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Abstract

One of the most exciting tools that have entered the material science toolbox in recent

years is machine learning. These are a collection of e�cient statistical tools, which have

already proved to be capable of speeding up considerably both fundamental and applied

research. At present we are witnessing an explosion of works that develop and apply ma-

chine learning to solid-state systems. In this article, we provide a comprehensive overview

and discussion of the most recent research in this topic. As a starting point we introduce

machine learning principles, algorithms, descriptors, and databases in materials science. We

continue with the di↵erent machine learning approaches for the discovery of new stable ma-

terials and the prediction of their crystal structure. Then we discuss research into numerous

quantitative structure-property relationships and di↵erent approaches for the replacement of

first-principle methods by machine learning. We review how active learning and surrogate-

based optimization can be applied to improve the rational design process and examples of

machine learning applications. Two major questions are always the interpretability of, and

the physical understanding gained from, machine learning models. We consider therefore

the various facets of interpretability and their importance in materials science. Finally, we

propose solutions and future research paths for various challenges in computational materials

science.
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I. INTRODUCTION

In recent years the availability of large data sets com-
bined with the improvement in algorithms and the expo-
nential growth in computing power lead to an unparal-
leled surge of interest in the topic of machine learning.
Nowadays, machine learning algorithms are successfully
employed for classification, regression, clustering, or di-
mensionality reduction tasks of large sets of especially
high dimensional input data.1 In fact, machine learn-
ing has proved to have superhuman abilities in numer-
ous fields (such as playing go,2 self driving cars,3 image
classification4 etc). As a result, huge parts of our daily
life, for example, image and speech recognition,5,6 web-
searches,7 fraud detection,8 email/spam filtering,9 credit
scores,10 and many more are powered by machine learn-
ing algorithms.

While data driven research, and more specifically ma-
chine learning, have already a long history in biology11

or chemistry,12 they only rose to prominence recently in
the field of solid-state materials science.

Traditionally, experiments used to play the key role in
finding and characterizing new materials. Experimen-
tal research must be conducted over a long time pe-

riod for an extremely limited number of materials, as
it imposes high requirements in terms of resources and
equipment. Due to these limitations, important dis-
coveries happened mostly through human intuition or
even serendipity.13 A first computational revolution in
materials science was fueled by the advent of compu-
tational methods,14 especially density functional theory
(DFT),15,16 Monte Carlo simulations, molecular dynam-
ics, that allowed researchers to explore the phase and
composition space far more efficiently. In fact, the com-
bination of both experiments and computer simulations
has allowed to cut substantially the time and cost of ma-
terials design.17–20 The constant increase in computing
power and the development of more efficient codes also
allowed for computational high-throughput studies21 of
large material groups in order to screen for the ideal ex-
perimental candidates. These large-scale simulations and
calculations together with experimental high-throughput
studies22–25 are producing an enormous amount of data
making possible the use of machine learning methods to
materials science.

As these algorithms start to find their place, they are
heralding a second computational revolution. Because
the number of possible materials is estimated to be as
high as a googol (10

100),26 this revolution is doubtlessly
required. This paradigm change is further promoted by
projects like the materials genome initiative27 that aim
to bridge the gap between experiment and theory, and
promote a more data intensive and systematic research
approach. A multitude of already successful machine
learning applications in materials science can be found,
e.g., the prediction of new stable materials,28–36 the cal-
culation of numerous material properties,37–52 and the
speeding up of first principle calculations.53

Machine learning algorithms have already revolution-
ized other fields, such as image recognition. However, the
development from the first perceptron54,55 up to modern
deep convolutional neural networks was a long and tor-
tuous process. In order to produce significant results in
materials science one necessarily has not only to play to
the strength of machine learning techniques but also ap-
ply the lessons already learned in other fields.

As the introduction of machine learning methods to
materials science is still recent, a lot of published appli-
cations are quite basic in nature and complexity. Often
they involve fitting models to extremely small training
sets, or even applying machine learning methods to com-
position spaces that could possibly be mapped out in
hundreds of CPU hours. It is of course possible to use
machine learning methods as a simple fitting procedure
for small low-dimensional datasets. However, this does
not play to their strength and will not allow us to repli-
cate the success machine learning methods had in other
fields.

Furthermore, and as always when entering a different
field of science, nomenclature has to be applied correctly.
One example is the expression “deep learning”, which is
responsible for a majority of the recent success of ma-
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chine learning methods (e.g., in image recognition and
natural language processing56). It is of course tempting
to describe one’s work as deep learning. However, denot-
ing neural networks with one or two fully-connected hid-
den layer as deep learning57 is confusing for researchers
new to the topic, and it misrepresents the purpose of
deep-learning algorithms. The success of deep learning is
rooted in the ability of deep neural networks to learn de-
scriptors of data with different levels of abstraction with-
out human intervention.56,58 This is, of course, not the
case in two-layer neural networks.

One of the major criticism of machine learning algo-
rithms in science is the lack of novel laws, understand-
ing, and knowledge arising from their use. This comes
from the fact that machine learning algorithms are often
treated as black boxes, as machine-built models are too
complex and alien for humans to understand. We will dis-
cuss the validity of the criticism and different approaches
to this challenge.

Finally, there have already been a number of excellent
reviews of materials informatics and machine learning in
materials science in general,13,59–63 as well as some other
covering specifically machine learning in the chemical sci-
ences,64 in materials design of thermoelectrics and photo-
voltaics,65 and in atomistic simulations.66 However, due
to the explosion in the number of works using machine
learning, an enormous amount of research has already
been published since the last reviews and the research
landscape has quickly transformed.

Here, we concentrate on the various applications of ma-
chine learning in solid-state materials science (especially
the most recent ones) and discuss and analyze them in
detail. As a starting point we provide an introduction
to machine learning, and in particular to machine learn-
ing principles, algorithms, descriptors, and databases in
materials science. We then review numerous applications
of machine learning in solid-state materials science: the
discovery of new stable materials and the prediction of
their structure, the machine learning calculation of mate-
rial properties, the replacement of first principle methods
with machine learning approaches, the construction of
DFT potentials by machine learning methods, the op-
timization of the rational design process, and the in-
terpretability of, and the physical understanding gained
from, machine learning models. Finally, we discuss the
challenges and limitations machine learning faces in ma-
terials science, and suggest a few research strategies to
overcome or circumvent them.

II. BASICS PRINCIPLES OF MACHINE
LEARNING

Machine learning algorithms aim to optimize the per-
formance of a certain task by using examples and/or past
experience.67 Generally speaking, machine learning can
be divided into three main categories, namely supervised
learning, unsupervised learning, and reinforcement learn-

ing.
Supervised machine learning is based on the same prin-

ciples as a standard fitting procedure. The desired result
for unknown domains is estimated based on the extrap-
olation of patterns found in the training data. Unsuper-
vised learning is concerned with finding patterns in unla-
beled data, as e.g. in the clustering of samples. Finally,
reinforcement learning treats the problem of finding op-
timal or sufficiently good actions for a situation in order
to maximize a reward.68 In other words, it learns from
interactions.

As supervised learning is by far the most widespread
form of machine learning in materials science we will con-
centrate on it from now on, in the following discussion.

In supervised learning one generally chooses a subset of
the relevant population for which the target property is
known, together with a machine learning algorithm that
will fit the desired target quantity. Most of the work
consists of generating, finding, and cleaning the data in
order to ensure that it is consistent, accurate, etc. Sec-
ondly, it is necessary to decide how to map the properties
of the system in a way that is suitable for the chosen al-
gorithm. This implies to translate the raw information
into certain features that will be used as inputs for the
algorithm. Once this process is finished, the model is
trained by optimizing its performance, usually measured
through some kind of cost function. Usually this en-
tails the adjustment of hyperparameters that control the
training process, structure, and properties of the model.
Ideally, a crossvalidation dataset separate from the test
and training sets is used for the optimization of the hy-
perparameters.

Before the model is ready for applications, it has
to be evaluated on previously unseen data to esti-
mate its generalization and extrapolation ability. Dif-
ferent methods ranging from a simple holdout, over
k-fold cross-validation, leave-one-out cross-validation,
Monte Carlo cross-validation,69 up to leave-one-cluster-
out cross-validation70 can be used for the evaluation. All
these methods rely on keeping some data hidden from the
model during the training process. For a simple hold-
out this is just performed once, while for k-fold cross-
validation the dataset is separated into k equally sized
sets. The algorithm is trained with all but one of these k
subsets which is used for testing. Finally the process
is repeated for every subset. For leave-one-out cross-
validation, each sample is left out of the training set
once and the model is evaluated for that sample. It
has to be noted that research in chemistry has shown
that this form of cross-validation is insufficient to eval-
uate adequately the predictive performance of quantita-
tive structure property relationship and should therefore
be avoided.71,72 Monte Carlo cross-validation is similar
to k-fold cross-validation in the sense that the training
and test set are randomly chosen. However, here the
size of the training/test set are chosen independently
from the number of folds. While this can be advanta-
geous, it also means that a sample is not guaranteed to
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be in the test/training set. Leave-one-cluster-out cross-
validation70 was specifically developed for materials sci-
ence and estimates the ability of the machine learning
model to extrapolate to novel groups of materials that
were not present in the training data. Depending on
the target quantity, this allows for a more realistic eval-
uation and a better understanding of the limitations of
the machine learning model. Leave-one-cluster-out cross-
validation removes a cluster of materials and then con-
siders the error for predictions of the materials belonging
to the removed cluster. This is, for example, consistent
with the finding in Ref. 73 that models trained on super-
conductors with a specific superconducting mechanism
do not have any predictive ability for superconductors
with other mechanisms.

Before discussing various applications of machine
learning in materials science we will give an overview of
the different descriptors, algorithms, and databases used
in materials informatics.

A. Databases

Machine learning in materials science is mostly con-
cerned with supervised learning. The success of such
methods depends mainly on the amount and quality
of data that is available, and this turns out to be one
of the major challenges in material informatics.74 This
is especially problematic for target properties that can
only be determined experimentally in a costly fashion
(such as the critical temperature of superconductors – see
Sect. IV D). For this reason, databases such as the materi-
als project,75 the inorganic crystal structure database,76
and others,27,77–90 that contain information on numer-
ous properties of known materials, are essential for the
success of materials informatics.

In order for these databases and for materials infor-
matics to thrive, a FAIR treatment of data91 is abso-
lutely required. A FAIR treatment encompasses the four
principles: findability, accessibility, interoperability and
repurposability.92 In other words, researchers from dif-
ferent disciplines should be able to find and access data,
as well as the corresponding metadata, in a commonly
accepted format. This allows the application of the data
for new purposes.

Traditionally negative results are often discarded and
left unpublished. However, as negative data is often just
as important for machine learning algorithms as positive
results,29,93 a cultural adjustment towards the publica-
tion of unsuccessful research is necessary. In some disci-
plines with a longer tradition of data-based research (like
chemistry), such databases already exist.93 In a similar
vein, data that emerges as a side product but is not essen-
tial for a publication is often left unpublished. This even-
tually results in a waste of resources as other researchers
are then required to repeat the work. In the end, ev-
ery single discarded calculation will be sorely missed in
future machine learning applications.

B. Algorithms

In this section we briefly introduce and discuss the
most prevalent algorithms used in materials science. We
will begin with regression, classification, and variable se-
lection techniques that are related to linear models.

In ridge regression a multi-dimensional least-squares
linear-fit problem, including a L2-regularization term, is
solved:

min
x

|Ax � b|22 + �|x|
2
2 . (1)

The extra regularization term is included to favor specific
solutions with smaller coefficients.

As complex regression problems can not be usually
solved by a simple linear model, the so-called kernel trick
is often applied to ridge regression.94 Instead of using the
original descriptor x, the data is first transformed into a
higher-dimensional feature space �(x). In this space, the
kernel k(x, y) is equal to the inner product h�(x),�(y)i.
In practice, only the kernel needs to be evaluated, avoid-
ing an inefficient or even impossible explicit calculation
of the features in the new space. Common kernels are,
e.g.,95 the radial basis function kernel

kG(x, y) = e�
|x�y|2

2�2 , (2)

or the polynomial kernel of degree d

kP (x, y) = (xT y + c)d . (3)

Solving the minimization problem given by Eq. (1) in
the new feature space results in a non-linear regression
in the original feature space. This is usually referred
to as the kernel ridge regression (KRR) model. KRR is
generally simple to use, as for a successful application of
KRR only very few hyperparameters have to be adjusted.
Consequently, KRR is often used in materials science.

Support vector machines96 (SVM) search for the hy-
perplanes that divide a dataset in classes such that the
margin around the hyperplane is maximized (see Fig. 1).
The hyperplane is completely defined by the data points
which lie the closest to the plane, i.e. the support vectors
from which the algorithm derives its name.

FIG. 1. Classification border of an SVM with the support
vectors shown as arrows

Analogously to ridge regression, the kernel trick can
be used to arrive at non-linear SVMs.94 SVM regressors
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also create a linear model (non-linear in the kernel case),
but use the so-called ✏-insensitive loss function:

Loss =

(
0 if ✏ > |y � f(x)|

|y � f(x)| � ✏ otherwise.
(4)

where f(x) is the linear model and ✏ a hyperparameter.
In this way, errors smaller than the threshold defined by
✏ are neglected.

When comparing SVMs and KRR no big performance
differences are to be expected. Usually SVMs arrive at a
sparser representation which can be of advantage, how-
ever their performance relies on a good setting of the hy-
perparameters. In most cases SVMs will provide faster
predictions and consume less memory, while KRR will
take less time to fit for medium datasets. Nevertheless,
due to the generally low computational cost of both al-
gorithms, these differences are seldom important for rel-
atively small datasets. Unfortunately, neither method is
feasible for large datasets as the size of the kernel ma-
trix obviously scales quadratically with the number of
datapoints.

In the previous description of SVMs and KRR, we as-
sumed that a good feature choice is already known. How-
ever, as this choice can be quite challenging, methods for
feature selection are usually essential.

The least absolute shrinkage and selection operator
(LASSO)97,98 attempts to improve regression perfor-
mance through the creation of sparse models through
variable selection. It is mostly used in combination with
least-squares linear regression, in which case it results in
the following minimization problem:98

min
�,�0

X

i

(yi � �0 � �xi)
2 subject to

X

i

|�i| < t , (5)

where yi are the outcomes, xi the features, and � the
coefficients of the linear model that have to be deter-
mined. In contrast to ridge regression, where the L2-
norm of the regularization term is used, LASSO aims
at translating most coefficients to zero. In order to ac-
tually find the model with the minimal number of non-
zero components, one would have to use the so called
L0-norm of the coefficient vector, instead of the L1-norm
used in LASSO. (The L0-norm of a vector is equal to its
number of non-zero elements). However, this problem is
non-convex and NP-hard and therefore infeasible from a
computational perspective. Furthermore, it is proven99

that the L1-norm is a good approximation in many cases.
The ability of LASSO to produce very sparse solutions
makes it attractive for cases where a simple, maybe even
simulatable model (see Sect. VIII A), is needed. The min-
imization problem from Eq.(5), under the constraint of
the L0-norm and the theory around it, is also known as
compressed sensing.100

Ghiringhelli et al. described an extended methodology
for feature selection in materials science based on LASSO
and compressed sensing.101 Starting with a number of

primary features, the number of descriptors is exponen-
tially increased by applying various algebraic/functional
operators (such as the absolute value of differences, expo-
nentiation, etc.) and constructing different combinations
of the primary features. Necessarily, physical notions like
the units of the primary features constrain the number of
combinations. LASSO is then used to reduce the num-
ber of features to a point where a brute force combina-
tion approach to find the lowest error is possible. This
approach is chosen in order to circumvent the problems
pure LASSO faces when treating strongly correlated vari-
ables and to allow for non-linear models.

As LASSO is unfortunately still computationally in-
feasible for very high-dimensional feature spaces (> 10

9),
Ouyang et al. developed the sure independence screening
and sparsifying operator (SISSO)102 that combines sure
independence screening,103 other sparsifying operators,
and the feature space generation from Ref. 101. Sure in-
dependence screening selects a subspace of features based
on their correlation with the target variable and allows
for extremely high-dimensional starting spaces. The se-
lected subspace is than further reduced by applying the
sparsifying operator (e.g. LASSO). Predicting the rel-
ative stability of octet binary materials as either rock-
salt or zincblende was used as a benchmark. In this
case, SISSO compared favorably with LASSO, orthog-
onal matching pursuit,104,105 Eureqa106 and the previous
algorithm from Ref. 101.

