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Abstract

Magnetic skyrmions in chiral magnets are two-dimensionally localized and topologically

protected vortex-like magnetic textures with particle-like properties. They are currently

under intense scrutiny as an entity enabling new and exciting concepts in information stor-

age and processing within the framework of spintronics. Their stability results from the

Dzyaloshinskii-Moriya interaction, which originates from the spin-orbit interaction in mag-

nets lacking bulk or structure inversion symmetry. The skyrmions are exciting not only

due to their stability but also due to the presence of a quantized topological charge, a

quantized topological orbital moment, emergent electrodynamics, a topological Hall effect,

non-reciprocal excitations, non-collinear magnetic textures characterized by scalar and vec-

tor spin-chiralities associated with the tunneling spin-mixing magneto-resistance effect, their

change of behavior as topological defects due to different “vacuum background states” such

as the ferro-, antiferromagnetic or helical state, thus stimulating the development of new

theoretical concepts and methods, the exploration of new stable particles such as the anti-

skyrmion and the bobber, as well as opening novel means of all-electrical skyrmion injection,

manipulation, transportation and detection in a device context. All-in-all skyrmions and

skyrmionics make-up an exciting and innovative field of science, that takes part in the general

revolution condensed matter undergoes by notions of topology, that requests fundamental

understanding of the quantum mechanical response of skyrmions to external electric and

magnetic fields as manifested e.g. in various texture-driven spin and electronic transport ef-

fects, that meets information technology and in which density functional theory (DFT) plays

a very important role. In this highlight, we review a scale-bridging approach relating the

electronic structure to materials specific atomistic and micromagnetic interaction parameters

responding to the quest for magnetic skyrmions with tailored properties, discussing methods

for the treatment of spin-textures of one to hundred nanometers in size, introducing the

hybrid-particle named bobber and discussing ballistic and topological transport properties

for the electron detection of skyrmions.
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1 Introduction

Condensed matter physics is currently undergoing a revolution through the introduction of

concepts arising from topology that are used to characterize physical states, fields and properties

from a completely different perspective. With the introduction of topology, the perspective is

changed from describing complex systems in terms of local order parameters to a characterization

by global quantities, which are measured nonlocally and which endow the systems with a global

stability to perturbations. A prominent example are skyrmions. Since topology translates

into quantization and response and transport properties, this ongoing revolution has impact on

fields like mathematics, physics, materials science and nanoelectronics resulting in new device

concepts and ultimately reaching out into applications. Thus, these new exciting scientific

developments and their applications are closely related to the grand challenges in information

and communication technology and energy saving.

Thus, the quest for fundamental understanding of chiral magnetic skyrmions [1] with complex

magnetic real-space topologies, their quantum mechanical responses to external static pertur-

bations, their robust dynamics, there dependence on the background magnetization, the search

for additional particles move skyrmions into center of intense scientific investigations. The topo-

logical protection of their magnetic structure and particle-like properties and stability [2] (for a

review see Ref. [3]) with a well-defined topological charge offer good conditions for skyrmions to

become the new information-carrying particles in the field of spintronics [4], which explains the

additional motivation of their current intensive investigation. Skyrmions in chiral magnets may

appear as isolated topological solitons or condensed in regular lattices. Their stability results

from the Dzyaloshinskii-Moriya interaction (DMI) [5, 6], which breaks the chiral symmetry of the

magnetic structure. The energy and size is determined by the competition between the Heisen-

berg, Dzyaloshinskii-Moriya, and Zeeman interaction together with the magnetic anisotropy

energy (MAE) and the magnetostatic dipolar self-energy. But without DMI, chiral magnetic

skyrmions do not exist. The DMI results from the spin-orbit interaction and is only non-zero for

solids lacking bulk or structure inversion symmetry. Its strength depends on the degree of sym-

metry breaking experienced by the wave functions and can be modified by band filling or crystal

field gradients or interface dipoles, respectively, due the to the choice of chemical elements.

