, and it is largely
because the effective interaction governing spin
fluctuations is mostly local, whereas the coulomb

interaction is long ranged; but fortunately, low-
order theory appears to work very well. Sec. 5
and 6 provide some benchmarks to support these
assertions.

With a high-fidelity G in hand, functional
materials properties, such as total energy, spin
susceptibility, or superconducting gap functions,
can be reliably derived (G++ in Fig. 3). Fi-
nally, some of these derivative properties can feed
back to G to include higher-level diagrams and
can systematically improve it. In special cases,
additional refinements to G are needed. One
such example is the low-temperature nematic (or-
thorhombic) phase in FeSe: neither QSGW nor
QSGW +DMFT seems to adequately describe
nonlocal spin fluctuations need to fully discrimi-
nate between the a and b axes. Fig. 3 epitomises
Questaal’s hierarchical approach. Work is in
progress to add diagrams to the self-energy not
included in the RPA. One operational example
is the addition of ladder diagrams to W ; another
is the addition of electron-phonon diagrams in a
MBPT framework.

4 Jigsaw Puzzle Orbitals

The basis set forms the core of any method that
solves the Schrödinger equation. Questaal is an
all-electron, augmented wave method. At present
its envelope functions are convolutions of Hankel
functions and Gaussian functions — generalisa-
tions of standard LMTO’s that give them more
flexibility and accuracy. Also, if needed, plane
waves can be added to the envelope functions
(APWs) [14].

Ideally, a basis set should be complete,minimal,
and short ranged, and while the existing ba-
sis are reasonably complete, they do not meet
these requirements. A new basis set that we
have dubbed Jigsaw Puzzle Orbitals will have
a unique ability to largely meet these require-
ments simultaneously, in an optimal manner. It
does so by extrapolating accurate solutions of
Schrödinger’s equation computed numerically
inside the augmentation spheres, to construct
optimal envelope functions that link nuclei to-
gether. All atom-centred methods do this, but
JPOs are unique in that the envelope functions
are constructed in a (nearly) optimal manner by
solving local Green’s function around an atom,
subject to special-purpose boundary conditions
designed to construct envelope functions which
make the kinetic energy continuous everywhere.
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The Schrödinger equation is carried entirely by
a single partial wave close to any augmentation
sphere, uncontaminated by other partial waves.
By construction, the JPO basis is thus nearly
optimal. The only errors for a given potential
are those in interpolation between augmentation
spheres, and the usual energy linearisation error.
Basis functions have exact Slater-Koster form on
the augmentation sphere boundary (Fig. 4): so
they bear some resemblance to atomic orbitals,
but they are shorter ranged.

Figure 4 – Screened d envelope functions, xy, yz,
3z2−1, xz, and x2−y2, for a zincblende lattice. Bot-
tom: Bandgap in NiO as a function of the cutoff
|R′ −R| in the QSGW self-energy Σ0

RR′ for tradi-
tional envelope functions (blue) and screened basis
set (orange). The first point contains onsite terms
only, the second adds first neighbours etc. The con-
ventional basis shows erratic behaviour until at least
the fourth neighbours are present.

To date, we have succeeded in construct-
ing “screened” versions of Questaals basis func-
tions (convolutions of Gaussian and Hankel func-
tions). Screening is reminiscent of Andersen’s
tight-binding transformation[15] of traditional
LMTOs[16] and yields short-ranged functions.
At this stage the basis set is short-ranged uni-
tary transformation of the existing Questaal ba-
sis: short range and good quality but not op-
timal. When modified to make the kinetic en-
ergy continuous everywhere, their quality should
improve significantly and yield well converged
calculations similar to LAPW. These “Jigsaw
Puzzle Orbitals” are tangentially related to An-
dersens NMTO method[17] but they are more
general, more accurate, shorter ranged, and
suited for modern full-potential methods. Even
while NMTO are ill suited to modern methods,
they demonstrate how the quality of traditional

LMTO basis sets can be dramatically improved.
They provide proof-of principle, and give us con-
fidence that JPOs will be very accurate over the
relevant energy window (in a linear approxima-
tion, roughly EF ± 1 Ry).