Bootstrapped projected gradient descent107 is another
variable selection method developed for materials science.
The first step of bootstrapped projected gradient descent
consists in clustering the features in order to combat the
problems other algorithms like LASSO face when encoun-
tering strongly correlated features. The features in every
cluster are combined in an averaged a representative fea-
ture for every cluster. In the following, the sparse linear
fit problem is approximated with projected gradient de-
scent108 for different levels of sparsity. This process is
also repeated for various bootstrap samples in order to
further reduce the noise. Finally, the intersection of the
selected feature sets across the bootstrap samples is cho-
sen as the final solution.

Another method for variable selection is principal com-
ponent analysis (PCA)109,110 that extracts the orthogo-
nal directions with the greatest variance from a dataset.
This is achieved by diagonalizing the covariance ma-
trix. Sorting the eigenvectors by their eigenvalues (i.e.,
by their variance) results in the first principal compo-
nent, second principal component, and so on. The broad
idea behind this scheme is that, in contrast to the orig-
inal features, the principal components will be uncorre-
lated. Furthermore, one expects that a small number of
principal components will explain most of the variance
and therefore provide an accurate representation of the
dataset. Naturally, the direct application of PCA should
be considered feature extraction, instead of feature se-
lection, as new descriptors in the form of the principal
components are constructed. On the other hand, fea-
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ture selection based on PCA can follow various strate-
gies. For example, one can select the variables with the
highest projection coefficient from respectively the first
n principal components when selecting n features. A
more in depth discussion of such strategies can be found
in Ref. 110. Another important family of algorithms is
composed by decision trees. In general terms, decision
trees are graphs in tree form,111 where each node repre-
sents a logic condition aiming at dividing the input data
into classes (see Fig. 2), or at assigning a value in the case
of regressors. The optimal splitting conditions are deter-
mined by some metric, e.g. by minimizing the entropy
after the split or by maximizing an information gain.112

Atomic number >
15

Atomic number <= 15

Oxidation number<+2

Oxidation number>=+2

Period <2

Period >=2

Unstable

Stable

Unstable

Stable

FIG. 2. Schema of a classification tree deciding whether a
material is stable.

In order to avoid the tendency of simple decision trees
to overfit, ensembles such as random forests (RF)113 or
extremely randomized trees114 are used in practice. In-
stead of training a single decision tree, multiple decision
trees with a slightly randomized training process are built
independently from each other. This randomization can
include, for example, using only a random subset of the
whole training set to construct the tree, using a random
subset of the features, or a random splitting point when
considering an optimal split. The final regression or clas-
sification result is usually obtained as an average over the
ensemble. In this way, additional noise is introduced into
the fitting process and overfitting is avoided.

In general, decision tree ensemble methods are fast and
simple to train as they are less reliant on good hyperpa-
rameter settings than most other methods. Furthermore,
they are also feasible for large datasets. A further ad-
vantage is their ability to evaluate the relevance of fea-
tures through a variable importance measure, allowing
a selection of the most relevant features and some ba-
sic understanding of the model. Broadly speaking, these
are based on the difference in performance of the deci-
sion tree ensemble by including and excluding the fea-
ture. This can be measured, e.g., through the impurity
reduction of splits using the specific feature.115

Extremely randomized trees are usually superior to
RFs in higher variance cases as the randomization de-
creases the variance of the total model,114 and demon-
strate at least equal performances in other cases. This
proved true for several applications in materials science
where both methods were compared.116–118 However, as
RFs are more widely known, they are still prevalent in
materials science.

Boosting methods119 generally combine a number of
weak predictors to create a strong model. In contrast to,
e.g., RFs where multiple strong learners are trained in-
dependently and combined through simple averaging to
reduce the variance of the total model, the weak learn-
ers in boosting are not trained independently and are
combined to decrease the bias in comparison to a sin-
gle weak learner. Commonly used methods, especially
in combination with decision tree methods, are gradient
boosting120,121 and adaptive boosting.122,123 In materials
science they were applied to the prediction of bulk mod-
uli,124,125 and the prediction of distances to the convex
hull, respectively .118,126

Gaussian process regression (GPR) relies on the as-
sumption that the training data was generated by a
Gaussian process and therefore consists of samples from
a multivariate Gaussian distribution. The only other as-
sumption that enter the regression are the forms of the
covariance function k(x, x0

) and the mean (which is of-
ten assumed to be zero). Based on the covariance matrix,
the mean and the variance for every possible feature value
can be predicted. The ability to estimate the variance is
the main advantage of GPR, as a clear estimate of the
uncertainty of the prediction can be essential especially in
a materials design process (see Sect. V). Although mod-
ern and fast implementations of Gaussian processes in
materials science exist (e.g. COMBO127), their inher-
ent scaling is quite limiting with respect to the data size
and the descriptor dimension as a naive training requires
an inversion of the covariance matrix of order O(N3

) and
even the prediction scales with O(N2

) with respect to the
size of the dataset.128 Based on the principles of GPR,
one can also produce a classifier. First GPR is used to
qualitatively evaluate the classification probability. Then
a sigmoid function is applied to the latent function result-
ing in values in the interval [0, 1].

Ranging from feed-forward neural networks over self-
organizing maps,129 up to Boltzmann machines130 and
recurrent neural networks,131 there is a wide variety of
neural network structures. However, until now only feed-
forward networks have found applications in materials
science (even if some Boltzmann machines are used in
other areas of theoretical physics132). As such, in the
following we will leave out “feed-forward” when referring
to feed-forward neural networks. In brief, a neural net-
work starts with an input layer, continues with a certain
number of hidden layers and ends with an output layer.
The neurons of the n-th layer, denoted as the vector xn,
are connected to the previous layer through the activa-
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tion function �(x) and the weight matrix An�1
ij :

xn
i = �(

X

j

xn�1
j An�1

ij ). (6)

The weight-matrices are the parameters that have to
be fitted during the learning process. Usually, they are
trained with gradient descent style methods with respect
to some loss function (usually L2 loss with L1 regulariza-
tion), through a method known as back-propagation.

Inspired by biological neurons, sigmoidal functions
were classically used as activation functions. However,
as the gradient of the weight-matrix elements is calcu-
lated with the chain rule, deeper neural networks with
sigmoidal activation functions quickly lead to a vanish-
ing gradient,133 hampering the training process. Modern
activation functions such as rectified linear units134,135

�(x) =

(
x if x > 0

0 otherwise
(7)

or exponential linear units136

�(x) =

(
x if x > 0

↵(ex � 1) otherwise
(8)

alleviate this problem and allow for the development of
deeper neural networks.

The real success story of neural networks only started
once convolutional neural networks were introduced to
image recognition.56,137 Instead of solely relying on fully
connected layers, two additional layer variants known
as convolutional and pooling layers were introduced (see
Fig. 3).

FIG. 3. Topology of a convolutional neural network start-
ing with convolutional layers with multiple filters followed by
pooling and two fully connected layers.

Convolutional layers consist of a set of trainable filters
which usually have a receptive field that considers a small
segment of the total input. The filters are applied as dis-
crete convolutions across the whole input, allowing the
extraction of local features, where each filter will learn
to activate when recognizing a different feature. Multi-
ple filters in one layer add an additional dimension to
the data. As the same weights/filters are used across the
whole input data, the number of hidden neurons is dras-
tically reduced in comparison to fully connected layers,

thus allowing for far deeper networks. Pooling layers fur-
ther reduce the dimensionality of the representation by
combining subregions into a single output. Most com-
mon is the max pooling layer that selects the maximum
from each region. Furthermore, pooling also allows the
network to ignore small translations or distortions.

In general, neural networks with 5 or more layers are
considered deep neural networks. The advantage of deep
neural networks is not only their ability to learn represen-
tations with different abstraction levels but also to reuse
them.138 Obviously this saves resources that would oth-
erwise be spent on feature engineering. However, some
of these resources have now to be allocated to the devel-
opment of the topology of the neural network. If we con-
sider hard-coded layers (like pooling layers), one can once
again understand them as feature extraction through hu-
man intervention. While some methods for the auto-
matic development of neural network structures exist
(e.g., the neuroevolution of augmenting topologies139),
in practice the topologies of neural networks are still de-
veloped through trial and error. The extreme speedup
in training time through GPU-implementations and new
methods that improve the training of deep neural net-
works, like dropout140 and batch normalization,141 also
played a big role in the success story of neural networks.
As these methods are included in open source libraries,
like tensorflow142 or pytorch,143 they can easily be ap-
plied in materials science.

Neural networks can also be used in a purely generative
manner, for example in the form of autoencoders144,145 or
generative adversarial networks (GAN).146 Autoencoders
are built with the purpose of learning a new efficient rep-
resentation of the input data without supervision. Typi-
cally the autoencoder is divided in two parts (see Fig. 4).
The first half of the neural network is the encoder, which
ends with a layer that is typically far smaller than the in-
put layer in order to force the autoencoder to reduce the
dimensionality of the data. The second half of the net-
work, the decoder, attempts to regain the original input
from the new encoded representation.

Encoder

Bottelneck for
encoding

Decoder

Input Output

FIG. 4. Structure of an autoencoder.

Variational autoencoders (VAE) are based on a spe-
cific training algorithm, namely stochastic gradient vari-
ational Bayes,147 that assumes that the VAE learns an
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approximation of the distribution of the input. Naturally,
VAEs can also be used as generative models by generat-
ing data in the form of the output of the encoder and
subsequently decoding it.

FIG. 5. Structure of a GAN.

GANs consist of two competing neural networks which
are trained together (see Fig. 5): a generative model that
attempts to produce samples from a distribution and a
discriminative model that predicts the probability that
an input belongs to the original distribution or was pro-
duced by the generative model. GANs have found great
success in image processing148,149 and have recently been
introduced to other fields, such as astronomy,150 particle
physics,151 genetics152 and also very recently to materials
science.30,153,154

C. Features

A pivotal ingredient of a machine learning algorithm is
the representation of the data. Each data point possesses
a set of characteristics or properties that provide useful
information to the model. In materials science these fea-
tures have to be able to capture all the relevant informa-
tion, necessary to distinguish between different atomic
or crystal environments.155 The process itself, denoted
as feature extraction or engineering, might be as simple
as determining atomic numbers, might involve complex
transformations such as an expansion of radial distribu-
tion functions in a certain basis, or might require ag-
gregations based on statistics (e.g., average over features
or the calculation of their maximum value). How much
processing is required depends strongly on the algorithm.
For some methods, such as deep learning, the feature ex-
traction can be considered as part of the model.138 Nat-
urally, the best choice for the representation depends on
the target quantity and the variety of the space of occur-
rences. For completeness, we have to mention that the
cost of feature extraction and of target quantity evalua-
tion must never be comparable.

Ideally, descriptors should be uncorrelated, as an abun-
dant number of correlated features can hinder the effi-
ciency and accuracy of the model. When this happens,
further feature selection is necessary to circumvent the
curse of dimensionality,156 simplify models, and improve

their interpretability as well as training efficiency. For
example, several elemental properties such as the period
and group in the periodic table, ionization potential, and
covalent radius, can be used as features to model forma-
tion energies or distances to the convex hull of stability.
However it was shown that to obtain acceptable accura-
cies, often only the period and the group are required.118

Having described the general properties of descriptors,
we will proceed with a listing of the most used features
in materials science. Without a doubt, the most stud-
ied type of features in this field are the ones related to
the fitting of potential energy surfaces. In principle, the
nuclear charges and the atomic positions are sufficient
features, as the Hamiltonian of a system is usually fully
determined by these quantities. In practice, however,
while Cartesian coordinates might provide an unambigu-
ous description of the atomic positions, they do not make
a suitable descriptor, as the list of coordinates of a struc-
ture are ordered arbitrarily and the number of such co-
ordinates varies with the number of atoms. The latter
is a problem, as most machine learning models require a
fixed number of features as an input. Additionally, to de-
scribe solids and large clusters, the number of interacting
neighbors has to be allowed to vary, while the continu-
ity and differentiability of the descriptors should be kept
unchanged.

A comprehensive study on features for atomic poten-
tial energy surfaces can be found in the review of Bartók
et al..157 Important points mentioned in their work are:
(i) the performance of the model and its ability to dif-
ferentiate between different structures do not depend di-
rectly on the descriptors, but on the similarity measure-
ment between them; (ii) the quality of the descriptors is
related to the differentiability with respect to the move-
ment of the atoms, completeness of the representation,
and invariance to the basis symmetries of physics (rota-
tion, reflection, translation, and permutation of atoms
of the same species). For clarification, a set of invariant
descriptors qi, that uniquely determines an atomic envi-
ronment up to symmetries, is defined as complete. An
overcomplete set is then a set that includes more features
than necessary.

Simple representations that show shortcomings as fea-
tures are transformations of pairwise distances,158–160
Weyl matrices,161 and Z-matrices.162 Pairwise distances
(and also reciprocal or exponential transformations of
these) only work for a fixed number of atoms and are
not unique under permutation of atoms. The constrain
on the number of atoms is also present for polynomi-
als of pairwise distances. Histograms of pairwise atomic
distances are non-unique: if no information on the angles
between the atoms is given, of if the ordering of the atoms
is unknown, it might be possible to construct at least two
different structures with the same features. Weyl matri-
ces are defined by the inner product between neighbor-
ing atoms positions, forming an overcomplete set, while
permutations of the atoms change the order of the rows
and columns. Finally, Z-matrices or internal coordinate
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representations are not invariant under permutations of
atoms.

In 2012 Rupp et al.163 introduced a representation
for molecules based on the Coulomb repulsion between
atoms I and J and a polynomial fit of atomic energies to
the nuclear charge

MIJ =

(
0.5Z2.4

I for I = J
ZIZJ

|RI�RJ | for I 6= J
. (9)

The ordered eigenvalues (✏) of these “Coulomb matri-
ces” are then used to measure the similarity between two
molecules.

d(✏, ✏0) =

sX

i

|✏i � ✏0i|
2 . (10)

Here, if the number of atoms is not the same in both
systems, ✏ is extended by zeros. In this representation,
symmetrically equivalent atoms contribute equally to the
feature function, the diagonalized matrices are invariant
with respect to permutations and rotations, and the dis-
tance d is continuous under small variations of charge or
interatomic distances. Unfortunately, this representation
is not complete and does not uniquely describe every sys-
tem. The incompleteness derives from the fact that not
all degrees of freedom are taken into account when com-
paring two systems. The non-uniqueness can be demon-
strated using as an example acetylene (C2H2).164 In brief,
distortions of this molecule can lead to several geometries
that are described by the same Coulomb matrix.

Faber et al.165 presented 3 distinct ways to extend the
Coulomb matrix representation to periodic systems. The
first of these features consists of a matrix where each
element represents the full Coulomb interaction between
two atoms and all their infinite repetitions in the lattice.
For example:

Xij =
1

N
ZiZj

X

k,l

'(|Rk � Rl|) . (11)

However, as this double sum has convergence issues, one
has to resort to the Ewald trick: Xij is divided into a
constant and two rapidly converging sums, one for the
long-range interaction and another for the short-range
interaction. Another extension by Faber et al. considers
electrostatic interactions between the atoms in the unit
cell and the atoms in the N closest unit cells. Addition-
ally, the long-range interaction is replaced by rapidly de-
caying interaction. In their final extension, the Coulomb
interaction in the usual matrix is replaced by a potential
that is symmetric with respect to the lattice vectors.

In the same line of work, Schütt et al.166 extended
the Coulomb matrix representation by combining it with
the Bravais matrix. Unfortunately, this representation is
plagued by a degeneracy problem that comes from the
arbitrary choice of the coordinate system in which the

Bravais matrix is written. Another representation pro-
posed by Schütt et al. is the so called partial radial dis-
tribution function, that considers the density of atoms �
in a shell of width dr and radius r centered around atom
↵ (see Fig. 6):

g↵�(r) =
1

N↵Vr

N↵X

i

N�X

j

✓(d↵i�j � r)✓(r + dr � d↵i�j ) .

(12)
Here, N↵ and N� are the number of atom of types ↵ and
�, Vr is the volume of the shell, and d↵� are the pairwise
distances between two atom types.

FIG. 6. Two Crystal structure representations. (left) A unit
cell with the Bravais vectors (blue) and base (pink) repre-
sented. (right) Depiction of a shell of the discrete partial
radial distribution function g↵�(r) with width dr. (Reprinted
with permission from Ref. 166. Copyright 2014 American
Physical Society.)