In terms of skyrmionics, i.e. when we consider the skyrmions as information-carrying particles

in a novel technology that combines the ultrahigh data density of non-volatile storage device

with the ultra-low power and fast operations of logic components, the skyrmions offer a great

potential, not only due to their stability but also due to the presence of a quantized topological

charge, a quantized topological orbital moment [7], emergent electrodynamics [8], a topological

Hall effect (THE) [9] and the tunneling spin-mixing magneto-resistance (TXMR) [10, 11] opening

means of detecting skyrmions in a device context, the lower pinning field in comparison to

conventional domain walls [8] combined with the large spin-orbit torques (SOT) [12] exerted

on the skyrmions, which conversely requires much smaller current densities than conventional

magnets [13, 14].

Although the potential is great, the presently available skyrmions do not fulfill yet all required

criteria for such a technology. The skyrmions should be stable sub-10 nm skyrmions at room

temperature, (ii) should exhibit controlled and low power (sub-100 fJ) skyrmion nucleation using
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current or electric field as writing process (iii) electrical detection of sub-10 nm skyrmion as

reading process (iv) controlled, reliable and fast (over 1000 m/s) manipulation of the skyrmions

trains in nanotracks of a potential race track memory [4] and (v) controlled skyrmion-skyrmion

interaction to achieve logic operations.

This poses a challenge to materials design in general and DFT-based material and process

understanding and design in particular: Chiral magnetic skyrmions have spin-orbit-driven non-

collinear spin textures of several nanometers size that result from a fine balance of different

magnetic interactions. To capture these effects with sufficient accuracy pushes DFT codes and

computational resources easily to their limits. The electronic and spin-structure determine im-

portant transport properties.

The presence of skyrmions in bulk crystals and interfaces has been shown and verified experi-

mentally, primarily in bulk crystal of noncentrosymmetric crystals of B20 alloys as MnSi [15],

FeGe [16]; thick films of noncentrosymmetric B20 crystals with the thickness in a range between

several tens up to few hundreds nanometers [17, 18, 19]; epitaxial films of noncentrosymmetric

crystals – films of B20 alloys usually grown on thick Si substrate, e.g. MnSi/Si(111) [20, 21] or

FeGe/Si(111) [22, 23]. For applications in spintronics [4, 24, 25] skyrmions stabilized in systems

with surface or interface induced DMI seem to be more promising than bulk systems with DMI.

Magnetic heterostructures consisting of a thin film of magnetic material on a heavy metal sub-

strate are a basis for the generation of skyrmions smaller than five nanometers [26, 27] that

can e.g. be used as bits in a magnetic racetracks. Experimentally, it has been shown that in-

dividual bits can be created by an out-of-plane current and moved by an in-plane one [28, 29].

To read out the state of each bit, it has been shown that the topological Hall effect [30] can

be utilized. Experimentally, this current-in-plane detection was already demonstrated [31]. In

terms of device geometry and power consumption, a current-perpendicular-to-plane detection

would clearly be advantageous [32]. The tunneling spin-mixing magnetoresistance effect is one

mechanism that allows this type of detection [10, 11].

During the past 10 years we developed a consistent three-pronged scale-bridging approach for a

material specific description of the static and dynamical properties of skyrmions. This approach

consists of (i) the density functional model to relate the quantum mechanics of the relativistic

electrons in a non-collinear magnet to exchange parameters entering (ii) a generalized spin-

lattice model with local magnetic moments residing on the atom positions interacting through

the well-known Heisenberg interaction, the Dzyaloshinskii-Moriya interaction and the magnetic

anisotropy which comprises the magnetocrystalline anisotropy and the dipolar fields. (iii) The

long wave-length limit or the continuum approximation of the atomistic model leads to the

micro-magnetic model, where the magnetization density is a continuous field consistent with the

mathematical concepts behind topology. The so obtained atomistic or micromagnetic model,

respectively, is frequently named ab initio atomistic model or ab initio micromagnetic model.

We realize the DFT model through the community code named FLEUR, (http://www.flapw.de),

an all-electron full-potential linearized augmented plane wave method devised such as to obtain

all necessary parameters entering the spin-lattice or the micromagnetic model [33, 34]. We have

developed several other first-principles methods to deduce the atomic interaction parameters

and even to calculate small skyrmions as a hole from first-principles [10] based on the Korringa-
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Kohn-Rostoker Greenfunction method (http://www.juDFT.de). In order to calculate the phase-

diagram, the dynamical properties and the temperature dependent stability of skyrmions we are

developing a user-friendly community code named Spirit (http://spirit-code.github.io),

which is based on solving the Landau-Lifshitz Gilbert equation for the generalized spin-model.