5 Illustrations of QSGW

Questaal is framed on a hierarchical strategy
around the premise that low-order MBPT well
describes the vast majority of cases where spin
fluctuations are not strong (Fig. 3). At the lowest
level is QSGW, which depends only minimally
on DFT. That it does not rely on DFT is cen-
tral importance to frame a consistently reliable
theory, for reasons we have pointed out in Sec. 2
and in Ref. [1].

A fair body of experience shows that QSGW
is adequate for many purposes. Note for example
the stellar agreement with ARPES in elemental
Fe, and the Fermi surface in Sr2RuO4 in Fig. 5.
Often though, errors appear. Usually they are
small and systematic, and can be traced to a
missing diagram. In such a case the present
implementation of Questaal has two routes to
improve on G. The first is a perturbative, non-
local path (1′, 2′, 3′ in Fig. 3), where low-order

diagrams are added to W to make (W → Ŵ ).
When doing so for a wide range of insulators, fun-
damental gaps are in excellent agreement with
experiment (see panel (b) in Fig. 5).

Quantities related to the two particle prop-
erties, spin and charge susceptibilities, are the
primary observables in spectroscopies. In the
MBPT context some instances of the dielectric
function are shown in Fig. 5, and the first pa-
per on spin waves based on QSGW yields very
good descriptions in NiO, MnO, and MnAs [18].
Going beyond RPA was essential for VO2, and
La2CuO4. In the La2CuO4 case it is necessary
to include ladders not only in the response func-
tion but also in the QSGW cycle (W → Ŵ in
Fig. 3). Self-consistency is necessary to get good
agreement such as shown in Fig. 5 and Ref. [18].

To date we have added ladders to the charge
channel, but other additions can be included in
this path. Savio Laricchia is nearing completion
of a project to add the electron-phonon inter-
action perturbatively [19], thus adding another
bosonic contribution to W . He has shown, for
example, that provided ladders are included in
W , he can obtain very good descriptions of the

5



(a)

0 2 4 6 8 10
0

2

4

6

8

10

experimental gap (eV)

ca
lc

u
la

te
d
 g

ap
 (

eV
)

LDA
GWLDA

QSGWRPA

QSGWBSE

QSGWBSE+eph

M
g

O N
a

C
l L
iC

l

C
h

B
N

N
iO

C
u

C
l,
G

a
N

C
o

O
,S

rT
iO

3

In
P

,G
a

A
s
,C

d
T

e
G

a
S

b
,C

d
O

In
S

b
,I

n
A

s

(b)

M

X

X

(c)

0 1 2 3 4 5 6

0

400

800

1200

1600

2000

2400

2800  BSE
 RPA
 exp

ω (eV)

σx

VO2

(M1)

(d) (e)

1 2 3 4 5 6 7 8

0

0.4

0.8

1.2

BSE(a)

BSE(c)

Baldini(a)

Baldini(c)

σ

ω

(f)

Figure 5 – Top row refers to 1-particle properties, illustrating the fidelity of the QSGW electronic structure
in cases when spin fluctuations are not strong. (a) QSGW band structure of Fe (solid lines), LSDA (grey
dashed), ARPES spectra (diamonds) and inverse photoemission spectra (squares). (b) Right: Bandgaps in
selected insulators, comparing Local Density Approximation (LDA), GLDAWLDA, QSGW RPA, QSGW BSE,
with and without an approximate phonon correction from Σe-ph. (c) ARPES and QSGW Fermi surface of
Sr2RuO4. Slight discrepancies can be observed. Bottom row shows optical conductivity or dielectric function
for three correlated materials. Generally agreement is excellent. (d) RPA, BSE, and experimental conductivity
in VO2. (e) Real part of the dielectric function in CuS along the a and c axis, showing regions of dielectric
(blue), hyperbolic (pink) and plasmonic (yellow) optical response. (f) Experimental (black) and BSE (red,
green) conductivity in La2CuO4 along the a and c axis. Discrepancies at higher ω in La2CuO4, are thought
to originate from spin fluctuations missing in QSGW. Figures are taken from Ref. [20] (panel a), a paper in
preparation by the authors of Ref. [21] (panels b and f); Ref. [22] (panel c); Ref. [23] (panel d); Ref. [24] (panel
e). Measurements in panel f are taken from Ref. [25].
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phonon contribution to the quasiparticle levels
in diamond and graphene (this will be reported
elsewhere).