Another form for representing the local structural envi-
ronment was proposed by Behler and Parrinelo.167 Their
descriptors 168 involve an invariant set of atom-centered
radial

Gr

i({Ri}) =

neighborsX

j 6=i

gr
(Rij) , (13)

and angular symmetry functions

Ga

i ({Ri}) =

neighborsX

j 6=i

ga
(✓ijk) , (14)

where ✓ijk is the angle between Rj � Ri and Rk � Ri.
While the radial functions Gr

i contain information on the
interaction between pairs of atoms within a certain ra-
dius, the angular functions Ga

i contains additional in-
formation on the distribution of the bond angles ✓ijk.
Examples for atom-centered symmetry functions are

Gr
i =

neighborsX

j 6=i

fc(Rij) e
�⌘(Rij�Rs)

2

(15)

and

Ga
i = 2

1�⇣
neighborsX

jk
i 6=j 6=k

(1 + � cos ✓ijk)
⇣
e
�⌘(R2

ij+R2
ik+R2

jk)

⇥ fc(Rij)fc(Rik)fc(Rjk) . (16)
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Here fc is a cutoff function, leading to the neglect of
interactions between atoms beyond a certain radius Rc.
Furthermore, ⌘ controls the width of the Gaussians, Rs

is just a parameter that shifts the Gaussians, � deter-
mines the positions of the extrema of the cosine and ⇣
controls the angular resolution. The sum over neighbors
enforces the permutation invariance of these symmetry
functions. Usually, 20 to 100 symmetry functions are
used per atom, constructed by varying the parameters
above. Beside atom centered, these functions can also be
pair centered.169

A generalization of the atom centered pairwise descrip-
tor of Behler was proposed by Seko et al.170 It consists
of simple basis functions constructed from the multino-
mial expansion of the product between a cutoff function
(fc) and an analytical pairwise function (fn) (for exam-
ple Gaussian, cosine, Bessel, Neumann, polynomial, or
Gaussian-type orbital functions)

bi,jn,p =

"
X

k

fn(Ri
jk) · fc(R

i
jk)

#p

, (17)

where p is a positive integer, and Ri
jk indicates the dis-

tance between atoms j and k of structure i. The descrip-
tor then uses the sum of these basis functions over all the
atoms in the structure (

P
j b

i,j
n,p).

A similar type of descriptor is the angular Fourier se-
ries (AFS)157 which consists of a collection of orthogonal
polynomials, like the Chebyshev polynomials Tl(cos ✓) =

cos(l✓), and radial functions

AFSnl =

X

i,j>i

gn(ri)gn(rj) cos(l✓ij). (18)

These radial functions are expansions of cubic or higher
order polynomials

gn(r) =

X

↵

Wn↵�↵(r) , (19)

where

�↵(r) = (rc � r)↵+2/N↵ . (20)

FIG. 7. Mapping of a flat space in 1 and 2 dimensions onto the
surface of a sphere in one higher dimension. (Reprinted with
permission from Ref. 157. Copyright 2013 American Physical
Society.)

A different approach for atomic environment features
was proposed by Bartok et al.157,171 and leads to the

power spectrum and the bispectrum. The approach
starts with the generation of an atomic neighbor density
function

⇢(r) = �(r0) +

X

i

�(r � ri), (21)

which is projected onto the surface of a four-dimensional
sphere with radius r0. As an example, Fig. 7 depicts the
projection for 1 and 2 dimensions. Then, as the hyper-
spherical harmonic functions U j

m0m can be used to rep-
resent any function ⇢ defined on the surface of a four-
dimensional sphere172,173

⇢ =

1X

j=0

jX

m,m0=�j

cjm0mU j
m0m. (22)

Combining these with the rotation operator and the
transformation of the expansion coefficients under rota-
tion leads to the formula

Pj =

jX

m0,m=�j

cj⇤m0mcjm0m (23)

for the SO(4) power spectrum. On the other hand, the
bispectrum is given by

Bj j1 j2 =

j1X

m0
1,m1=�j1

cj1m0
1m1

j2X

m0
2,m2=�j2

cj2m0
2m2

⇥

jX

m0,m=�j

Cj j1 j2
mm1 m2

Cj j1 j2
m0 m0

1 m0
2
cj⇤m0m , (24)

where Cj j1 j2
mm1 m2

are the Clebsch-Gordon coefficients of
SO(4). We note that the representations above are trun-
cated, based on the band limit jmax in the expansion.

Finally, one of the most successful atomic environment
features is the following similarity measurement

K(⇢, ⇢0) =

"
k(⇢, ⇢0)p

k(⇢, ⇢)k(⇢0, ⇢0)

#⇣

(25)

also known as the smooth overlap of atomic positions
(SOAP) kernel.157 Here ⇣ is a positive integer that en-
hances the sensitivity of the kernel to changes on the
atomic positions and ⇢ is the atomic neighbor density
function, that is constructed from a sum of Gaussians,
centered on each neighbor:

⇢(r) =

X

i

e
�↵|r�ri|2 . (26)

In practise, the function ⇢ is then expanded in terms of
the spherical harmonics. Additionally, k(⇢, ⇢0) is a rota-
tionally invariant kernel, defined as the overlap between
an atomic environment and all rotated environments:

k(⇢, ⇢0) =

Z
dR̂

Z
dr ⇢(r)⇢0(R̂r). (27)
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The normalization factor
p

k(⇢, ⇢)k(⇢0, ⇢0) ensures that
the overlap of an environment with itself is one.

The SOAP kernel can be perceived as a three dimen-
sional generalization of the radial atom-centered symme-
try functions and is capable of characterizing the entire
atomic environment at once. It was shown to be equiv-
alent to using the power or bispectrum descriptor with
a dot-product covariance kernel and Gaussian neighbor
densities.157

A problem with the above descriptors is their quadratic
scaling with the number of chemical species. Inspired by
the Behler symmetry functions and the SOAP method,
Artrith et al.174 devised a conceptually simple descriptor
whose dimension is constant with respect to the number
species. This is achieved by defining the descriptor as the
union between two sets of invariant coordinates, one that
maps the atomic positions (or structure) and another for
the composition. Both of these mappings consist of the
expansion coefficients of the radial distribution functions
(RDF)

RDFi(r) =

X

↵

cRDF

↵ �↵(r) for 0  r  Rc (28)

and angular distribution functions (ADF)

ADFi(✓) =

X

↵

cADF

↵ �↵(✓) for 0  r  Rc. (29)

in a complete basis set �↵ (like the Chebyshev polyno-
mials). The expansion coefficients are given by

cRDF

↵ =

X

Rj

�↵(Rij)fc(Rij)wtj (30)

and

cADF

↵ =

X

Rj ,Rk

�↵(✓ijk)fc(Rij)fc(Rij)wtjwtk . (31)

Here, fc is a cut-off function that limits the range of the
interactions. The weights wtj and wtk take the value
of one for the structure maps, while the weights for
the compositional maps depend on the chemical species,
according to the pseudo-spin convention of the Ising
model. By limiting the descriptor to two and three
body interactions, i.e., radial and angular contributions,
this method maintains the simple analytic nature of the
Behler-Parrinelo approach. Furthermore, it allows for an
efficient implementation and differentiation, while sys-
tematic refinement is assured by the expansion in a com-
plete basis set.

Sanville et al.175 used a set of vectors, each of which
describes a five-atom chain found in the system. This
information includes distances between the five atoms,
angles, torsion angles, and functions of the bond screen-
ing factors.176

The simplex representation of a molecular structure of
Kuz’min et al.178,179 consists in representing a molecule

as a system of different simplex descriptors, i.e., a sys-
tem of different tetratromic fragments. These descriptors
become consecutively more detailed with the increase of
the dimension of the molecule representation. The sim-
plex descriptor at the 1D level consists on the number
of combinations of four atoms for a given composition.
At the 2D level, the topology is also taken into account,
while, at the 3D level, the descriptor is the number of
simplexes of fixed composition, topology, chirality, and
symmetry. The extension of this methodology to bulk
materials was proposed by Isayev et al.177 and counts
bounded and unbounded simplexes (see Fig. 8). While
a bonded simplex characterizes only a single component
of the mixture, unbounded simplexes can describe up to
four components of the unit cell.

Isayef et al.42 also adapted property-labeled material
fragments181 to solids. The structure of the material is
encoded in a graph that defines the connectivity within
the material based on its Voronoi tessellation182,183 (see
Fig. 9). Only strong bonding interactions are considered.
Two atoms are seen as connected only when they share
a Voronoi face and the interatomic distance does not ex-
ceed the sum of the Cordero covalent bond lengths.184 In
the graph, the nodes correspond to the chemical elements
which are identified through a plethora of elemental prop-
erties, like Mendeleev group, period, thermal conductiv-
ity, covalent radius, etc. The full graph is divided into
subgraphs that correspond to the different fragments. In
addition, information about the crystal structure (e.g.
lattice constants) is added to the descriptor of the mate-
rial, resulting in a feature vector of 2500 values in total.
A characteristic of these graphs is their adjacency matrix,
which consists of a square matrix of order n (number of
atoms) filled with zeros except for the entries aij = 1

that occur when atom i and j are connected. Finally, for
every property scheme q, the descriptors are calculated
as

T =

X

i,j

|qi � qj |Mij , (32)

where the set of indices go over all pairs of atoms or over
all pairs of bonded atoms, and Mij are the elements of
the product between the adjacency matrix of the graph
and the reciprocal square distance matrix.

A different descriptor, named orbital-field matrix, was
introduced by Pham et al.185 Orbital-field matrices con-
sist in the weighted product between one-hot vectors (opi ),
resembling those from the field of natural language pro-
cessing. These vectors are filled with zeros with the ex-
ception of the elements that represent the electronic con-
figuration of the valence of the atom. As an example, for
the sodium atom with electronic configuration [Ne]3s1,
the one-hot vector is filled with zeros except for the first
element, which is 1. The elements of the matrices are
calculated from:

Xp
ij =

npX

k=1

opi o
k
j wk(✓

p
k, rpk) , (33)
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FIG. 8. Depiction of the generation of the simplex representation of molecular structure descriptors for materials. (Reprinted
with permission from Ref. 177. Further permissions should be directed to the ACS.)

a)	crystal	structure	 b)	Voronoi	tessella1on	and	
neighbors	search	

c)	infinite	periodic	graph		
construc1on	and		
property	labeling	

nodes	(atoms)	

d)	decomposi1on	to	fragments	

edges	(bonds)	

path	fragments	of	length	l,	
l	=	2,	3,	…		 circular	fragments	(polyhedrons)	

FIG. 9. Representation of the construction of property-labeled material fragments. The atomic neighbors of a crystal structure
(a) are found via Voronoi tessellation (b). The full graph is constructed from the list of connections, labeled with a property
(c) and decomposed into smaller subgraphs (d). (Reprinted with permission from Ref. 42 licensed under the CC BY 4.0 180.)

where the weight wk(✓
p
k, rpk) represents the contribution

of atom k to the coordination number of the center atom
p and depends on the distance between the atoms and the
solid angle ✓pk determined by the face of the Voronoi poly-
hedron between the atoms. To represent crystal struc-
tures, the orbital-field matrices are averaged over the
number of atoms Np in the unit cell:

Fij =
1

Np

NpX

p

Xp
ij . (34)

Another way to construct features based on graphs

is the crystal graph convolution neural network frame-
work, proposed by Xie et al.41 and shown schematically
in Fig. 10. The atomic properties are represented by
the nodes and encoded in the feature vectors vi. Instead
of using continuous values, each continuous property is
divided into 10 categories resulting in one-hot features.
This is obviously not necessary for the discrete proper-
ties which can be encoded as standard one-hot vectors
without further transformations. The edges represent the
bonding interactions and are constructed analogously to
the property-labeled material fragments descriptor. Un-
like most graphs, these crystal graphs allow for several
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FIG. 10. Illustration of the crystal graph convolutional neural network. (a) Construction of the graph. (b) Structure of the
convolutional neural network. (Reprinted with permission from Ref. 41. Copyright 2018 American Physical Society.)

edges between two nodes, due to periodicity. Therefore
the edges are encoded as one-hot feature vectors u(i,j)k ,
which translates into the k-th bond between atom i and j.
Crystal graphs do not form an optimal representation for
predicting target properties by themselves, however they
can be improved by using convolution layers. After each
convolution layer, the feature vectors gradually contain
more information on the surrounding environment due to
the concatenation between atom and bond feature vec-
tors. Afterwards, a pooling layer reduces the spatial di-
mensions of the convolution neural network. Using skip
layer connections,186 the pooling function operates not
only on the last feature vector, but on all feature vectors
(obtained after each convolution).

Up to now we discussed very general features to de-
scribe both the crystal structure and chemical composi-
tion. However, should constrains be applied to the mate-
rial space, the features necessary to study such systems
can be vastly simplified. As mentioned above, elemen-
tal properties alone can be used as features, e.g. when
a training set is restricted to only one kind of crystal
structure and stoichiometry.34,36,57,118,187 Consequently,
the target property only depends on the chemical ele-
ments present in the composition. Another example can
be found in Ref. 188, where a polymer is represented by
the number of building blocks (e.g., number of C6H4,
CH2, etc) or of pairs of blocks.

The crude estimations of properties can be an inter-
esting supplement to standard features as discussed in
Ref. 74. As its name implies, crude estimations of prop-
erties consist of the calculation of a target property (for
example, the experimental band gap) utilizing crude esti-
mators [for example, the DFT band gap calculated with

the Perdew-Burke-Ernzerhof (PBE) approximation189 to
the exchange-correlation functional]. In principle, this
approach can achieve successful results, as the machine
learning algorithm no longer needs to predict a target
property, but rather an error or a difference between
properties calculated with two well-defined methodolo-
gies.

Fischer et al.190 took another route and used as fea-
tures a vector that completely denotes the possible
ground states of an alloy:

X = (xc1 , xc2 , ..., xcn , xE1 , xE2 , ..., xEc), (35)

where xci denotes the all possible crystal structures
present in the alloy at a given composition and xE1 the
elemental constituents of the system. In this way, the
vector X = (fcc, fcc, Au, Ag) would represent the gold-
silver system. Furthermore, the probability density p(X)

denotes the probability that X is the set of ground states
in a binary alloy. With these tools, one can find the most
likely crystal structure for a given composition by sorting
the probabilities, and predict crystal structures by evalu-
ating the conditional probability p(X|e), where e denotes
unknown variables.

Having presented so many types of descriptors, the
question that now remains concerns the selection of the
best features for the problem at hand. We already dis-
cussed some automatic feature selection algorithms e.g.
LASSO, SISSO, PCA, or even decision trees in Sect. II B.
Yet these methods mainly work for linear models, and
selecting a feature for, e.g., a neural network force-field
from the various features we described is not possible
with any of these methods. A possible solution to this
problem is to perform thorough benchmarks. Unfortu-
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nately, while there are many studies presenting their own
distinct way to build features and applying them to some
problem in materials science, fewer studies155,157,191 ac-
tually present quantitative comparisons between descrip-
tors. Moreover, some of the above features require a con-
siderable amount of time and effort to be implemented
efficiently and are not readily and easily available.

In view of the present situation, we believe that the
materials science community would benefit greatly from a
library containing efficient implementations of the above
mentioned descriptors and an assembly of benchmark
datasets to compare the features in a standardized man-
ner.

III. MATERIAL DISCOVERY AND CRYSTAL
STRUCTURE CHARACTERIZATION

Nearly thirty years ago, the at the time editor of Na-
ture, John Maddox wrote “One of the continuing scan-
dals of physical science is that it remains in general im-
possible to predict the structure of even the simplest
crystalline solids from a knowledge of their chemical
composition”.192 While this is far from true nowadays,
predicting the crystal structure based solely on the com-
position remains one of the most important (if not even
the key) challenge in materials science, as any rational
materials design has to be grounded in the knowledge of
the crystal structure.

Unfortunately, the first-principle prediction of crystal
or molecular structures is exceptionally difficult, because
the combinatorial space is composed of all possible ar-
rangements of the atoms in three-dimensional space and
with an extremely complicated energy surface.18 In re-
cent years, advanced structure selection and generation
algorithms such as random sampling,193–196 simulated
annealing,197–199 metadynamics,200 minima hopping,201
evolutionary algorithms,19,202–208 as well as the progress
in energy evaluation methods, expanded the scope of ap-
plication of “classical” crystal structure prediction meth-
ods to a wider range of molecules and solid forms.209
Nevertheless, these methods are still highly computation-
ally expensive, as they require a substantial amount of
energy and force evaluations. However, the search for
new or better high-performance materials is not possi-
ble without searching through an enormous composition
and structure space. As there are tremendous amounts of
data involved, machine learning algorithms are some of
the most promising candidates to take on this challenge.