The transport properties of skyrmions were obtained with the Wannier interpolation technique

based on the maximally-localized Wannier functions as constructed from the Wannier90 code

(http://www.wannier.org) using the electronic structure output of FLEUR [35].

In this article we cover some of the aspects mentioned above addressed with density functional

theory and methods that build up on DFT results. In the first part, we discuss a two-scale

approach relating first-principles calculation of the electronic structure of non-collinear states

to magnetic stability and size of a skyrmion through spin-lattice model. Presented are the

calculations of magnetic interaction parameters, e.g. Heisenberg-type or Dzyaloshinskii-Moriya

interactions, higher order terms and the magnetic anisotropy that can serve as input for Monte-

Carlo simulations or spin-dynamics simulations. While we chose skyrmions in thin-film systems

as examples here, in the next chapter novel topologically stabilized objects in three dimensions,

so called bobbers, hybrid-particles of Blochpoint singularities with a continuous skyrmion-like

spin-texture and their continuum modeling is in the focus. In chapter 4 we return to the thin-film

systems and outline methods for the calculation of single skyrmions as a whole entity from first

principles. This allows addressing the spatial variation of the electronic structure and we will

discuss possible mechanisms for the electrical detection of skyrmions, important for the read-out

of data stored with these magnetic structures. The topological Hall effect is another electronic

signature of skyrmions. Its calculation from DFT for ferro- and antiferromagnetic skyrmions is

the topic of the final chapter.

2 Magnetic interactions from first principles

Magnetic skyrmions are noncollinear magnetic structures that, for DFT, very often require sub-

stantial efforts since calculations of large magnetic unit cells with inclusion of relativistic effects

are needed. Compared to a collinear, scalar-relativistic calculation, the size of the Hamiltonian

is doubled in this case and the computational efforts increases typically by a factor four to

eight. Since such straightforward calculations are not always feasible, we first shortly review

some methods to explore the magnetic structure of a given material (or composite) and, as

illustrative example, show how the nanoskyrmion lattice of Fe on Ir(111) was discovered as a

combined experimental and theoretical effort.

To determine the magnetic ground state of a specific system by DFT is a rather challenging

problem: Let us assume that at the positions of the magnetic atoms the intra-atomic exchange

interaction is large and there are robust magnetic moments that can be assigned to each lattice

site, e.g., within some sphere centered at the nucleus, i (at a position Ri), the magnetization

density, m(r), can be well approximated as

m(r) = Miêi (1)

where Mi is the magnetization and êi is the magnetization direction at that site. Then, a

magnetic state is characterized by a set of directions, {êi}, of all the atoms in the magnetic unit
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cell. Of course, there are the well-known ferromagnetic (FM) and antiferromagnetic (AFM)

states, but already for the latter several possible unit cells come in mind. E.g., in an face-

centered cubic (fcc) material, an AFM order can occur for ferromagnetically ordered planes in

(001), (111), or (110) directions (type I, II or III AFM order, respectively) to name just the few

possibilities that can be realized by a Heisenberg model with nearest-neighbor (nn) and next-

nearest-neighbor (nnn) interactions. With more Heisenberg-type interactions involved, so-called

spiral spin-density waves (SSDW) are general solutions:

Mi = M (êx cos(q ·Ri) + êy sin(q ·Ri)) (2)

where Mi is the magnetic moment of atom i and the unit vectors êx and êy just have to be

perpendicular to each other, otherwise their directions are arbitrary. For simplicity we assume

that the size of the magnetic moment, M , is not site dependent. Using the generalized Bloch

theorem [36, 37] these SSDWs can be conveniently calculated in the chemical unit cell as long

as no spin-orbit coupling (SOC) is considered. For our calculations we use the full-potential

linearized augmented planewave (FLAPW) method [38] as implemented in the Fleur-code [39].