Also possible, but not yet accomplished within
Questaal, is to add low order spin fluctuation
diagrams such as the T matrix [26]. All of these
diagrams improve the self-energy and make a
better G (G++ in Fig. 3).

As for the spin susceptibility, low order MBPT
can provide good results when spin fluctuations
are not large, as occurs in local moment systems
such as NiO and MnAs. But low order MBPT
is not suitable for the more interesting cases
where spin fluctuations are important, as the
next section describes.

6 QSGW+DMFT

In all of the cases discussed so far (except
La2CuO4 to some extent), spin fluctuations are
weak. As they become strong, as they do in
many unconventional superconductors and other
strongly correlated materials, the description
of one-particle and two-particle properties by
QSGW begins to break down. Often such mate-
rials are “bad metals” with a significant amount
of incoherence in spectral functions even at the
Fermi level. Augmenting MBPT with DMFT
can be essential here. The spin susceptibility
χs via DMFT is vastly better than computing
it by low-order MBPT such as T matrix. For
one, proper treatment the full three-frequency
dependent vertex (two fermionic frequencies and
one bosonic frequency) can be very important.
This is not done in practice with T matrices be-
cause of the prohibitive cost. Secondly, magnetic
energies are small (on the order of kBT ), leading
to competition between many kinds of electronic
configurations of similar low energy. This can
be seen already at the DFT level [27]. Thirdly,
because of multiple competing effects on a low
energy scale, χs can be sensitive to temperature,
and indeed we find this to be the case in systems
such as SrxLa2−xCuO4.

All of this motivates the second path (right
path, Fig. 3). It begins (1) as a construction
of a nonperturbative but local G, implemented
by augmenting QSGW with Dynamical Mean
Field theory (DMFT). DMFT generates a lo-
cal but frequency- and temperature- dependent
self-energy. It handles local correlations very
well but it misses nonlocal correlations. In the
Questaal framework DMFT is built on top of

QSGW instead of DFT, and nonlocality is built
into the bath H0. Neither DFT and DMFT have
nonlocality, but it can be important: note, for
example the orbital- and k-dependence of the
Z factor in FeSe, Fig. 6. DMFT adds another
(k independent) renormalisation to Z on top of
QSGW, and it has been argued [28, 29] that
the nonlocal correction supplied by QSGW is
important for a proper description of the spec-
tral function generated by DMFT. In Ref. [28],
Tomczak presented some evidence that for Fe su-
perconductors in the Fermi liquid regime, Σ(k, ω)
can be well approximated by a separable form,
Σ1(k) + Σ2(ω).

   Zk = (1− ∂Σ(k,ω ) / ∂ω ) |−1

FeSe 

Figure 6 – k dependent Z factor in the tetragonal
phase of FeSe, on the Z-A line, for the five d bands. Z
is computed from QSGW. Z is defined by the formula
in the figure. DMFT makes a further reduction of Z,
but the DMFT contribution to Z is k-independent.

Fig. 5 shows how the charge contribution to Σ
seems to be very well described by QSGW (or
QSGŴ ). It is widely thought that the interac-
tion kernel entering into the magnetic diagrams
is largely confined to a region centred around a
nucleus where the local moment is not negligible.
In DFT this is strictly true. The DFT ana-
logue, fxc = ∂2E/∂m∂m, is taken to be strictly
local. Thus to a good approximation the mag-
netic contribution to the potential is site-local,
which DMFT is designed to calculate with high
fidelity‡. If moreover the cross coupling between
the magnetic and charge channels is small, ap-
proximating the full self-energy Σ with a sum of

‡This argument is a little misleading. The con-
stituents of a local self-energy can originate from nonlocal
diagrams. Nevertheless it is mostly true that the great
magnetic contribution to the local self-energy almost en-
tirely originates from local diagrams.
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charge and spin diagrams

Σ(k, ω) ≈ Σc(k, ω) + Σm(ω)

is a good approximation. The cross-coupling is
usually small because their energy scales are so
different. A typical plasmon energy is in excess of
1 eV, and and a typical magnon energy typically
ranges between a few and a few hundred meV.

Moreover QSGW (or QSGŴ ) appears to do
an excellent job describing Σc(k, ω). DMFT adds
a k independent contribution to Σc, but in the
QSGW +DMFT context, its primary importance
lies in its contribution to Σm(ω). DMFT is well
suited to well capture most spin phenomena, as
it is an explicitly temperature dependent theory
that includes all local graphs.