Machine learning methods can tackle this problem
from different directions. A first approach is to speed
up the energy evaluation by replacing a first-principle
method with machine learning models that are orders
of magnitude faster (see Sect. VI). However, the most
prominent approach in inorganic solid state physics is the
so-called component prediction.62 Instead of scanning the
structure space for one composition, one chooses a pro-
totype structure and scans the composition space for the

stable materials. In this context, thermodynamic stabil-
ity is the essential concept. By this we mean compounds
that do not decompose (even in infinite time) into dif-
ferent phases or compounds. Clearly, metastable com-
pounds like diamond are also synthesizable and advances
in chemistry have made them more accessible.210,211 Nev-
ertheless, thermodynamically stable compounds are in
general easier to produce and work with. The usual cri-
terion for thermodynamic stability is based on the ener-
getic distance to the convex hull, but in some cases the
machine learning model will directly calculate the prob-
ability of a compound existing in a specific phase.

A. Component prediction

Clearly the formation energy of a new compound is not
sufficient to predict its stability. Ideally one would always
want to use the distance to the convex hull of thermody-
namic stability. In contrast to the formation energy, the
distance to the convex hull considers the difference in free
energy of all possible decomposition channels. De facto,
this is not the case because our knowledge of the convex
hull is of course incomplete. Fortunately, as our knowl-
edge of the convex hull continuously improves with the
discovery of new stable materials, this problem becomes
less important over time. Lastly, most first-principle en-
ergy calculations are done at zero temperature and zero
pressure, neglecting kinetic effects on the stability.

Faber et al.36 applied KRR to calculate formation
energies of two million elpasolites (with stoichiometry
ABC2D6) crystals consisting of main group elements up
to bismuth. Errors of around 0.1 eV/atom were reported
for a training set of 10

4 compositions. Using energies and
data from the materials project,75 phase diagrams were
constructed and 90 new stoichiometries were predicted to
lie on the convex hull.

Schmidt et al.118 first constructed a dataset of density
functional theory calculations for approximately 250 000
cubic perovskites (with stoichiometry ABC3) using all el-
ements up to bismuth and neglecting rare gases and lan-
thanides. After testing different machine learning meth-
ods, extremely randomized trees114 in combination with
adaptive boosting123 proved the most successful with an
mean average error of 0.12 eV/atom. Curiously, the error
in the prediction depends strongly on the chemical com-
position (see Fig. 11). Furthermore, an active learning
approach based on pure exploitation was suggested (see
Sect. V).

In Ref. 126 the composition space for two ternary pro-
totypes with stoichiometry AB2C2 (tI10-CeAl2Ga2 and
the tP10-FeMo2B2 prototype structures) were explored
for stable compounds using the approach developed in
Ref. 118. In total, 1893 new compounds were found on
the convex hull while saving around 75% of computation
time and reporting false negative rates of only 0% for the
tP10 and 9% for the tI10 compound.

Ward et al.35 used standard RFs to predict formation
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FIG. 11. Mean average error (in meV/atom) for adaptive boosting used with extremely random trees averaged over all
perovskites containing the element. The numbers in parentheses are the actual averaged error for each element. (Reprinted
with permission from Ref. 118. Copyright 2017 American Chemical Society.)

energies based on features derived from Voronoi tessella-
tions and atomic properties. Starting with a training set
of around 30 000 materials, the descriptors showed bet-
ter performance than Coulomb matrices165 and partial
radial distribution functions166 (see Sect. II C for the dif-
ferent descriptors). Surprisingly, the structural informa-
tion from the Voronoi tesselation did not improve the re-
sults for the training set of 30 000 materials. This is based
on the fact that very few materials with the same com-
position, but different structure, are present in the data
set. Changing the training set to an impressive 400 000
materials from the open quantum materials database79

proved this point, as the error for the composition-only
model was then 37% higher than for the model including
the structural information.

A recent study by Kim et al.212 used the same method
for the discovery of quaternary Heusler compounds and
identified 53 new stable structures. The model was
trained for different datasets (complete open quantum
materials database,79 only the quaternary Heusler com-
pounds, etc.). For the prediction of Heusler compounds,
it was found that the accuracy of the model also benefited
from the inclusion of other prototypes in the training set.
It has to be noted that studies with such large datasets
are not feasible with kernel-based methods (e.g. KRR,
SVMs) due to their unfavorable computational scaling.

Li et al.34 applied different regression and classifi-
cation methods to a dataset of approximately 2150
A1�xA0

xB1�yB0
yO3 perovskites, materials that can be

used as cathods in high-temperature solid oxide fuel-
cell.213 Elemental properties were used as features for
all methods. Extremely randomized trees proved to be
the best classifiers (accuracy 0.93, F1-score 0.88) while
KRR and extremely randomized trees had the best per-
formance for regression, with mean average errors of less
than 17 meV/atom. The errors in this work are difficult
to compare to others as the elemental composition space
was very limited.

Another work treating the problem of oxide-perovskite
stability is Ref. 57. Using neural networks based only
on the elemental electronegativity and ionic radii, Ye

et al. achieved a mean average error of 30 meV/atom
for the prediction of the formation energy of unmixed
perovskites. Unfortunately, their data set contained only
240 compounds for training, cross-validation and test-
ing. Ye et al.57 also achieved comparable errors for
mixed perovskites, i.e. perovskites with two different el-
ements on either the A- or B-site. Mean average errors
of 9 meV/atom and 26 meV/atom were then obtained re-
spectively for unmixed and mixed garnets with the com-
position C3A2D3O12. By reducing the mixing to the C-
site and including additional structural descriptors, Ye
et al. were able to once again decrease the latter error
to merely 12 meV/atom. If one compares this study to,
e.g., Ref. 36 or 1 the errors seem extremely small. This
is easily explained once we notice that Ref. 57 only con-
siders a total compound space of around 600 compounds
in comparison to around 250 000 compounds in Ref. 1.
In other words the complexity of the problem differs by
more than two orders of magnitude.

The crystal graph convolutional neural networks (see
Sect. II C) developed by Xie et al.41 also allow for the pre-
diction of formation energies and therefore can be used
to speed up component prediction.

Up to this point, all component prediction methods
presented here relied on first-principle calculations for
training data. Due to the prohibitive computational cost
of finite temperature calculations, nearly all of this data
corresponds to zero temperature and pressure and there-
fore neglects kinetic effects on the stability. Furthermore,
metastable compounds, such as diamond, that are stable
for all practical purposes and essential for applications,
risk to be overlooked. The following methods bypass this
problem through the use of experimental training data.

The first structure prediction model that relies on ex-
perimental information, can be traced back to the 1920s.
One example, that was still relevant until the last decade,
is the tolerance factor of Goldschmidt,214 a criterion for
the stability of perovskites. Only recently, modern meth-
ods like SISSO,102 gradient tree boosting,120 and RFs113
improved upon these old models and allowed a rise in
precision from 74% to more than 90%187,215,216 for the
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FIG. 12. Histogram of the distance to the convex hull
for perovskites included in the inorganic crystal structure
database.76 Calculations were performed within DFT with
the PBE approximation. The bin size is 25 meV/atom.
(Reprinted with permission from Ref. 118. Copyright 2017
American Chemical Society.)

stability prediction of perovskites. Balachandran et al.216
also predicted whether the material would exist as a cubic
or non-cubic perovskite, reaching a 94% average cross-
validation error. The advantage of stability prediction
based on experimental data is a higher precision and re-
liability, as the theoretical distance to the convex hull is
a good but far from perfect indicator for stability. Tak-
ing the example of perovskites, one has to increase the
distance to the convex hull up to 150 meV/atom just to
find even 95% of the perovskites present in the inorganic
crystal structure database76 (see Fig. 12).

Another system with a relatively high number of exper-
imentally known structures are the AB2C Heusler com-
pounds. Oliynyk et al.217 used RFs and experimental
data for all compounds with AB2C stoichiometry from
Pearson’s crystal data218 and the alloy phase diagram
database87 to build a model to predict the probability
to form a full Heusler compound with a certain com-
position. Using basic elemental properties as features,
Olynyk et al. were able to successfully predict and ex-
perimentally confirm the stability of several novel full-
Heusler phases.

Legrain et al. extended the principle of this work to
half-Heusler ABC compounds. While comparing the re-
sults of three ab initio high-throughput studies38,219,220
to the machine learning model, they found that the pre-
dictions of the high-throughput studies were neither con-
sistent with each other nor with the machine learning
model. The inconsistency between the first-principle
studies is due to different publication dates that led to
different knowledge about the convex-hulls and to slightly
differing methodologies. The machine learning model
performs well with 9% false negatives and 1% false pos-
itives (in this case positive means stable as half-Heusler
structure). Additionally, the machine learning model was
able to correctly label several structures for which the
ab initio prediction failed. This demonstrates the possi-

ble advantages of experimental training data, when it is
available.

Zheng et al.37 applied convolutional neural networks
and transfer learning221 to the prediction of stable full-
Heusler compounds AB2C. Transfer learning considers
training a model for one problem, and then using parts
of the model, or the knowledge gained during the first
training process, for a second training thereby reducing
the data required. An image of the periodic table repre-
sentation was used in order to take advantage of the great
success of convolutional neural networks for image recog-
nition. The network was first trained to predict the for-
mation energy of around 65 000 full-Heusler compounds
from the open quantum materials database,79 resulting
in a mean absolute error of 7 meV/atom (for a training
set of 60 000 data points) and 14 meV/atom (for a train-
ing set of 5000 compositions). The weights of the neural
network were than used as starting point for the training
of a second convolutional neural network that classified
the compositions as stable or unstable according to train-
ing data from the inorganic crystal structure database.76
Unfortunately no data concerning the accuracy of the
second network was published.

Hautier et al.222 combined the use of experimental and
theoretical data by building a probabilistic model for the
prediction of novel compositions and their most-likely
crystal structures. These predictions were then validated
with ab initio computations. The machine learning part
had the task to provide the probability density of differ-
ent structures coexisting in a system based on the the-
ory developed in Ref. 190. Using this approach Hautier
et al. searched through 2211 ABO compositions where
no ternary oxide existed in the inorganic crystal struc-
ture database76 and where the probability of forming a
compound was larger than a threshold. This resulted in
1261 compositions and 5546 crystal structures, whose en-
ergy was calculated using DFT. To assess the stability,
the energies of all decomposition channels that existed in
the database were also calculated, resulting in 355 new
compounds on the convex hull.

It is clear that component prediction via machine
learning can greatly reduce the cost of high-throughput
studies through a preselection of materials by at least
a factor of ten.1 Naturally, the limitations of stability
prediction according to the distance to the convex hull
have to be taken into consideration when working on the
basis of DFT data. While studies based on experimen-
tal data can have some advantage in accuracy, this ad-
vantage is limited to crystal structures that are already
thoroughly studied, e.g. perovskites, and consequently
a high-number of experimentally stable structures is al-
ready known. For a majority of crystal structures, the
number of known experimentally stable systems is ex-
tremely small and consequently ab initio data based stud-
ies will definitely prevail over experimental data based
studies. Once again, a major problem is the lack of any
benchmark datasets, preventing a quantitative compari-
son between most approaches. This is even true for work
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on the same structural prototype. Considering for ex-
ample perovskites, we notice that three groups predicted
distances to the convex hull.34,57,118 However, as the un-
derlying composition spaces and datasets are completely
different it is hardly possible to compare them.

B. Structure prediction

In contrast to the previous section, where the desired
output of the models was a value quantifying the prob-
ability of compositions to condense in one specific struc-
ture, models in this chapter are concerned with differen-
tiating multiple crystal structures. Usually this is a far
more complex problem, as the theoretical complexity of
the structural space dwarfs the complexity of the com-
position space. Nevertheless it is possible to tackle this
problem with machine learning methods.

Early attempts, that predate machine learning, include
e.g Pettifor structural maps that use elementary prop-
erties to separate different binary or ternary structures
from each other in a two-dimensional plot, allowing the
prediction of new stable structures.223–226 In some sense,
Pettifor maps are already closely related to recent work,
such as Ref. 102, where a structural map for binary struc-
tures based on chemical properties was developed with
SISSO. Some of the first applications of modern ma-
chine learning crystal structure prediction can be found
in Ref. 190. There, Fischer et al. developed an approach
based on the cumulant expansion method, described in
Ref. 227, to predict the probability of an elemental com-
position forming a specific binary crystal structure. Their
method estimates the correlation of the stability of two
structures with respect to their composition. The model
was trained with data from Ref. 89 and evaluated with
leave-one-out cross validation. It was able to predict the
correct structure in 90% of the cases during the first five
guesses, in comparison to 62% when picking the struc-
tures according to their frequency in the dataset. It has
to be mentioned here once again, that leave-one-out cross
validation is not a good method to evaluate the extrap-
olation ability of such models.71,72

Olynyk et al.33 applied cluster resolution feature selec-
tion228 to the classification of binary crystal structures.
These features were then used as input for partial least-
squares discriminant analysis (PLS-DA) and SVMs. In
order to reduce the complexity of the problem, only the
seven most common binary prototype structures were
considered. A dataset of 706 compounds was divided
into three sets, 235 for feature selection, 235 for optimiza-
tion of the PLS-DA and SVMs, and 236 for validation.
The SVMs performed better with an average false pos-
itive rate of 5.8%, a false negative rate of 7.3% and an
accuracy of 93.2%, compared to the PLS-DA with 3.5%,
34.0%, and an accuracy of 77.1%. It has to be noted that
these values differ significantly depending on the crystal
system that one tries to predict (see Fig. 13). This ap-
proach was adapted by Olynyk et al.229 to equiatomic

ternary compounds. SVMs were used on a dataset of
⇠1500 ternary compounds from Pearson’s crystal data.
Reducing the number of features via cluster resolution,
from an initial 1000 features to 110, resulted in a sen-
sitivity of 97.3%, accuracy of 96.9%, and specificity of
93.9%.

As crystal structure prediction is only the first step
in the rational design process, combining stability de-
termination with property design is necessary. Bal-
achandran et al.32 studied a set of 60 000 potential
xBiMe0yMe001�yO3 � (1 � x)PbTiO3 perovskites with sev-
eral machine learning methods. First SVMs were used to
classify them into perovskites and non-perovskites, fol-
lowed by a prediction of the Curie temperature of those
classified as perovskites. Once a candidate was exper-
imentally synthesized, it was added to the training set
and the process was repeated. Of ten synthesized com-
pounds, six perovskites were found, whose highest Curie
temperature was reported to be 898 K.

Graser et al.31 applied RFs for crystal structure clas-
sification of 24 215 compounds from Pearson’s crystal
data218 database. Naturally, a lot of prototypes only
have very few representatives (<10) in the database. In
order to circumvent this problem, prototypes with fewer
instances than a certain cutoff number were put into a
group denoted as “other”. As the “other” class comprised
between 92.51% and 64.1% of the dataset, depending
on the choice of cutoff number, this greatly reduced the
complexity of the dataset. Graser et al. then researched
the change in predictive ability of the model with re-
spect to the cutoff number. As expected, the recall im-
proved with increasing cutoff number. The confusion ta-
ble (see Fig. 14) demonstrates that, through the use of
large datasets, even a simple method can achieve impres-
sive results for an extremely challenging task like crystal
structure prediction.

Park et al.230 tackled the problem of crystal structure
prediction from a slightly different perspective. All the
others methods discussed up to now used the chemical
composition, or data derived from the chemical composi-
tion, and structure as descriptors. In contrast, Park et al.
used powder X-ray diffraction patterns to determine the
crystal system, extinction group, and space group of in-
organic compounds. Because the three dimensional elec-
tron density is contracted into a one-dimensional diffrac-
tion pattern, the symmetry of the crystal is often not
fully determined from the diffraction pattern alone, es-
pecially for low-symmetry structures. While software for
indexing and determining the space group exists, it re-
quires substantial expertise and human input to obtain
the correct results. Previous machine learning attempts
in this field mostly considered the task of feature engi-
neering (e.g. PCA,231–234 or manual featurization235,236)
or considered smaller datasets and shallower neural net-
works. In contrast, in Ref. 230 deep convolutional neural
networks were developed, using X-ray patterns as input
and giving as output either the space group, extinction
group, or crystal system. For the training data, struc-
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FIG. 13. Predicted probability for ZnS-type (left) and CsCl-type structures (right) for the SVM model with 31 features.
(Reprinted with permission from Ref. 33. Further permissions should be directed to the ACS.)