In a DFT calculation (as well as in nature) exchange interactions are not limited to Heisenberg-

type, Jij , ones: even in the non-relativistic (NR) case higher order exchange interactions (bi-

quadratic, Bij , or four-spin, Kijkl, interactions) can couple SSDWs to new spin structures. E.g.

in a Heisenberg chain with biquadratic interaction, a so-called up-up-down-down structure can

appear as ground state that is a superposition of two counterpropagating spin-spirals [40]. In

the Mn monolayer on a Cu(111) substrate we found a superposition of three SSDWs to form

a so-called 3Q ground state [41]. But, of course, it is difficult to prove that a certain solution

obtained in a DFT calculation gives really the energy minimum as supercell-effects always affect

the results. Thus, the situation is similar to the problem of structural relaxation, only on a much

smaller energy scale: The energy functional E[{êi}] has many local minima that differ typically

by just a few meV. Therefore, ab-initio spin-dynamic simulations are in principle a good way to

explore magnetic ground states [42, 43], but computationally rather expensive. Moreover, for

an interpretation of the results usually the system is mapped to a model Hamiltonian, e.g.

HNR = −
∑
〈ij〉

JijMi ·Mj −
∑
〈ij〉
Bij(Mi ·Mj)

2 (3)

−
∑
〈ijkl〉

Kijkl [(Mi ·Mj)(Mk ·Ml) + (Mj ·Mk)(Ml ·Mi)− (Mi ·Mk)(Mj ·Ml)]

to explain a certain ground state structure and look for competing spin configurations if a

suitable phase diagram is available. Although the sums in eq. 3 run in principle over all pairs

or quadruples (diamonds), depending on the number of performed DFT calculations these sums

are truncated rather quickly. In particular the biquadratic and four-spin terms are assumed

to decay much faster than the Heisenberg-type terms and only few are considered: for each

exchange interaction constant an independent spin-texture, often requiring a special magnetic

unit cell, is required [44]. In contrast, the Jij parameters can be determined rather systematically

based on SSDW calculations using the generalized Bloch theorem [45].

The situation gains complexity if relativistic terms, in particular arising from SOC, are taken into

account [46]. Including just the Dzyaloshinskii-Moriya interaction (DMI) [5, 6], the magnetic
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Figure 1: Upper left inset: experimentally ob-

tained SP-STM image of the Fe monolayer on

Ir(111). The magnetic unit cell (yellow) con-

tains 15 surface atoms. To explain the mag-

netic contrast, a collinear structure with the

spin of eight atoms pointing up (green) and

seven atoms pointing down (red) would be pos-

sible. A c(2× 2) supercell is indicated in gray.

(Adapted partially from Ref. [51])

anisotropy (arising from SOC and dipole-dipole interaction) and the interaction with an external

magnetic field, the Hamiltonian is expanded to

H = HNR −
∑
〈ij〉

Dij · (Mi ×Mj) +
∑
i

MiKiMi +
∑
i

B ·Mi (4)

where HNR is given by eq. 3, Dij is the Dzyaloshinskii-vector, Ki the anisotropy tensor and B

the (external) magnetic field. In the case of a uniaxial anisotropy and out-of-plane magnetic

field the last two terms simplify to sums over Ki(M
z
i )2 and BM z

i , respectively. The contribution

of the magnetocrystalline anisotropy to the K tensor can be extracted from (usually collinear)

relativistic calculations with an extremely fine k-point grid over the Brillouin-zone. The dipole-

dipole terms are usually added from a classical calculation of the dipole sums using the calculated

magnetic moments..

The DMI contribution can be evaluated e.g. from SSDW calculations using the generalized

Bloch theorem and considering SOC in first order perturbation theory [47]. In this case, for

each Dij vector three independent non-collinear calculations including SOC effects are necessary

(although symmetry considerations [6] help to ease the computational effort). As the energy

differences between these magnetic configurations are in the meV range, also here carefully

converged calculations requiring several thousand k-points are necessary. This applies also to

calculations of the DMI via Green function methods [48] or Berry phase theory [49].