There are some exceptions where this partition-
ing breaks down: the nematic phase of FeSe and
the pseudogap phase of SrxLa2−xCuO4 are two
instances where k dependent spin diagrams are
needed to reliably capture the phenomena. But
for the great majority of cases, QSGW +DMFT
does an excellent job in its prediction of one par-
ticle properties. It correctly describes the metal-
insulator transition in La2CuO4 induced by ex-
cited phonons, and it accurately distinguishes
which phonons can bring it about (Ref. [25]).

The material that perhaps most convincingly
demonstrates separate roles of spin and charge
is VO2. At high temperature VO2 is monoclinic
(M1 phase), which is insulating in contrast to
the rutile phase observed at low temperature.
While there has been a fair amount of debate
about the origins of the gap, evidence from GW
theory [30, 23] shows rather convincingly that
M1 VO2 is a band insulator. The unit cell of
M1 has four V atoms, which dimerise into two
V-V pairs. There is also a metastable M2 phase,
closely related to the M1 but in M2 only one
of the two V pairs dimerise. A QSGW calcula-
tion of the M1 phase[23] yields a band insulator,
similar to what Gatti and coworkers found [30],
and predicts the system is nonmagnetic. A non-
magnetic QSGW calculation of VO2 in the M2

phase, however predicts it to be a metal, in con-
tradiction to experiment. If allowed to form local
moments, it is found that moments vanish on the
dimerised pair, as in the M1 phase, but appear
on the undimerised pair. These moments are
antiferromagnetically aligned, and they cause a
gap to form, much as occurs in other antiferro-
magnetic insulators such as CoO and La2FeO4.
Above room temperature where the M2 phase is

observed, VO2 is very likely paramagnetic. Thus
we expect the gap to form in M2 only because
of fluctuating local magnetic moments, while in
M1 it is an ordinary band insulator.

M1 M2 

Figure 7 – (left) Energy band structure of VO2 in
the M1 phase, computed by QSGW. The calculation
predicts no local moment. (right) Corresponding
calculation for the M1 phase. The undimerised V-V
pair is predicted to order antiferromagnetically, with
a local moment of 0.7µB , while the dimerised pair is
predicted to have no moment.

DMFT can also be used to make the local
two-particle Green’s function. This provides a
local vertex, which when combined with nonlocal
bubbles G⊗G, yields charge and spin susceptibil-
ities that depend on both k and ω (point (2) in
Fig. 3). In the cases where we can compare to re-
liable measurements of spin susceptibility (FeSe,
Sr2RuO4, SrxLa2−xCuO4, YBCO, YFe2Ge2) we
generally find very good agreement. The strong
temperature dependence in χs sometimes ob-
served could be confirmed by neutron experi-
ments, for example. This can be very important:
calculations of χs for SrxLa2−xCuO4 show that
it vanishes at ω = 0 below 145 K at the all-
important (π,π) point. This has a pronounced
effect on the superconductivity.

Susceptibilities can be combined to yield other
quantities, most notably an estimate for super-
conducting gap function (see Ref. [22]) and su-
perconducting critical temperature. We have
studied several materials systems, and the results
are remarkably good in cases we have studied
so far, e.g. in Sr2RuO4, Ref. [22]. Fig. 32 of
Ref. [1] is reproduced here in Fig. 8.

The theory is still new and it misses some
effects in its present form: for example it does
not distinguish competing phases like the anti-
ferromagnetic phase. Still, developing an ability
to reliably derive superconducting quantities ab
initio will provide a path to a proper understand-
ing of unconventional superconductivity that was
not possible before, and it will also discriminate
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Figure 8 – (left) Real part of χs(q, ω=0) for La2CuO4

showing a dominant peak at q=(π, π). (mid-
dle) Imaginary part of χ(q, ω) (arbitrary units) for
La1.88Sr0.12CuO4 showing that spin fluctuations get
gapped at (π, π) below 145 K. (right) Nodal supercon-
ducting gap structure for the hole-doped La2CuO4

showing dx2−y2 gap symmetry. The colour bar shows
the negative (in blue) and positive (in red) supercon-
ducting gap magnitudes in arbitrary units passing
through node where the gap closes (in yellow). Taken
from Ref. [1].

between competing mechanisms. We at least
partially demonstrated this in Sr2RuO4, a par-
ticularly difficult case. An adequately developed
theory will constitute an enormous advance in
the field.