FIG. 14. Confusion matrix for cutoff size of 100 (a perfect confusion matrix is diagonal). (Reprinted with permission from
Ref. 31. Copyright 2018 American Chemical Society))

tural data from the inorganic crystal structure database76

was used to calculate randomly perturbed spectra, that
simulated real spectra. During testing on a dataset that
amounted to around 20% of the training set, the net-
work reached accuracies of 81.14, 83.83 and 94.99% for
space-group, extinction group, and crystal-system classi-
fications, respectively. Furthermore, the model was able
to correctly identify the structural system of two novel
compounds237,238 whose prototype structure did not ap-
pear in the database (and therefore neither in the train-
ing set). Albeit the model was not performing better
than human experts using a software like TREOR,239 it
has the potential to be a useful tool to non-experts and
in order to speed up the identification process of X-ray

diffraction spectra in general. The success of the model
is not surprising, as the use of convolutional neural net-
works in image classification240–242 is well established in
computer science.

A similar approach for crystal structure classification
was followed in Ref. 243. Zilleti et al. used convolutional
neural networks to classify crystal structures by a sim-
ulated two dimensional diffraction fingerprint. The ap-
proach was limited to the classification of crystal struc-
tures, because the two-dimensional diffraction pattern is
not unambiguous for all space groups, and consequently
the neural network is not able to distinguish between
rhombehedral and hexagonal structures, for example.
They also used attentive response maps,244–248 trying
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to achieve some interpretability and visualization of the
model. This will be further discussed in Sect. VIII A.

If we consider structure prediction through machine
learning, we also have to consider global structure pre-
diction methods, where the whole energy surface has to
be explored efficiently. This can also be considered as
a surrogate based optimization problem (see Sect. V),
where the expensive experiment is the local geometry
optimization through DFT. Yamashita et al.249 started
with a large set of initial structures from which a ran-
dom subset was locally optimized and used to train a
Bayesian regressor to predict the energy. Using Thomp-
son sampling,250 structures from the initial set were sam-
pled randomly according to their probability of minimiz-
ing the energy. The approach was tested on NaCl and
Y2Co17 and reduced the average number of trials until
finding the optimal structure by respectively 31% and
39% when compared to random structure selection.

Lastly, we discuss two works that introduced modern
neural network architectures to crystal structure predic-
tion and generation. Both methods have also been used
recently for microstructures by Li et al.153,251

Ryan et al.29 applied VAEs (see Sect. II B) to crys-
tal structure prediction. The 42-layer VAEs develops a
more efficient representation for the input (see Sect. II C).
For training and testing a dataset of around 50 000
crystal structures from the inorganic crystal structure
database76 and the crystallography open database88 were
used. The encoding of the original descriptors was used
as input for a 5-layer sigmoid classifier that predicts the
most likely elements to form the topology represented
by the atomic fingerprints. A third auxiliary neural net-
work, in this case a 5-layer softmax classifier, combined
the non-normalized atomic fingerprints and the output
of the sigmoid classifier that improves the prediction. To
predict directly the crystal structure from this approach
one requires training data of negatives or, in other words,
knowledge of crystal structures that do not exist. Unfor-
tunately, no such database is available in physics. In
order to circumvent this problem, Ryan et al. calculated
the likelihood of the existence of a structure as the prod-
uct of the probabilities of elements existing at the sin-
gle atomic sites. Application to test data demonstrated
a clear superiority of this approach in comparison with
random choices.

Nouira et al.30 introduced a GAN-based strategy (see
Sect. II B) to crystal structure generation in the form
of CrystalGAN. Specifically, they created a novel GAN
structure to generate stable ternary structures on the ba-
sis of binary hydrides. Remarkably, the method gener-
ates structures of higher complexity and is able to include
constraints based on domain knowledge. However, as no
data about the stability of the generated structures was
published, the evaluation of the usefulness of this ap-
proach is still pending. A second application of GANs in
materials science, and in particular in chemistry, can be
found in Ref. 154.

Property References
Curie temperature 32, 252–256
Vibrational free energy and entropy 257
Band gap 41, 42, 98, 256, 258–269
Dielectric breakdown strength 39, 45, and 46
Lattice parameter 269
Debye temperature and heat capacity 42–44
Glass transition temperature 270
Thermal expansion coefficient 42
Thermal boundary resistance 271
Thermal conductivity 38, 47–52, 272, and 273
Local magnetic moments 185 and 274
Melting temperature 40, 49, and 275
Magnetocaloric effects 256
Grain boundaries 276
Grain boundary energy 277–280
Grain boundary mobility 280
Interface energy 269
Seebeck coefficient 47, 281, and 282
Thermoelectric figure of merit 283
Bulk and shear moduli 41–43, 124, 125, and 284
Electrical resistivity 47
Density of states 166, 285, and 286
Fermi energy and Poisson ratio 41
Dopant solution energy 287
Metal-insulator classification 102
Topological invariants 288–294
Superconducting critical temperature 70, 73, 177, 295–297
Li-ion conductivity 298

TABLE I. Summary of material properties predicted with ma-
chine learning methods and corresponding references.

IV. PREDICTION OF MATERIAL
PROPERTIES

Machine learning methods have proven to be successful
in the prediction of a large number of material properties.
An overview of different properties that were predicted
can be found in Table IV. In the following we discuss
in depth a few properties, studied in various works, that
provide good examples for current challenges in compu-
tational materials science, and possible strategies to over-
come them.

A. Band Gaps

Design of functional materials for applications like
LEDs, photovoltaics, scintillators, or transistors, always
requires detailed knowledge of the band gap. Conse-
quently, a lot of effort was invested in theoretical meth-
ods for high-throughput calculations of this electronic
property. It is well known that standard exchange
correlation functionals, like the PBE,189 systematically
underestimate band gaps in comparison to experimen-
tal results. More modern functionals like the modified
Becke-Johnson by Tran and Blaha,299 or the strongly
constrained and appropriately normed meta-GGA300 by
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Jianwei et al. improve upon these results. However, the
state-of-the-art higher fidelity methods still remain the
many-body GW approximation or hybrid functionals.
Unfortunately these usually come with a prohibitively
high computational cost. Machine learning is one pos-
sibility to overcome this obstacle by either directly pre-
dicting band gaps based on experimental or theoretical
training data, or by using the results of low-fidelity meth-
ods to predict experimental or high-fidelity theoretical
results.

Zhuo et al.258 tried to circumvent the problems of the
different theoretical methods, by directly predicting ex-
perimental band gaps. Their approach started with a
classification of the materials as either metal or non-
metal using SVM classifiers and then progressed by pre-
dicting the band gap with SVM regressors. The perfor-
mance of the resulting models in predicting experimental
band gaps lies somewhere between basic functionals (like
the PBE) and hybrid functionals. The error turns out
to be comparable to, e.g., Ref. 41 or Ref. 42. However,
Zhuo et al. improved upon those earlier machine learning
results, as the error is with respect to the experimental
results instead of DFT calculations. While there have
been earlier attempts at using experimental band gap
training data (e.g., Ref. 259), the dataset used by Zhou
et al. includes more than 6000 band gaps, dwarfing all
previous datasets.

Lee et al.260 approached the problem from a differ-
ent perspective by using low-fidelity DFT gaps (modi-
fied Becke-Johnson and PBE), as well as basic crystalline
and elemental properties as features for OLSR, LASSO,
and nonlinear SVR. They predicted gaps calculated with
G0W0 starting from the ground-state obtained with the
Heyd-Scuseria-Ernzerhof hybrid functional.301 SVR us-
ing both the modified Becke-Johnson and the PBE gaps,
as well as the other features yielded the best results, with
a root mean square error of 0.24 eV.

Pilania et al.261 applied a co-kriging statistical learn-
ing framework to learn high-fidelity bandgaps. Their ap-
proach differed from previous ones, as low fidelity band
gaps were not explicitly used as features and were there-
fore not necessarily needed as input for all compounds.

Another interesting attempt at the prediction of high-
fidelity band gaps can be found in Ref. 262. Rajan
et al. used KRR, SVR, GPR, and decision tree boost-
ing methods to predict the G0W0-band gaps of MXenes.
They started by generating and selecting features with
LASSO,98 and then optimizing the feature space for each
method. Counterintuitively, the PBE band gap was not
included in the optimized feature space of any method.
However, other researchers suggest to include this infor-
mation256,263 and stress the importance of so called crude
estimations of property74 (see Sect. II C).

Weston et al.264 investigated the band gaps of kesterite
compounds and developed a logistic regression classifier
for the prediction of the direct-indirect property of these
band gaps. A total of 184 semiconducting materials were
used for training, and the best model demonstrated an

accuracy, recall, precision, and f1 score of around 90%.

B. Bulk and shear moduli

Two other popular properties in solid-state machine
learning are the bulk and shear moduli, that determine
the stress-strain relations in the linear range. They are
also correlated with other properties like the bonding
strength, thermal conductivity,124,302,303 charge carrier
mobility,304 and of course the hardness of the mate-
rial.305,306 As such, they are often used as a proxy in
the search for superhard307 (hardness > 40 GPa) mate-
rials. In general these properties are available as a result
of DFT calculations, however they are too computation-
ally expensive for really large high-throughput studies.
Two less computationally expensive alternatives exist,
specifically force-field methods308 and theoretical mod-
els for the direct calculation of bulk and shear moduli.
However, force fields lack accuracy, and most theoretical
models only span a highly restricted chemical and struc-
tural space.309–312 This opens up the question if machine
learning algorithms can show better generalizability.

De Jong et al.124 developed a new machine learning
technique, called gradient boosting machine local poly-
nomial regression, that extends the principles of gradient
boosting frameworks120 to the case of multivariate lo-
cal polynomial regression.313 They used this technique to
predict the Voigt-Reuss-Hill averages314 of the bulk and
shear moduli on the basis of elemental properties. In this
case, they used the volume per atom, row number, co-
hesive energy and the electronegativity as features. The
use of the cohesive energy as a feature is slightly prob-
lematic as it also requires DFT-calculations. The training
set consisted of around 2 000 materials and a root mean
square error of 0.075 log(GPa) and 0.138 log(GPa) were
reached for the logarithm of the bulk and shear moduli.
The logarithm was used to decrease the emphasis on large
values. It has to be noted that the training set was biased
towards metallic compounds and rather simple materials.

The previously discussed crystal graph convolutional
neural networks by Xie et al.41 also allows for the pre-
diction of bulk and shear moduli. Test set errors of
0.105 log(GPa) and 0.127 log(GPa) for these properties
were reported for the data set of Ref. 124. The net-
work was also tested on 1585 materials that were recently
added to the materials project database.75 Once again
the network demonstrated good generalizability for the
new dataset with different crystal groups.

A similar study for siliceous zeolites was performed in
Ref. 125, where gradient boosting regressors were used to
predict once again the logarithm of the bulk and shear
moduli. They obtained an error of 0.102±0.034 log(GPa)
for the bulk and 0.0847 ± 0.022 log(GPa) for the shear
moduli. Even if the training set only contained 121 ze-
olites, this method seems to compare favorably to the
5 conventional force field methods315–319 reported in
Ref. 320. In constrast to Ref. 124, Evans et al. used
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structural and local descriptors as the challenge was to
differentiate between the different silliceous zeolites and
not between materials of different elemental composition.

Furmanchuk et al.43 used RFs to predict the bulk mod-
ulus. A wide variety of 1428 compounds from the ther-
moelectric design lab database,90 containing from uni-
tary up to quinary combinations of 62 elements, was
used for training. The notable fact about this study is
that thermal effects, that are usually neglected in DFT-
calculations, were included through Birch–Murnaghan
fits.321,322 As features, properties of the element itself and
experimentally measured properties of elemental sub-
stances were used. Another set of 356 theoretically calcu-
lated materials and 69 experimentally measured ones was
kept for testing. A root mean square error of 18.75 GPa
was reported for the first set, while no error was reported
for the experimental set.

Isayef et al.42 developed an extension of property-
labeled material fragments to be used for solids. As
this leads to a very general feature vector, one can ap-
ply it to the prediction of a variety of properties.42 Us-
ing gradient boosting decision trees and a training set of
around 3 000 materials, they achieved errors of 14.25 GPa
and 18.43 GPa the bulk and shear moduli. It has to
be noted that this training set only considered unary
to ternary compounds and neglected quaternary com-
pounds. In contrast, these were also considered in, e.g.,
Refs. 124, 125, and 284.

Another interesting machine learning study of the bulk
and shear moduli of solids is Ref. 284. Mansouri et al.
combined elemental and structural properties as descrip-
tors and used SVRs to screen a chemical space of around
120 000 materials for superhard incompressible materials.
This was actually followed by the synthesis and charac-
terization of two novel superhard materials. Once again,
the cohesive energy was identified as one of the crucial
features for both moduli.

C. Topological states

The discovery of topological insulators has sparked an
extreme interest into the field of topological states in con-
densed matter.323–325 It is therefore not surprising that
in the last two years machine learning ansätze were in-
troduced to the topic. In general, learning topological
phases is a highly non-trivial task as topological invari-
ants are inherently non-local. In the field of topological
states, neural networks are by far the most relevant ma-
chine learning method used.288–294 In Refs. 288, 291, and
292 this technique was used to predict the topological in-
variants of, respectively, one-dimensional topological in-
sulators of the AIII class, the 2D XY-model, and one-
dimensional topological insulators of the AIII class, as
well as two-dimensional insulators of the A class. In the
later two works, analysis of the neural network confirmed
that it learned both the winding number formula289 and
a formula for the Berry curvature in the case of the A

class insulators291 (see Sect. VIIIA for a more extensive
discussion). Another interesting application that takes
advantage of the extreme success of neural networks for
image-classification is quantum loop topography.288 In
this method, an image representing the Hamiltonian or
wave function is constructed and entered into a neural
network, that decides on the topological phase of the sys-
tem with great accuracy. Although the input is the result
of Monte Carlo simulations, it is rather efficient, as it only
requires single steps and not Monte-Carlo averages.

FIG. 15. Strategy to solve the inverse design problem for
photonic devices,293 where �0 is the structure parameter sug-
gested by the inverse network and ⇠, m±

ij and s± are extra
inputs for both networks. (Reprinted with permission from
Ref. 293 licensed under the CC BY 4.0 180.)

While the previous examples are still mostly concerned
with theoretical models, more recent work is already
concerned with designing topological photonic devices
directly through machine learning methods.293 Pilozzi
et al. designed photonic devices described by the Aubry-
André-Harper model326,327 with neural networks. The
desired property are edge states with specific frequencies
!t, which are determined by a set of structure param-
eters. In order to solve the problem, direct and inverse
models are combined. The process starts with the inverse
neural network, determining the structure parameters re-
quired for an edge state with frequency !ind

t
. In order to

simplify the problem some categorical features are not
included in the neural network, but actually one neural
network is trained for each categorical value. The ob-
tained structure parameters from the inverse neural net-
work are used as input for the direct neural network that
produces a new frequency !dir

t
. If the discrepancy be-

tween the two frequencies is smaller than a certain thresh-
old

��!ind

t
� !dir

t
< �

��, the structure parameters from the
indirect neural network are accepted. This self-consistent
approach is used to filter out the unphysical structures
from the results of the inverse neural network.

D. Superconductivity

Even thirty years after its discovery,328 unconventional
superconductivity remains one of the unsolved challenges
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of theoretical condensed matter physics. As machine
learning methods do not require a complete theoretical
understanding of the problem, determining the critical
temperature Tc is an obvious challenge for these methods.
In the case of critical temperatures, data accumulation is
problematic, as there are few computational methods to
calculate critical temperatures,329–331 and these are lim-
ited to conventional superconductors. Moreover, they are
far less widely available than, e.g, methods to calculate
the band gap or bulk moduli. On the one hand this is a
drawback as it severely limits the acquisition of data, but
on the other hand machine learning methods could prove
even more important as no general working theoretical
model exists.

There was some early work, akin to machine learning,
on clustering superconductors based on quantum struc-
ture diagrams,332,333 and some more recent work con-
cerning the filtering of materials for cuprate superconduc-
tors based on their electronic structure.334 A discussion
of similar design approaches can be found in Ref. 335.
In Refs. 295 and 296 the superconducting critical tem-
perature is fitted to the lattice parameters with a SVM.
Unfortunately, both studies clearly suffer from the diffi-
culty of accumulating data. The former is concerned with
iron based superconductors and has a training set of 30
materials while the later only treats doped MgB2 with a
training set of 40 materials. Even though these examples
do not take advantage of the fortes of machine learning
methods, they still reach an error 1.17 K and 1.10 K,
admittedly for a very limited domain. The actual search
for superconductors in a larger domain is far more chal-
lenging, because the Kohn-Luttinger theorem336 suggests
that fermionic systems with a Coulomb interaction are in
general superconducting for T ! 0. This presents a dif-
ficulty, as leaving compounds with no reported critical
temperature out of the dataset, or assuming that criti-
cal temperature is zero, would either lead to a miss- or
underrepresentation of data.73 However, as we are often
interested in high temperature superconductors from a
technological perspective, we can circumvent the prob-
lem by classifying potential superconductors as low- or
high-TC, instead of using a regressor to predict the criti-
cal temperature.