2.1 Nanoskyrmions at surfaces

To give an actual example for the rather abstract discussion above, we look at the system of

an Fe monolayer on an Ir(111) substrate. Experimentally obtained images with spin-polarized

scanning tunneling microscopy (SP-STM) are shown in the inset of Fig. 1: Obviously, there is

an almost square magnetic unit cell with a lattice parameter of about 1 nm dominating the

contrast [50]. Assuming an epitaxial growth of the Fe, the chemical unit cell is expected to be

hexagonal with an in-plane lattice constant of about 0.27 nm. This implies that the magnetic

unit cell consists of 15 atoms as shown in Fig. 1. A magnetic structure, possibly compatible

with the SP-STM image, obtained with an out-of plane magnetized tip, could consist of eight

atoms with spin pointing up and seven with spin pointing down as indicated by the red and

green circles. DFT calculations confirm that this structure has indeed a lower energy than the

ferromagnetic state and all tested SSDW solutions [50].
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Figure 2: Upper panel: Total energy of

spin-spiral states in an Fe monolayer on

Ir(111). Although the FM state has the

lowest energy, there is a wide plateau in

the total energy surface, E(q), where the

spin-spiral energies are small. The vec-

tors Q1 and Q2 are given by the Fourier-

transform of the experimental SP-STM im-

age (see Fig. 1). The multi-Q state shown

in the lower image is formed by the spin-

spirals with these q-vectors and QM. Red

and green color of the arrows indicates out-

or in-ward pointing moments, respectively.

The simulated SP-STM image (lower right)

matches the experimental ones quite well.

(Adapted from the supplementary (SI) in-

formation of Ref. [53])

Of course, there are many other magnetic structures compatible with the experimental result

shown in Fig. 1, indeed experimental evidence indicated that the situation might be more com-

plex: From further investigations it was concluded that the magnetic structure is fully compen-

sated, i.e. the total spin moment of the Fe layer is zero [51]. Given the fact that the Fe moments

are rather robust (MFe = 2.96±0.06µB), this is incompatible with any collinear structure in a 15

atom unit cell. Therefore, it was speculated that the structure could be slightly non-collinear,

but at that time we were not able to find a non-collinear magnetic solution with an energy lower

than the collinear 7 + 8 structure.

Let us consider the exchange interactions in the hexagonal Fe monolayer: without any substrate

or on a weakly interacting substrate like Ag(111), Fe is strongly ferromagnetic and, in nnn-

approximation, the exchange constants are M2J1 = 23.6 meV and M2J2 = −3.1 meV for Fe

at the Ag(111) lattice constant [52]. Upon interaction with a substrate like Ir(111) these values

are reduced to 4.2 meV and −0.8 meV, respectively [44]. This puts the Fe/Ir(111) close to the

phase transition from the FM state to a spin-spiral along the line Γ−M that connect the FM to

a row-wise AFM state. Actually, the spin-spiral spectrum shows that there is a shallow plateau,

about 10 meV above the FM state, in all spin-spiral directions (see Fig. 2) [50]. It is located at

about q = 0.25(2π/a) which is compatible to the observed magnetic lattice constant of about

1 nm. Here, a is the Ir(111) in-plane lattice constant and we consider that the magnetic period

length is given by λ = (2π)/q.

Up to now we considered only exchange interaction effects that are included in scalar relativistic

DFT calculations. Taking into account also SOC, the SSDWs can gain additional energy due to

the DMI as given in eq. 4. In the presence of one dominant nearest-neighbor term, D01, it favors

a flat spin-spiral with an angle of 90◦ between neighboring spins. Usually, exchange interactions

terms lead to more long-ranged modulations, in addition a certain sense of rotation is selected,

as observed e.g. in Mn monolayers on W(110) [54].
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Figure 3: Visualization of the nano-

skyrmion lattice of Fe on Ir(111): The blue

spheres represent Fe atoms, magnetic unit

cell is outlined in green. The seven yellow

arrows in the middle form the skyrmion

motive, which is responsible for the white

areas in the simulated SP-STM image (the

simulation for an out-of plane magnetized

tip is overlaid on the atomic structure).

To obtain a two-dimensionally modulated spin structure it is necessary to combine SSDWs with

different q vectors: As mentioned above, higher order spin interactions can lead to so-called

multi-q states described as Mn =
∑
ν Mνeiqν ·Rn . For this, it is not only necessary that the

higher order interaction favors this state, but also the magnetic moment Mn should be constant

and the vectors qν should correspond to low-energy solutions in the spin-spiral spectrum. In

the ideal case of the above-mentioned 3Q state of Mn on Cu(111), the three qν vectors are

row-wise AFM states on the hexagonal lattice, rotated by 120◦ with respect to each other. In

the case of Fe on Ir(111) one can choose three vectors from the shallow plateau of the spin-spiral

spectrum to form a multi-q state [53]. The state formed from Q1, Q2, and QM indeed shows a

two-dimensionally modulated structure with the right periodicity (Fig. 2).