7 Applications of the Layer
Green’s function technique

Questaal also has two density-functional based
Green’s function codes, a crystal code that has
been used primarily to calculate magnetic ex-
change interactions through the classic Licht-
enstein formula [31], and a layer Green’s func-
tion technique that has periodic boundary con-
ditions in only two dimensions. Along the third
dimension it has a trilayer form: an active region
cladded on each end by semi-infinite leads.

PLATL︷ ︸︸ ︷
. . . PL − 1

∣∣ PLAT︷ ︸︸ ︷
PL 0 | . . . |PL n−1

∣∣ PLATR︷ ︸︸ ︷
PL n . . .

Provided the Hamiltonian is short-ranged the
principal layers can be constructed so the Hamil-
tonian matrix elements extend only to neigh-
bours. This makes the Hamiltonian tridiagonal
in the PL index, so the computational effort
scales linearly with the number of PL.

The layer method has been used mainly to
study transport. In 2005 Faleev added an exten-
sion to the non-equilibrium case [32]. Because
both the crystal and the layer code are based on
the Atomic Spheres approximation, they have
been mainly applied to transport in magnetic
metals that are fairly close packed. It has been

extensively used for DFT treatment of spintronic
materials; one recent application includes one of
the first calculations of spin-orbit torque within
DFT [33].

Another novel application is to JM-
RAM devices where the there are pro-
posals to use stacks of superconduct-
ing/ferromagnet/superconducting (SFS) π
junctions as components in superconducting
circuits [34]. π junctions are built in a manner
similar to ordinary MRAM, where the centre
region in the diagram above consists of two
ferromagnets, separated by a nonmagnetic
spacer layer. In ordinary MRAM, the difference
in resistance when the two FM layers are aligned
ferromagnetically, or antiferromagnetically,
forms the basis for the ’1’ and ’0’ of a device.
A JMRAM devices has much in common with
MRAM, but the end leads are superconducting
and form Cooper pairs. The Cooper pair
undergoes a rotation in the phase when encoun-
tering the FM region. In a stack, if the FM
regions are aligned parallel, the phase shifts
add; when aligned antiferromagnetically, they
subtract. Thus the stack can be constructed so
the Cooper pair undergoes a phase change of
π, or none at all. The change in current-phase
relation provides the basis for a binary pair of
’1’ and ’0’ states, to make a component of a
superconducting circuit.

To model this, the usual Landauer Buttiker
description must be augmented by a coupling
between the +k and −k states in the leads
(Cooper pair), and the Andreev reflection cal-
culated in the presence of the coupling. Work-
ing with Microsoft, Herve Ness has successfully
built such a description, and is able to describe
this phenomenon in a density-functional frame-
work. That the current phase relation should
oscillate with FM layer thickness was shown by
Buzdin [35], and it has been observed in several
materials, e.g. Nb/Co/Nb [34]. Not surpris-
ingly, Ness finds that real band structures greatly
modify results Buzdin’s simple models, where
analytical expressions are derived by assuming
free electron bands and small exchange splitting
of the ferromagnet [35]. Neither assumption is
applicable to real devices. This work will be
published elsewhere.
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8 Conclusions

Questaal’s features were summarised, with a fo-
cus on its novelty and work in progress towards
a next-generation of electronic structure. A de-
tailed description of Questaal was recently pub-
lished [1]. In this highlight we emphasised the
motivation for quasiparticle self-consistent GW,
and why high-fidelity methods of the future will
need to evolve away from extensions of density-
functional theory. It was also shown that why
low-order diagrammatic Green’s function meth-
ods work very well when spin fluctuations are not
strong, but break down in systems with strong
spin fluctuations. To address them, we presented
an argument to explain why the augmentation of
QSGW with DMFT should yield a high-fidelity
description for strongly correlated materials, in
one-particle and two-particle properties. We also
showed some new results for unconventional su-
perconductivity — not normally a feature of an
ab initio method. We are only developing ini-
tial results at this stage, but the signs are very
promising. This highlight closed with a sum-
mary of Questaal’s ability to model transport
in a DFT framework, and outlined some new,
recent applications of this capability.
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