Isayev et al.177 used RFs to divide superconductors into
groups, one group with TC below and one group with TC

above 20 K and RFs and partial least squared regression
to build a continous model of the transition temperature.
The training set size was nevertheless still very limited
(464 classification, 295 regression).

A study by Stanev et al.73 considered a larger train-
ing set of around 14 000 materials from the SuperCon
database.78 Superconductors were first classified into
groups with Tc below and above 10 K, resulting in an
accuracy and F1 score of about 92%. The features were
created using Magpie337 and consisted of elemental prop-
erties and combinations of them. Interestingly enough,
when reducing the number of descriptors to only the
three used in Refs. 332 and 333, specifically the aver-

age number of valence electrons, the metallic electroneg-
ativity differences and orbital radii differences, the accu-
racy of the classifier only decreased by around 3%. This
suggests that little progress was made in terms of such
features in the meantime.

The regression model for log(TC) was built for mate-
rials with transition temperatures above 10 K to avoid
the previously discussed problems, and reached an R2-
score of around 0.88. By dividing the training set into
different groups of superconductors, Stanev et al. could
demonstrate that the model recovered physical knowl-
edge, such as the isotope effect or other empirical rela-
tions.338 Furthermore it was clear that the model was not
able to extrapolate from one group of superconductors to
another, e.g. from conventional to cuprate superconduc-
tors. This is, of course, expected due to the different
superconducting mechanisms involved in the two fami-
lies. This extrapolation problem of materials science ma-
chine learning models, and methods to estimate it are
also discussed in Ref. 70. Finally, Stanev et al. applied
the classifier and regressor to the materials in the inor-
ganic crystal structure database,76 and scanned it for new
high-TC superconductors. As a byproduct, a feature of
the band structure that is known to increase the TC was
recovered even though no electronic structure data was
used in the model.

Ling et al.297 also used RFs in research concerning
the design process of materials including superconductors
but, as their research is mainly concerned with the opti-
mization of the design process, we will discuss it later in
Sect. V. Another interesting study339 of superconductors
applied k-means clustering, principal component analy-
sis, and Bayesian linear unmixing to scanning tunneling
microscopy data in order to extract meaningful data re-
garding electronic interactions in the spin-density wave
regime. Note that these are expected to play a key role
in the existence of unconventional superconductivity.

V. MATERIALS DESIGN AND ACTIVE
LEARNING/SURROGATE BASED

OPTIMIZATION

The previous chapters were concerned with the predic-
tion of the stability, atomic structure, and physical prop-
erties. Necessarily, all of these methods have the end
goal of minimizing the time until a new optimal material
with tailored properties is found. This can either imply
the minimization or maximization of a single property, or
the search for a material on the Pareto front in the case
of multiple objectives. In order to reach this goal we aim
at reducing the number of “experiments” that have to be
carried out, as these are the most time consuming and
expensive segment of the discovery process. In our case,
experiment may denote computationally expensive cal-
culations, like the ones necessary to obtain the phonon
and electron transport properties required for the design
of thermoelectrics. A more general discussion of such
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optimization problems can be found in the literature un-
der the name of surrogate-based optimization340,341 and
active learning.

The adaptive design process consists of two interwo-
ven tasks: (i) A surrogate model has to be developed;
(ii) Based on the prediction of the surrogate model, op-
timal infill points have to be chosen in order to retrain
the surrogate model and finally find the optimum.

The challenge in this process is to balance the end-
goal of finding the best material (exploitation) with the
need to explore the space of materials in order to im-
prove the model.342 The most naive strategy is naturally
pure exploitation, in which case the design algorithm al-
ways chooses the material with the highest prediction
of the target value (lowest in the case of minimization).
From other fields, e.g., drug design343,344 and quantita-
tive structure–activity relationship in chemistry,345,346 it
is already known that such an unsophisticated approach
is far from optimal. More sophisticated policies, such
as maximum likelihood of improvement or maximum ex-
pected improvement, try to strike a balance between
these strategies. However, choosing the optimal experi-
ment according to one’s strategy requires machine learn-
ing models that not only return predictions but also the
uncertainty of a prediction.

Starting from this requirement, the most obvious algo-
rithm choice are Bayesian prediction models like Gaus-
sian processes347 as they also provide the variance of
the predicted function. Gaussian processes have been
applied to a wide variety of structure optimization and
design problems in materials science. A few examples
are optimizing thermal conductance in nanostructures,48
predicting interface279 and crystal249 structures, optimiz-
ing materials for thermoelectric348,349 and optoelectric349

devices, or optimizing GaN LEDs.350 Furthermore these
studies already resulted in successfully synthesized ma-
terials.351,352 We already discussed in Sect. II B that the
inherent scaling of Gaussian processes both with respect
to training set size as well as feature dimension is quite
bad.128 At the moment, a lot of adaptive design studies
still treat extremely small datasets (see, e.g., Ref. 351
with training set size of 22), in which case this is irrel-
evant. However, a large number of the previously dis-
cussed models for stability or property prediction use
high-dimensional descriptors, and are, therefore, also un-
suitable for Bayesian methods.297,353

One alternative to Bayesian predictors are standard
machine learning algorithms, like SVRs or decision tree
methods, in combination with bootstrapping methods to
estimate the uncertainty. In Ref. 342 Balachandran et al.
compared different surrogate models and strategies on a
set of M2AX compounds for the optimization of elastic
properties. From a pure prediction perspective, SVRs
with radial basis function slightly outperformed Gaussian
processes for training set sizes larger than 120 materials.
Different design strategies were then used in combina-
tion with the SVR. It turned out that efficient global op-
timization,354 as well as knowledge gradient,355 showed

the best results. Xue et al.351 obtained similar results
concerning the choice of algorithms for the composition
optimization of NiTi-based shape memory alloys. Start-
ing with a set of 22 materials, Xue et al. successfully
synthesized 14 materials (from a total of 36 synthesized
in total during 9 feedback loops), that were superior to
the original dataset.

Balachandran et al.356 also applied SVRs in combina-
tion with efficient global optimization to the maximiza-
tion of the band gap of A10(BO4)6X2 apatites. In this
case the performance for two feature sets, one containing
the Shannon’s ionic radii and the other one the Paul-
ing electronegativity differences was compared. Inter-
estingly, the design based on the ionic radii performed
better, finding the optimal material after 22 materials
(13 materials in the initial training set, 9 chosen by the
design algorithm) in comparison to 30 for the electroneg-
ativities, while having a far larger error in the machine
learning model (0.54 eV compared to 0.19 eV for the elec-
tronegativities). The result is most likely due to the fact
that, of the three atomic species considered for the B-
site (P, V, As), P provides clearly higher band gaps than
the other elements and has a different ionic radius while
the electronegativity of P and As are nearly the same.356
Using this information, the algorithm eliminated all com-
positions without P on the B-site. This example demon-
strates that sometimes the algorithm with the highest
predictive power will not necessarily lead to the best op-
timal design results. A combination of the two predictors
leads to even better results with the optimal composition
after one iteration, however the mean absolute error of
the model was still slightly worse (0.21 eV) than the one
of the purely electronegativity-based model.

Ling et al.297 treated a high-dimensional (with respect
to the descriptor space) materials design problem with
the RF framework FUELS.357 By adding a bias term
to the uncertainty, that accounts for noise and missing
degrees of freedom, they expanded upon previous uncer-
tainty estimates from Refs. 358 and 359. Tested on 4
datasets (magnetocaloric, thermoelectric, superconduc-
tors, and thermoelectric) with higher descriptor number
(respectively, 54, 54, 56, 22), FUELS compared favorably
with the Bayesian framework COMBO and random sam-
pling, while being roughly an order of magnitude faster.
In order to evaluate various selection strategies or model
algorithms, different metrics were used. In materials sci-
ence a commonly used metric is the number of experi-
ments until the optimal material is found. While this
metric has some merit, in most cases opportunity cost
(the distance of the current best from the overall best),
or the number of experiments until the current best is
within a specific distance (e.g., 1%), are superior and are
also used more often in the literature.360,361

Monte Carlo tree searches363 are a second algorithm
with superior scaling that has recently been introduced
to materials science. The application is inspired by its
success in go,2 where a combination of neural networks,
reinforcement learning, and Monte-Carlo tree search al-



23

FIG. 16. Design time of Bayesian optimization and Monte-
Carlo tree search for different numbers of atoms in the in-
terface. (Reprinted with permission from Ref. 362 licensed
under the CC BY 4.0 180.)

lowed for the first superhuman performance in this an-
cient strategy game. Dieb et al.362 implemented a mate-
rials design version in the form of the open source library
MDTS. Using the test case of the optimal design of ther-
moelectric Si-Ge alloys, they demonstrated that although
Bayesian optimization has advantages for small problems
due to its advanced prediction abilities, Monte-Carlo tree
search design time stays close to constant (see Fig. 16)
with increasing problem size. Furthermore, and in con-
trast to genetic algorithms, it does not require the de-
termination of hyperparameters. Due to the unfavorable
scaling of Bayesian optimization, at some point the com-
putational effort of the design becomes larger than the
computational effort of the experiments, at which point
Monte-Carlo methods become superior. For the interface
structure optimization in Ref. 362 this is already the case
for interfaces with more than 22 atoms. Further appli-
cations to the determination of grain boundary struc-
tures364 and the structure of boron doped graphene365

also demonstrate the viability of the method for structure
design problems. A more in depth review of Bayesian
optimization and Monte-Carlo tree search in materials
design can be found in Ref. 366.

Sawada et al.367 also developed an algorithm for mul-
ticomponent design based on game tree search. Optimiz-
ing the composition in a seven-component Heusler com-
pound, the algorithm proved to be around nine times
faster than expected improvement or upper confidence
bound368 strategies based on Gaussian processes.

Dehghannasiri et al.369 proposed an experimental de-
sign framework based on the mean objective cost of un-
certainty. This is defined as the expected difference in
cost between the material which minimizes the expected
cost for a surrogate model and the optimal material.370
Applying the framework to the minimization of the dissi-
pation energy of shape memory alloys demonstrated the

superiority of the algorithm to pure exploitation and ran-
dom selection.

So far none of the discussed algorithms considered
nested decision problems or cases where it is more ef-
ficient to carry out experiments in batches of similar ex-
periments instead of one at a time. The latter is for
example true for the case of the photoactive device de-
sign considered by Wang et al.371 The size of thiol-gold
nanoparticles and their density on the surface determine
the efficiency of the device. While one can easily explore
different densities of nanoparticles in a batch of experi-
ments, it is difficult to change the size of the nanopar-
ticle due to the cost of their synthesis. Therefore it is
more efficient to consider a nested problem where the
algorithm first chooses a size and then a batch of den-
sities. Wang et al. extended the concept of knowledge
gradient355 to the case of nested decisions and batches of
experiments. Applying it to the previously described de-
sign problem, the new algorithm proved to be superior to
all naive strategies (pure exploitation/exploration, or ✏-
greedy which chooses either pure exploration or exploita-
tion with probability ✏) and also to sequential knowledge
gradient (batch size 1) if one considers the number of
batches. If one instead considers the total number of ex-
periments, the performance of knowledge gradient was
only slightly better.

If we consider typical design problems, one often has to
consider multiple objectives. For example, for the design
of a shape memory alloy, one desires a specific finish tem-
perature, thermal hysteresis, and possibly a high maxi-
mum transformation strain. Naturally, this requires more
sophisticated measures of improvement (see Ref. 372 for
a review) than single objective optimization methods. A
typical measure is the expected hyper-volume improve-
ment,373 that measures the change in hypervolume of the
space dominated by the best known materials. Solomou
et al.374 applied this metric to the optimization of shape
memory alloys in combination with a Gaussian process
model, once for two objectives (specific finish tempera-
ture and thermal hysteresis) and once for three objec-
tives (adding the maximum transformation strain), and
demonstrated that it is clearly superior to a random or
purely exploitative strategy.

Talapatra et al.375 also combined expected hyper-
volume improvement with Gaussian processes, in order to
simultaneously maximize the bulk modulus while mini-
mizing the shear modulus. Instead of using a single Gaus-
sian regressor, they developed a method called Bayesian
model averaging, that combines different models. This
approach can prove useful in cases where the available
data is too limited to choose good features or hyperpa-
rameters.

Gopakumar et al.376 compared both SVRs and Gaus-
sian processes on multiple datasets: optimal thermal
hysteresis and transition temperature for shape mem-
ory alloys, optimal bulk and Young’s modulus for M2AX
phases, optimal piezoelectric modulus and band gap for
piezoelectric materials. SVRs performed better as regres-
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sors and were consequently chosen as surrogate model.
Several optimal design strategies were used, specifically
random, exploitation, exploration, centroid, and max-
imin. For the smallest dataset, maximin surprisingly per-
formed only slightly better for large experimental bud-
gets and worse than pure exploitation for small budgets.
However, for the larger dataset of elastic moduli both
centroid and maximin proved to be clearly superior.

An additional popular choice of global optimization al-
gorithms that can also be applied to adaptive design, es-
pecially to structure development, are genetic algorithms.
Reviews of their application to materials design can be
found in Refs. 205 and 377.

It is difficult to compare the ability of the different
optimal design algorithms and frameworks discussed in
this section because no systematic study has ever been
carried out. Nevertheless, it is quite clear that given
sufficient data, adaptive design algorithms produce su-
perior results in comparison to naive strategies like pure
exploration or exploitation, which are unfortunately still
extremely common in materials science. Furthermore,
several works demonstrated that experimental resources
are used more efficiently if they are allocated to the sug-
gestions of the design algorithm instead of a larger initial
random training training set. Machine learning models
can be quite limited in their accuracy, however the inclu-
sion of knowledge of this uncertainty in the design process
can alleviate these limitations. This allows for a feedback
cycle between experimentalists and theoreticians that in-
creases trust and cooperation and reduces the number of
expensive experiments.

VI. SPEEDING UP FIRST-PRINCIPLE
METHODS AND MOLECULAR DYNAMICS

As previously discussed, first-principle calculations can
accurately describe most systems, but at a high compu-
tational price. Usually this price is too high for use in
molecular dynamics, Monte Carlo, global structural pre-
diction, or other simulation techniques that require fre-
quent evaluations of the energy and forces. Even DFT
is limited to molecular dynamics runs of a few picosec-
onds and simulations with hardly more than thousands
of atoms. For this reason, the research concerning em-
pirical potentials and the development of models for the
potential energy surfaces never faded away.

In fact, most molecular dynamics simulations are nor-
mally computed with classical force fields.378–384 As these
potentials often scale linearly with the number of atoms,
they are computationally inexpensive and the loss in ac-
curacy is overlooked in favor of the possibility to per-
form longer simulations or simulations with hundreds
of thousands or even millions of atoms. Another ap-
proach is density-functional based tight-binding.385–387
This quantum-mechanical technique scales with the cube
of the number of electrons, but has a much smaller pref-
actor than DFT. Certainly, calculations performed with

this method are not as accurate as in DFT, but they are
more reliable than classical force field calculations. In ad-
dition to the reduced precision, the construction of force
fields and tight-binding parameters is unfortunately not
straightforward.

Neural networks were the first machine learning
method used in the construction of potential energy sur-
faces. As early as 1992, Sumper et al.388 used a neural
network to relate the vibration spectra of a polyethy-
lene molecule with its potential energy surface. Unfortu-
nately, the large amount of input data and architecture
optimization required deemed this approach as too cum-
bersome and difficult to apply to other molecular sys-
tems. It was the work of Blank et al.389 in 1995 that
really showed the potential, and marked the birth, of
machine learning force fields. Their work on the surface
diffusion of CO/Ni(111) relied on neural network poten-
tials, that mapped the energy of a system with its struc-
ture, mainly the lateral position of the center of mass, the
angle of the molecular axis relative to the surface normal
and the position of the center of mass. The training
set was obtained from electronic structure calculations
and no further approximations were used. Their seminal
study proved that neural networks could be used to make
accurate and efficient predictions of the potential energy
surface for systems with several degrees of freedom.

Since then, many machine learning potentials were re-
ported. As several reviews on these potentials can be
easily found in the literature,169,390–392 here we discuss
only the most prominent and recent approaches related
to materials science.