DFT calculations show that this multi-q structure is energetically favored as compared to the

lowest-energy single-q state. Although it looses some energy due to unfavorable alignment of

the spins for Heisenberg-type exchange and DMI, it wins enough energy to compensate for

that. Looking at the spin-structure in Fig. 2, we see that the red arrows form groups of seven

spins, each, that are arranged like tiny skyrmions or anti-skyrmions. Such magnetic structures

have been predicted recently [55], but in the present system only the star-shaped nanoskyrmion

(same rotational sense of the spins in both in-plane directions) can gain energy from the DMI.

Therefore, it is a rather logical next step to modify the magnetic structure by replacing all

anti-skyrmions in the lattice with skyrmions. This gives another gain in energy, mainly caused

by DMI and the cyclic 4-spin interaction, giving rise to the nanoskyrmion lattice ground state

(shown together with the simulated SP-STM image in Fig. 3) of Fe on Ir(111) [53]. We note

here that experimentally there is a small incommensurability of the magnetic lattice with the

underlying atomic structure, a situation which is computationally expensive to simulate in DFT

calculations but it is a nice demonstration of the stability of the skyrmionic ground state.

A few remarks on the details of the DFT calculations for this system are in order here: (1) in the

calculations, the surface is simulated by an Fe monolayer on a thin film of Ir(111). Systematic

studies for different (Ir) film thicknesses show that the obtained magnetic interaction parameters

depend rather sensitively on the number of Ir layers. Moreover, the stacking of Fe on the

Ir(111) substrate (fcc/hcp) changes these parameters as can be observed both in theory and

in experiment [56]. (2) These results also depend sensitively on the relaxation of Fe on the
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Figure 4: Phase diagram of the magnetic

ground state of an Rh/Pd/2Fe/2Ir multilayer

as visualized in the inset. The energy of the

SSDW state (SS) is the black line used as ref-

erence energy. The energy of the FM state

and the skyrmion lattice (SkX) are given in

green and red, respectively. The energies are

determined by Monte-Carlo simulations with

parameters as given in the text.(Adapted from

the SI of Ref. [27])

Ir substrate. DFT simulations of the relaxation of 3d metals on 5d substrates can be quite

misleading since GGA functionals tend to overestimate the lattice parameters of the substrate,

while LDA functionals underestimate the exchange splitting of the 3d atoms (and the associated

magneto-volume effect) [57]. Here, we circumvented that problem by choosing the experimental

Ir lattice parameters and relaxing just the Fe layer in GGA. (3) The GGA functionals have the

tendency to yield too low energies of antiferromagnetic structures, often favoring AFM ground

states where experimentally non-collinear ordering is found [58]. Therefore, we determined our

exchange interactions using an LDA functional.

2.2 Multilayer structures

In the last subsection, we discussed how interactions described by the Hamiltonian (4) can

stabilize a skyrmion lattice in absence of magnetic fields. Of course, this requires a subtle balance

between the individual terms in this Hamiltonian and, due to the short-ranged nature of the

higher-order interactions, only small-scale skyrmions can be expected. Indeed, it was realized

soon after the discovery of the nanoskyrmion lattice that a Pd layer on top of Fe/Ir(111) stabilizes

a spin-spiral ground state. However, with a small external magnetic field (1.4 T) out this state

nanometer-sized skyrmions evolve [26, 59, 60]. Indeed, it can be shown that a Hamiltonian of

the form

H = −
∑
〈ij〉

JijMi ·Mj −
∑
〈ij〉

Dij · (Mi ×Mj) +
∑
i

Ki(M
z
i )2 +

∑
i

BM z
i (5)

gives rise to skyrmions when the magnetic field is in the right range. As shown in Fig. 4, below

or above that range the system is in a SSDW or FM ground state, respectively.

As we have seen above, an important ingredient for the formation of two-dimensionally modu-

lated structures is a range of low-energy spin-spiral solutions around the FM state (see Fig. 2).