One of the most successful applications of machine
learning to the creation of a reliable representation of
the potential energy surface is the Behler and Parrinelo
approach.393 Here, the total energy of a system is repre-
sented as a sum of atomic contributions Ei. This became
the standard for all later machine learning force fields,
as it allows their application to very large systems. In
the Behler-Parrinelo approach, a multilayer perceptron
feedforward neural network is used to map each atom
to its contribution to the energy. Every atom of a sys-
tem is described by a set of symmetry functions, that
serve as input to a neural network of that element. Ev-
ery element in the periodic table is characterized by a
different network. As the neural network function pro-
vides an energy, analytical differentiation with respect to
the atomic positions or the strain delivers respectively
forces and stresses. This approach was originally applied
to bulk silicon, reproducing DFT energies up to an error
of 5 meV/atom. Furthermore, molecular dynamic sim-
ulations using this potential were able to reproduce the
radial distribution function of a silicon melt at 3000 K.
Many applications of this methodology to the field of ma-
terials science have appeared since then, for example to
carbon,394 sodium,395 zinc oxide,396 titanium dioxide,168
germanium telluride,397 copper,398 gold399 and Al-Mg-Si
alloys.400

Since its publication in 2007, several improvements
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were made to the Behler and Parrinelo approach. In 2015
Ghasemi et al. proposed a charge equilibration technique
via neural networks,401 where an environment dependent
atomic electronegativity is obtained from the neural net-
works and the total energy is computed from a charge
equilibration method. This technique successfully repro-
duced several bulk properties of CaF2.402 In 2011 the
cost function was expanded to include force terms.391,396
This extension was first proposed by Witkoskie et al.403
and later extended and generalized by Pukrittayakamee
et al.404,405 These works show that the inclusion of the
gradients in the training substantially improves the ac-
curacy of the force fields, not only due to the increase of
the size of the training set but also due to the additional
restrictions in the training. Hajinazar et al.406 devised
a strategy to train hierarchical multicomponent systems,
starting with elemental substances and going up to bi-
naries, ternaries, etc. They then applied this technique
to the calculations of defects and formation energies of
Cu, Pd, and Ag systems, and were able to obtain an
excellent reproduction of phonon dispersions. Another
improvement concerns the replacement of the original
Behler-Parrinelo symmetry functions by descriptors that
can be systematically improved. One such descriptor is
given by Chebyshev polynomials,174 that also allow for
the creation of potentials for materials with several chem-
ical elements, due to its constant complexity with respect
to the number of species. Potentials constructed with this
descriptor are the reported machine learning potentials
that can describe more chemical species, with 11 so far.

FIG. 17. Phase diagram of 45 000 LixSi1�x structures depict-
ing the formation energies predicted using the general neural
network potential (green stars) and the DFT reference forma-
tion energies (black circles). (Reprinted from Ref. 407, with
the permission of AIP Publishing.)

Artrith et al.407 proved the applicability of specialized
neural network potentials in their study of amorphous

Li–Si phases. They compared the results obtained with
two different sampling methods. The first involved a
delithiation algorithm, that coupled a genetic algorithm
with a specialized potential trained with only 725 struc-
tures close to the crystalline LixSi1�x phase. The sec-
ond method consisted in an extensive molecular dynam-
ics heat-quench sampling and a more general potential.
Figure 17 shows the accuracy of the latter neural network
potential.
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FIG. 18. Comparison between the phonon dispersion curves
obtained with DFT and the spectral neighbor analysis poten-
tial model for a 5 ⇥ 5 ⇥ 5 supercell of Mo. (Reprinted with
permission from Ref. 408. Copyright 2017 American Physical
Society.)

We note that not only machine learning methods are
changing the field of materials science, but also machine
learning methodologies. The spectral neighbor analysis
potential409 from Thompson et al. consists of a linear
fit that associates an atomic environment, represented
by the 4D bispectrum components, with the energies of
solids and liquids. The first application of these poten-
tial to tantalum showed promising results, as it was able
to correctly reproduce the relative energy of different
phases. Furthermore, in the application of this poten-
tial to molybdenum by Chen et al.,408 PCA was used
to examine the distribution of the features in the space.
This technique increases the efficiency of the fitting, as it
ensures a good coverage of the feature space and reduces
the number of structures in the training set. Their po-
tential achieved good accuracies for energies and stresses
(9 meV and 0.9 GPa, respectively). Although the accu-
racy in the forces was considerably worse (0.30 eVÅ), they
also managed to reproduce correctly several mechanical
properties such as the bulk modulus, lattice constants,
or phonon dispersions (see Fig. 18). Wood et al.410 pro-
posed an improvement of the model that consisted in the
introduction of quadratic terms in the bispectrum com-
ponents and Li et al.411 introduced a two-step model fit-
ting work-flow for multi-component systems and applied
it to the binary Ni–Mo alloy.

Other linear models include the work of Seko et al.,170
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who reproduced potential energy surfaces to Na and Mg
using KRR and LASSO combined with the multinomial
expansion descriptor (see Sect. II C). Phonon dispersion
and specific heat curves calculated with the LASSO tech-
nique for hcp-Mg were in good agreement with the DFT
results. Using a similar methodology, Seko et al. ap-
plied elastic net regression,412,413 a generalization of the
LASSO technique, to 10 other elemental metals414 (Ag,
Al, Au, Ca, Cu, Ga, In, K, Li, and Zn). The resulting
potential yielded a good accuracy for energies, forces,
and stresses, enabling the prediction of several physical
properties such as lattice constants and phonon spectra.

In a different approach, Li et al.415 devised a molec-
ular dynamics scheme that relies on forces obtained by
either Baysesian inference using GPR or by on-the-fly
quantum mechanical calculations (tight-binding, DFT,
or other). Certain simulations in materials science in-
volve steps where complex, recurring, chemical bonding
geometries are encountered. The principal idea behind
this scheme is that an adaptive approach can handle
the occurrence of unseen geometries while the recurring
ones are trained for. This is achieved by the following
predictor-corrector algorithm:416,417 After n steps of the
simulation with a force field, the latest configuration is
selected for quantum mechanical treatment and the ac-
curacy of the force field is tested. Should the accuracy
fall below a certain threshold, the force field is refitted.
This scheme might not be the most efficient for a singu-
lar molecular dynamics cycle, but excels when the sim-
ulations involve monotonic cycles between two tempera-
tures for example. Applications to silicon,415 aluminum,
and uranium418 (with linear regression) reveal accuracies
for forces below 100meV/Å. The phonon density of states
and melting temperature of aluminum obtained with this
scheme are also in good agreement with ab initio calcula-
tions. In the same spirit, Glielmo et al.419 employed vec-
torial Gaussian process420,421 regression to predict forces
using vector two-body kernels of covariant nature. Their
results for nickel, silicon and iron indicate that the in-
clusion of symmetries results in a more efficient learning,
and that it is not necessary to impose energy conservation
to achieve force covariance. Additional improvements of
this methodology include the replacement of the features
by higher-order n-body based kernels.422

Another family of highly successful machine learn-
ing potentials is the Gaussian approximation potentials
(GAP). First introduced by Bartók et al.,171 these po-
tentials interpolate the atomic energy in the bispectrum
space using Gaussian process regression. Tests for semi-
conductors and iron revealed a remarkable reproduction
of the ab initio potential energy surface. Advances in this
methodology include the replacement of the bispectrum
descriptor by the SOAP descriptor and the training of
not only energies, but also forces and stresses,423 the gen-
eralization of the approach for solids424 by adding two-
and three-body descriptors, and the possibility to com-
pare structures with multiple chemical species.425 The
materials studied in these works were tungsten, carbon

and silicon, respectively. The application of the GAP to
bcc ferromagnetic iron by Dragoni et al.426 proves the ac-
curacy of these potentials for both DFT energetics and
thermodynamical properties. In particular, bulk point
defects, phonons, the Bain path and � surfaces427 are
correctly reproduced. By combining single-point DFT
calculations, GAP, and random structure search,195,196
Deringer et al. showed a procedure that simultaneously
explores and fits a complex potential energy surface.428
They used 500 random structures to train a GAP model,
that was then used to perform the conjugate gradient
steps of the random search. The minimum structures
were added to the training set after being recalculated
with single point DFT calculations. The potential for
boron resulting from this procedure was able to describe
the energetics of multiple polymorphs which included
↵B12 and �B106.

The GAP methodology was also applied to
graphene.429 The potential constructed by Rowe
et al. was able to reproduce DFT phonon dispersion
curves at 0 K. Additionally, the potential predicted
quantitatively the lattice parameter, phonon spectra at
finite temperature, and the in-plane thermal expansion.
Other works concerning Gaussian process regression in-
clude its application to formaldehyde and comparison of
the results with neural networks,430 and the acceleration
of geometry optimization for some molecules.431

Jacobsen et al. presented another structure optimiza-
tion technique based on evolutionary algorithms and
atomic potentials constructed using KRR.432 To repre-
sent the atomic environment they used the fingerprint
function proposed by Oganov and Valle.433 By using the
atomic potentials to estimate the energy, they were able
to reach a considerable speed-up of the search for the
global minimum structure of SnO2(110)-(4 ⇥ 1).

In an unconventional way to construct atomic poten-
tials, Han et al.434 presented a deep neural network that,
for each atom in a structure, takes as input Nc func-
tions of the distance between the atom and its neigh-
bours, where Nc is the maximum number of neighbours
considered. As a consequence, some of the inputs of the
neural network have to be zero. Furthermore, the poten-
tial might have transferability problems if ever used on
a structure with smaller inter-atomic distances than the
ones considered in the training set. Nevertheless their
potential showed good accuracy in energy predictions for
copper and zirconium. Zhang et al.435 improved this
methodology with the generalization of the loss function
to include forces and stresses.

VII. DFT EXCHANGE CORRELATION
FUNCTIONALS

The application of machine learning techniques also
spread to the creation of exchange and correlation poten-
tial and energy functionals. The first application emerged
from the work of Tozer et al.436 in 1996, where they
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devised a one-layer feed-forward multiperceptron neu-
ral network to map the electronic density ⇢(r) to the
exchange and correlation potential vxc(r) at the same
points. Technically, this exchange and correlation func-
tional belongs to the family of local-density approxima-
tions. Tozer et al. trained the neural network on two
different datasets, first on the data of a single water
molecule and afterwards on several molecules (namely
Ne, HF, N2, H2O, and H2). Using 3768 data points
calculated with a regular molecular numerical integra-
tion scheme,437 the method achieved an accuracy of 2%-
3% in the exchange and correlation energy of the water
molecule. When applied in a self-consistent Kohn-Sham
calculation, the potential lead to eigenvalues and opti-
mized geometries congruent with the local density ap-
proximation. On the other hand, for the set of several
molecules, Tozer et al. obtained an error of 7.6% using
1279 points. The points were obtained in the same man-
ner as before, but were constrained to avoid successive
points with similar densities. This potential generated
geometries close to the local density approximation, and
good eigenvalues for molecules sufficiently represented in
the training set. Meanwhile, and as expected, the neu-
ral network potential failed for molecules not sufficiently
represented in the training, like LiH and Li2.

In 2012, Snyder et al. tackled the problem of noninter-
acting spinless fermions confined to a 1D box.438 They
employed KRR to construct a machine learning approx-
imation for the kinetic energy functional of the density.
This is the idea behind orbital free DFT and an attempt
to bypass the need to solve a Shrödinger-like equation.
The kinetic energy and density pairs of up to 4 electrons
were obtained using Numerov’s method439 for several ex-
ternal potentials. These potentials were created using a
linear combination of three Gaussian dips with random
depths, widths, and centers. Furthermore, 1000 densi-
ties were taken for the test set while M were taken for
the training set. For M = 200 chemical accuracy was
achieved, as no error surpassed 1 kcal/mol. To obtain
the correct behavior of the functional derivative of this
energy, which is necessary for the self-consistent DFT
procedure, PCA was used. Self-consistent calculations
with this functional led to a range of similar densities
instead of a unique density and to higher errors in the
energy than when using the exact density. Nevertheless,
the functional reached chemical accuracy.

This methodology was later improved during the study
of the bond breaking for a one-dimensional model of a
diatomic molecule, subjected to a soft coulomb interac-
tion.440 The training data consisted on Kohn-Sham en-
ergies and densities calculated with the local-density ap-
proximation for 1D H2, H2, Li2, Be2 and LiH with differ-
ent nuclear separations. Choosing up to 20 densities for
each molecule for the training set produced smaller errors
in the kinetic energy functional than those due to the ap-
proximation to the exchange-correlation functional. This
new functional was able to produce binding energy curves
indistinguishable from the local-density approximation.

A different path was taken by Brockherde et al.441
that, instead of solving the Kohn-Sham equations
self-consistently as usually, used KRR to learn the
Hohenberg-Kohn map between the potential v(r) and the
density n(r). Among the machine learning community,
this approach is normally designated as transductive in-
ference. The energy is obtained from the density, also
using KRR. When applied to the problem of noninteract-
ing spinless fermions confined to a 1D box (same problem
as in Ref. 438), this machine learning map reproduced
the correct energy up to 0.042 kcal/mol (if calculated in
a grid) or 0.017 kcal/mol (using other basis sets), for a
training set of 200 samples. Comparison of this map with
other machine learning maps that learn only the kinetic
energy reveals that the Hohenberg-Kohn map approach
is much more accurate. Furthermore, this map achieved
similar results when applied to molecules, reaching accu-
racies of 0.0091 kcal/mol for water and 0.5 kcal/mol for
benzene, ethane and malinaldehyde. These values mea-
sure the difference to the PBE energy. The training sets
consisted of 20 points for the water and 2000 points for
the other molecules. To generate the training sets for
the larger molecules, molecular dynamics simulations us-
ing the general amber force-field442 were used to yield a
large set of geometries. These were subsequently sampled
using the k-means approach to obtain 2000 representative
structures that were only then evaluated using the PBE
functional. Additionally, the precision of the density pre-
diction for benzene was compared with the results for
the local-density approximation and PBE. Not only did
the Hohenberg-Kohn map produce densities with errors
smaller than the difference between different functionals
(when evaluated on a grid), but these errors were also
smaller than the ones introduced by evaluating the PBE
functional using a Fourier basis representation instead of
the evaluation on the grid.

A distinct approach comes from Liu et al.,443 who ap-
plied a neural network to determine the value of the
range-separation parameter µ of the long-range corrected
Becke-Lee-Yang-Parr functional.444,445 They trained a
neural network, characterized by one hidden layer, with
368 thermochemical and kinetic energies. These values
came from experimental data and from highly accurate
quantum chemistry calculations. When compared with
the original functional (µ = 0.47), the new functional im-
proved the accuracy of heats of formation and atomiza-
tion energies while performing slightly worse in the cal-
culation for ionization potentials, reaction barriers, and
electronic affinities.

Nagai et al.446 trained a neural network with 2 hid-
den layers (300 nodes) to produce the projection from
the charge density onto the Hartree-exchange-correlation
potential (vHxc). For that, they solved a simple model of
two interacting spinless fermions under the effect of a one-
dimensional Gaussian potential, using exact diagonaliza-
tion. The ground state density was then used to calcu-
late vHxc using an inverse Kohn-Sham method based on
the Haydock-Foulkes variational principle.447,448 When



28
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log10�n log10[�E/Hartree]

FIG. 19. Transferability of the neural network vHxc. The bold
frames indicate the training set and the lines show the bound-
ary between solutions with (green) and without (pink) the
Coulomb interaction. The errors are plotted as color maps.
(Reprinted from Ref. 446, with the permission of AIP Pub-
lishing.)

applied in the Kohn-Sham self-consistent cycle, this po-
tential reproduced the exact densities and total energies,
provided that a suitable training set was chosen (see
Fig. 19). The system studied by the authors admits as so-
lution either a bound and an unbound state or two bound
states, depending on the Gaussian potential. Choosing
points surrounding the boundary for the training set of
the neural network, leads to the most accurate results,
with errors around 10

�
3 a.u. everywhere except at the

boundary (where they can almost reach 1 a.u.). On the
other hand, choosing points in one of the regions results
in a poor description of the other region.

VIII. DISCUSSION AND CONCLUSIONS

A. Interpretability

We already noted in the introduction that a major crit-
icism of machine learning techniques is that their black-
box algorithms do not provide us with new “physical
laws” and that their inner workings remain outside our
understanding..449 For example, Ghiringhelli et al. argue
that “a trustful prediction of new promising materials,
identification of anomalies, and scientific advancement
are doubtful, ”if the scientific connection between features
and prediction is unknown.155 Johnson writes in the con-
text of quantitative structure-activity relationships: “By
not following through with careful, designed, hypothesis
testing we have allowed scientific thinking to be co-opted
by statistics and arbitrarily defined fitness functions”.345
The main concern is that models not based on physi-
cal principles might fail in completely unexpected cases
(that are trivial for humans) while providing a very good
result on average. Such cases can only be predicted and
prevented if one understands the causality between the
inputs and outputs of the model. Furthermore, especially
in applications where a single failure is extremely expen-
sive or potentially deadly (as in medicine), the lack of
trust in black box machine learning models stops their
widespread use even when they provide a superior per-
formance.248

As there are different concepts of interpretability we
will define its various facets according to Lipton et al.450
To start with, we can divide interpretability into trans-
parency and post hoc explanations, that consist of ad-
ditional information provided by or extracted from a
model.