From our studies of Fe/4d interfaces [44], we know that the Heisenberg-type exchange interac-

tions can be tuned by the 4d material from FM to AFM nature. The same is true for Fe/5d

interfaces, but this interface effectively also controls the DMI [61]. If we form a 4d/Fe/5d

multilayer structure, this gives us two (almost) independent tuning nobs to engineer magnetic

skyrmions [27]. We consider here structures with two Fe layers sandwiched between the non-

magnetic transition metals, to increase also the temperature stability of the skyrmions. Apart
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from their stability, these structures have many advantageous properties for data storage and

processing, e.g. they can be driven by an electric current or be utilized in three-dimensional

storage concepts.

M2J
‖
1 M2J

‖
2 M2J

‖
3 M2J

‖
4 M2Deff

Fe@Ir −1.70 0.36 −1.53 0.03 Ir 1.5

Fe@Pd 3.67 0.56 −0.84 0.20 Pd −0.3

M2J⊥1 M2J⊥2 M2J⊥3 M2J⊥4 M2K

Fe-Fe 27.42 0.24 −0.40 −0.60 Fe 0.1 1.5

Table 1: Model Hamiltonian parameters for Rh/Pd/2Fe/2Ir. The exchange constants are ob-

tained from fitting the energy dispersion of spin spirals calculated via DFT calculations. The

Heisenberg-type interactions are separated into an intra-layer J‖ and an inter-layer part J⊥,

the DMI contributions from the different layers are shown separately in the right column. The

uniaxial anisotropy K is obtained from collinear DFT calculations with SOC included. All units

are in meV.

As example, we focus here on the Rh/Pd/2Fe/2Ir multilayer shown in the inset of Fig. 4. The

exchange parameters are given in Table 1. It can be clearly seen that the exchange coupling in

the Fe layers is very weak, while the coupling between the layers is significant. Therefore, if a

skyrmion is formed, it shows the same radial profile in both layers (see Fig. 5). We can also see

that J3 is relatively large. As the Hamiltonian (5) contains no higher-order interaction terms, it

is well possible that biquadratic interactions were mapped into the J3 term. While a fit of eq. 5

to a SSDW calculation (without field and SOC) directly gives intra- and inter-layer parts of the

J ’s, to separate the J‖ into contributions of different layers needs further calculations: For this,

we perform SSDW calculations where the magnetization of one Fe layer rotates with a flat spin-

spiral around the z-axis while the other layer has the magnetization fixed in z-direction. This

gives access to layer-resolved quantities - although the contributions are not strictly additive

(e.g. M2J
‖
1 = 3.86 meV obtained from a SSDW calculation with spirals in both layers), the

individual trends can be inferred.

As for the DMI, we characterize it here by a single number Deff . It is obtained by fitting the

SOC contribution to the total energy (obtained by first order perturbation theory as shown in

Ref. [47]) of spin-spirals with period λ in Γ−K direction to an energy term ESOC = D/λ (the

anisotropy Ki vanishes in first order perturbation theory). Thus, only the x-component of Deff is

obtained, the y-component, extracted from SSDW in Γ−M direction, is almost identical. From

the layer-decomposition of D one can clearly see that the scattering on Ir gives the dominant

contribution. Let us note here, that the spin-orbit contribution to the total energy can be

written as a sum over atomic sites, α:

ESOC =
∑
α,µ

〈Ψ0,µ|HSOC|Ψ0,µ〉α (6)

where Ψ0,µ is the wavefunction of band µ of the SSDW state without SOC and HSOC is the SOC

operator. The integration 〈〉α is performed over non-overlapping atomic spheres, which makes

the separation of the atomic contributions possible.

Given the model Hamiltonian parameters as listed in Table 1, it is possible to study the skyrmion
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Figure 5: Skyrmion profile

and energy contributions for

Rh/Pd/2Fe/2Ir multilayers. θ

is the angle of the magnetiza-

tion in the two Fe layers with

the z-axis. The inset gives

the total energy contributions

of the symmetric exchange (a,b)

and DMI (c,d) and the total

energy per layer (e,f). Panel

(g) and (h) show the radial dis-

tribution of the skyrmion, site

resolved and averaged over the

shells, respectively. (Adapted

from the SI of Ref. [27])

formation in an external magnetic field by spin-dynamics simulations [27]. Apart from the profile

(size) of the skyrmion, shown in Fig. 5, also the energy contributions of the individual terms of

eq. 5 can be analyzed in a site-resolved fashion: As shown in the insets (a) and (b) of Fig. 5, the