Transparency, can once again be split into the con-
cepts of simulatability, decomposability, and algorithmic
transparency. Simulatability is a partially subjective no-
tion and concerns the ability of humans to follow and
retrace the calculations of the model. This is, e.g., the
case for sparse linear models such as the ones resulting
from LASSO,98 SISSO,102 or flat decision tree models.
Decomposability is closely related to the intelligibility of
a model and describes whether its various parts (input,
parameters, calculations) allow for an intuitive interpre-
tation. Algorithmic transparency considers our under-
standing of the error surface (e.g., whether the training
will converge to a unique solution). This is clearly not
the case for modern neural networks, for example.

Post hoc interpretability considers the possibility to
extract additional information from the model. Exam-
ples for this are variable importances from a decision tree
model or active response maps, that highlight regions of
a picture that were particularly important for its classi-
fication by a convolutional neural network.

Starting from these concepts of interpretability, it is
obvious that the notion of a complex model runs counter
to the claim that it is simulatable by a human. Further-
more, models that are simulatable (e.g., low-dimensional
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linear models) and accurate often require unintuitive
highly processed features that reduce the decomposabil-
ity451 (e.g., spectral neighbor analysis potential poten-
tials) in order to reach a comparable performance to a
more complex model. In contrast, a complex model like
a deep convolutional neural network only requires rela-
tively simple un-engineered features and relies on its own
ability to extract descriptors of different abstraction lev-
els. In this sense there is a definite conflict between the
complexity and accuracy of a model, on one hand, and a
simulatable decomposable model on the other hand.

The simplest examples of models that are simulatable
are techniques based in dimensionality reduction or fea-
ture selection algorithms like SISSO.102 These are usually
used in combination with linear fits and result in simple
equations describing the problem. An example is the es-
timation of the probability of a material to exist as a
perovskite (ABX3), as given in Ref. 187:

⌧ =
rX
rB

� nA

✓
nA �

rA/rB
ln(rA/rB)

◆
, (36)

where nA is the oxidation state of A and ri is the ionic ra-
dius of ion i. Another example is given by Kim et al.,39
who used LASSO, as well as RF and KRR, to predict
the the dielectric breakdown field of elemental and bi-
nary insulators, on the basis of 8 features obtained from
first-principle calculations (e.g. band gap, phonon cut-
off frequency, etc.). In the end, all three methods de-
termined the same two features as optimal and demon-
strated nearly the same error. However Kim et al. fa-
vored LASSO,98 because it provided a simple analytical
formula, even if no further knowledge was gained from
the formula. In any case, the knowledge of the analyt-
ical formula and therefore the simulatability, seems to
be far less relevant than the knowledge of the most rel-
evant physical variables. In general we can even argue
that simulatability is not relevant for materials science
as computational methods based on physical reasoning,
like DFT or tight binding, are even further removed from
simulatability than most machine learning models.

A second method that provides a variable importance
measure (see Sect. II B) are RFs or other decision tree
based methods. Stanev et al. demonstrate the usefulness
of this method for post hoc interpretability in Ref. 73,
by recovering numerous known (e.g. isotope effect) and
some unknown rules and limits for the superconducting
critical temperature. This was done by first reducing the
number of features via variable importance measure (Gini
importance), and subsequently visualizing the correlation
between the features and the critical temperature (see
Fig. 20).

Pankajakshan et al.107 developed bootstrapped pro-
jected gradient descent as a feature selection method
specifically for materials science. The motivation came
from some consistency issues for correlated or linearly
dependent variables (present, for example, in LASSO),
which bootstrapped projected gradient descent can al-
leviate through extra clustering and bootstrapping. In

their work, Pankajakshan et al. used machine learning
mostly to find and understand descriptors, in order to
improve the d-band model of catalysts for CO2 reduc-
tion,452 instead of actually using the machine learning
model for predictions. This can definitely be a reason-
able approach in cases where datasets are too small and
incomplete for any successful extrapolation. Notwith-
standing, in most cases it is questionable if a classical
(in the sense of “non-machine learning”) model should be
used directly when a machine learning model is superior,
as in the case of the d-band model.453 Of course it is a
bonus when a classical model exists, as it can be used
to check for consistency issues or as a crude estimation
of property. However, in our opinion, pragmatic applica-
tions of advanced materials design should always use the
best model.

While RFs and linear fits are considered more acces-
sible from a interpretability point of view, deep neural
networks are one of the prime examples for algorithms
that are traditionally considered a black box. While
their complex nature often results in superior perfor-
mance in comparison to simpler algorithms, an unwanted
consequence is the lack of simulatability and algorith-
mic transparency. As the lack of interpretability is one
of the main challenges for a wider adoption of neural
networks in industry and experimental sciences, post-hoc
methods to visualize the response and understand the in-
ner workings of neural networks were developed during
the last years. One example are attentive response maps
for image recognition networks that highlight regions of
the picture according to their importance in the decision
making process. Kumar et al.246 demonstrated that by
combining the understanding gained from attentive re-
sponse maps with domain knowledge, and applying it to
the design process of the neural network, one can not only
achieve a better informed decision making process, but
also higher performance. An improvement of the perfor-
mance through integration of domain knowledge is not
completely surprising, but the result is nevertheless re-
markable, as usually higher interpretability comes at the
cost of a lower performance.

Zilleti et al.243 introduced attentive response maps, as
implemented in Ref. 246, to materials science in order
to visualize the ability of their convolutional neural net-
works to recognize crystal structures from diffraction pat-
terns. The response maps of the different convolutional
layers demonstrate that the neural networks recover the
position of the diffraction peaks and their orientation as
features (see Fig. 21).

A second example, that demonstrates the ability of
neural networks to convey additional post hoc informa-
tion, is described in Ref. 41. Xie et al. used a crystal
graph convolutional neural network to learn the distance
to the convex hull of perovskites ABX3. By using the out-
put of the pooling layers instead of the fully connected
layers as a predictor, the energy can be split into contri-
butions from the different crystal sites (see Fig. 22). This
allowed Xie et al. to not only confirm the importance of
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FIG. 20. Superconducting critical temperature TC plotted versus the various features, (a) demonstrates the isotope effect
(b), (c) and (d) show how the critical temperature is limited and influenced by various physical quantities of the materials.
(Reprinted with permission from Ref. 73 licensed under the CC BY 4.0 180.)

FIG. 21. (a) Attentive response maps for the four most activated filters of the first, third and last convolutional layers for
simple cubic lattices. The brightness of the pixel represents the importance of the location for classification. (b) Sum of the
last convolutional layer filters for all seven crystal classes showing that the network learned crystal templates automatically
from the data. (Reprinted with permission from Ref. 243 licensed under the CC BY 4.0 180.)

the radii of the A- and B-atoms, but also to gain new in-
sights that were then used for an efficient combinatorial
search of perovskites. In Ref. 454 Xie et al. follow up with
the interpretation of the features extracted from the con-
volutional neural networks, and demonstrated how sim-
ilarity patterns emerge for different material groups and
at different scales.

Zhang et al.289 also highlighted the ability of convolu-
tional neural networks to extract physically meaningful
features out of un-engineered descriptors. They built a

convolutional neural network (2 convolutional layers, 1
fully connected layer) to calculate the topological wind-
ing number of one-dimensional band insulators with chi-
ral symmetry based on their Hamiltonian as input data


hx(0) hx(

2⇡
L ) · · ·

hy(0) hy(
2⇡
L ) · · ·

�T
=


cos(�) cos(� + ��) · · ·

sin(�) sin(� + ��) · · ·

�T

.

(37)
From the theoretical equation for the winding number,455
one can derive that the second convolutional layer should
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FIG. 22. Contributions to the distance to the convex hull per element, A site (c) and B site (d). ((Reprinted with permission
from Ref. 41. Copyright 2018 American Physical Society.)

FIG. 23. Output of the second layer as a function of �� and
�. (Reprinted with permission from Ref. 289. Copyright 2018
American Physical Society.)

produce an output linearly depending on �� with the
exception of a jump at �� = ⇡. We can see in Fig. 23
that this is exactly the case and, consequently, the con-
volutional neural network actually learned the discrete
formula for the winding number. Sun et al.291 studied
similar models of higher complexity with deep convolu-
tional neural networks and were also able to demonstrate
that their networks learned the known mathematical for-
mulas for the winding and the Chern numbers.456

Naturally, neural networks will never reach the algo-
rithmic transparency of linear models. However, repre-
sentative datasets, a good knowledge of the training pro-
cess, and a comprehensive validation of the model can
usually overcome this obstacle. Furthermore, if we con-

sider the possibilities for post hoc explanations or the
decomposability of neural networks, they are actually far
more interpretable than their reputation might suggest.

To conclude this chapter we would like to summarize a
few points: (i) Interpretability is not a single algorith-
mic property but a multifaceted concept (simulatabil-
ity, decomposability, algorithmic transparency, post hoc
knowledge extraction) (ii) The various facets have differ-
ent priorities depending on the dataset and the research
goal. (iii) Simulatability is usually non-existent in mate-
rials science (e.g., in DFT or Monte-Carlo simulations)
regardless of whether one uses a machine learning or a
classical algorithm. Therefore it should probably not be
a point of concern in materials informatics. (iv) Part of
the progress of materials informatics has to include the
increasing use of post hoc knowledge techniques, like at-
tentive response maps, to improve the viability of, and
the trust in, high-performing black-box models. Often
this knowledge alleviates the fear that the model is op-
erating on unphysical principles.243,289,291

B. Conclusions

Just like the industrial revolution, that consisted on
the creation of machines that could perform mechani-
cal tasks more efficiently than humans, in the field of
machine learning machines are progressively trained to
identify patterns and to find relations between proper-
ties and features more efficiently than us. In materials
science, machine learning is mostly applied to classifica-
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tion and regression problems. In this context, we dis-
cussed a wide variety of quantitative structure property
relationships, that encompass a high number of proper-
ties essential for modern technology. It seems likely that
further properties, should they be needed, can also be
predicted with a similar level of accuracy.

If we consider the direction of future research there
will be a clear division between methodologies depend-
ing on the availability of data. For continuous properties,
that can be calculated realistically for 10

5 or more ma-
terials, we assume that universal models and especially
deep neural networks like Xie et al.’s crystal graph con-
volutional networks41 will be the future. They are able
to predict a diverse set of properties, such as formation
energies, band gaps, Fermi energies, bulk moduli, shear
moduli and Poisson ratios for an wide material space (87
elements, 7 lattice systems and 216 space groups in the
case of Ref. 41). At the same time they reach an ac-
curacy with respect to DFT calculations that is compa-
rable with (or even smaller than) the DFT errors with
respect to experiment. Such models have the potential
to end the need for applications trained for only a single
structural prototype and/or property which can in turn
drastically reduce the amount of resources spent by single
researchers. Comparing to the state of the art of neural
network architectures and training methods in fields like
image recognition and natural language procession, we
can also expect that the success of neural network mod-
els will only increase once modern topologies, training
methods, and fast implementations reach a wider audi-
ence in materials science. To reach this goal a closer
interdisciplinary collaboration with computer scientists
will be essential.

In other cases that are characterized by a lack of data,
several strategies are very promising. First of all, one
can take into consideration surrogate based optimization
(active learning), that allows researchers to optimize the
results achieved with a limited experimental or computa-
tional budget. Surrogate based optimization allows us to
somewhat overlook the limited accuracy of the machine
learning models while nevertheless arriving at sufficient
design results. As the use of such optimal design algo-
rithms is still confined to relatively few studies with small
datasets, much future work can be foreseen in this direc-
tion. A second strategy to overcome the limited data
available in materials science is transfer learning. While
it has already been applied with success in chemistry,457
wider applications in solid state materials informatics are
still missing. A last strategy to handle the small datasets
that are so common in materials science was discussed by
Zhang et al. in Ref. 74. Crude estimation of properties
basically allows us to shift the problem of predicting a
property to the problem of predicting the error of the
crude model with respect to the higher-fidelity training
data. Up to now, this strategy was mostly used for the
prediction of band gap, as datasets of different fidelity are
openly available (DFT, GW , or experimental). Moreover
the use of crude estimators allows researchers to benefit

from decades of work and expertise that went into clas-
sical (non-machine learning) models. If the lower fidelity
data is not available for all materials, it is also possible to
use a ko-kriging approach that still profits from the crude
stimators but does not require it for every prediction.261

Component prediction is a highly effective way to
speed up the material discovery process and we expect
high-throughput searches of all common crystal struc-
ture prototypes that were not yet researched in the com-
ing years. While the prediction of the energy can also
be considered a quantitative structure property relation-
ships, metastable materials and an incomplete knowledge
of the theoretical convex hull have to be taken into ac-
count. Several studies demonstrated that better accuracy
can be achieved with experimental training data. How-
ever, as experimental data is seldom available and ex-
pensive to generate, the number of prototypes for which
studies analogue to Ref. 187 are an option will quickly be
exhausted. A second challenge is the lack of published
data of failed experiments. In this case, a cultural shift
towards the publication of all valid data, may it be posi-
tive or negative, is required.

The direct prediction or generation of a crystal struc-
ture is still an extremely challenging problem. While
several studies demonstrate how to differentiate between
a small number of prototypes for a certain composition,
the difficulty quickly rises with an increasing number of
possible crystal structures. This is amplified by the fact
that the majority of available data belongs to only a small
number of extensively researched prototypes. Recently,
more complex modern neural network structures (e.g.,
VAEs, GANs, etc.) were introduced to the problem, with
some interesting results. Moreover, the use of machine
learning based optimization algorithms, like Bayesian op-
timization for global structure prediction, is also a direc-
tion that should be further explored.

Machine learning was successfully integrated with
other numerical techniques, such as molecular dynamics
and global structural prediction. Force fields built with
neural networks enjoy an efficiency that parallels that of
classical force fields and an accuracy comparable to the
reference method (usually DFT in solid state, although
in chemistry some force fields already achieved coupled
cluster accuracy457). Consequently, we expect them to
completely replace classical force fields in the long term.
Due to their vastly superior numerical scaling, machine
learning methods allow us to tackle challenging problems,
that go far beyond the limitations of current electronic
structure methods, and to investigate novel, emerging
phenomena that stem from the complexity of the sys-
tems.

The majority of early machine learning applications
to solid-state materials science employed straightforward
and simple to use algorithms, like linear kernel models
and decision trees. Now, that these proofs-of-concept ex-
ist for a variety of application, we expect that research
will follow two different directions. The first will be
the continuation of present research, the development of
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more sophisticated machine learning methods and their
applications in materials science. Here, one of the ma-
jor problems is the lack of benchmarking datasets and
standards. In chemistry, a number of such datasets
already exists, such as the QM7 dataset,458,459 QM8
dataset,459,460 QM7b dataset,461,462 etc. These are abso-
lutely essential to measure the progress in features and
algorithms. While we discussed countless machine learn-
ing studies in this review, definitive quantitative compar-
isons between the different works were mostly impossible,
impeding the evaluation of progress and thereby progress
itself. It has to be noted that there has been one recent
competition for the prediction of formation energies and
band gaps.463 In our opinion, this is an very important
step into the right direction. Unfortunately, the dataset
used in this competition was extremely small and spe-
cific, putting the generalizability of the results to larger
and more diverse datasets into doubt.

The second direction regards the usability of machine
learning models. In the electronic structure commu-

nity, both the models (e.g., new approximations to the
exchange-correlation functional of DFT) and the com-
puter codes are developed by a relatively small group of
experts and put at the disposal of the much larger com-
munity of materials scientists. Even though this is slowly
starting to change, models from most publications are
not publicly available. This results in most researchers
spending resources on building their own models to solve
very specific problems. We note that frameworks to dis-
seminate models are now starting to emerge.464

In conclusion, we reviewed the latest applications of
machine learning in the field of materials science. These
applications have been mushrooming in the past couple
of years, fueled by the unparalleled success that machine
learning algorithms have found in several different fields
of science and technology. It is our firm conviction that
this collection of efficient statistical tools are indeed ca-
pable of speeding up considerably both fundamental and
applied research. As such, they are clearly more than
a temporary fashion, and will certainly shape materials
science for the years to come.
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