Heisenberg-type exchange favors the spin-rotation in the Fe layer near Ir (as expected from the

negative J
‖
1 in Table 1) but disfavors the rotation at the Pd interface. On the other hand, insets

(c) and (d) show that only at the Ir interface a significant energy gain can be obtained from the

DMI. Adding the external field and the anisotropy, one sees that in a region close to the center

energy is lost by skyrmion formation, mainly due to the exchange terms near the Pd interface,

while DMI favors the spin-rotation in a wider range, up to 2 nm from the center. Inset (h) shows

the radial distribution obtained by averaging over equidistant atoms (shells) from the center of

the skyrmion. In total, it is the DMI term dominating between 1 nm and 2-nm distance that

stabilizes this magnetic structure.

Summarizing this section, we tried to show how DFT calculations of magnetic interaction pa-

rameters can help to tailor material systems for the formation of skyrmions. E.g. the size of

skyrmion or the critical magnetic field, where the skyrmion lattice forms, can be tuned via the

exchange constants J and D and the magnetic anisotropy by designing the interfaces to 4d and 5d

materials. How this affects the temperature stability will be discussed more in the next section.

We discussed homogeneous, two-dimensional periodic systems here and did not include edge-

effects, defects etc. and their interaction with skyrmions, also this will follow later. Although

focused on layered magnetic systems, the general principles outlined here are also applicable to

bulk materials that form skyrmions, most prominently the family of B20 compounds.
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3 Magnetic skyrmions and new particlelike objects in cubic

chiral magnets

Cubic chiral magnets (ChMs) belong to a distinct class of magnetic crystals where – contrary

to the classical ferro- and antiferromagnets – the ground state represents a noncollinear state.

To this class of magnetic materials belong different Si- and Ge-based alloys such as MnSi [62]

and FeGe [63], Mn1−xFexGe [64], Mn1−xFexSi [65], Fe1−xCoxSi [17]. The broken inversion

symmetry of such alloys with B20 crystal symmetry together with strong spin orbit coupling

gives rise to the Dzyaloshinskii-Moriya interaction (DMI) [5, 6]. Such alloys can be referred to as

isotropic chiral magnets. Such a classification reflects the dominant role of DMI and Heisenberg

exchange, which are assumed to be isotropic in all spatial directions, while the contribution of

magnetocrystalline anisotropy can be neglected. The special interest to such materials arose

after the breakthrough results on the first direct observation of magnetic skyrmions in thin

films of Fe0.5Co0.5Si [17]. The experimental discovery of magnetic skyrmions together with the

conceptual idea of a revolutionary new type of magnetic memory gave an additional impetus to

the research in this field [24, 4].

The competition between ferromagnetic exchange interaction and the DMI results in the ground

state representing a incommensurate homochiral spin spiral – the spiral with an unique sense

of magnetization rotation, see Fig. 6(a). The equilibrium period of such a spin spiral, LD, is

governed by the competition of exchange stiffness and DMI [66]. In a bulk sample, the spin

spiral usually appears as a multidomain state, with a set of spiral k-vector directions across

domains [67]. In the presence of a homogeneous applied magnetic field, H, such a multidomain

spiral state transforms into a monodomain conical state, with the magnetization M tilted to-

wards the direction of the external field and with k‖H, Fig. 6b-c. The conical state persists as

the lowest energy state over the entire range of applied magnetic fields up to a critical value of

HD, above which it converges to a saturated ferromagnetic state.

The existence of the magnetic skyrmions in magnetic crystals with DMI has been theoretically

predicted by Bogdanov in 1989 [1], but it took more then twenty years to discover them exper-

imentally. One of the reasons behind this late discovery is the modification of the conventional

energy balance in thin films of ChMs in comparison to the bulk crystals. Indeed, according to

the theory developed by Bogdanov and co-workers, see e.g. Ref. [21], the chiral skyrmion tubes,

see Fig. 6(d), in bulk crystals of ChMs with relatively weak magnetocrystalline anisotropy may

appear only as a metastable state. Their energy is always higher than the energy of the con-

ical phase, which dominates in bulk crystals almost in the whole range of magnetic fields and

temperatures. This result is consistent with many experimental studies on bulk ChM over the

past decades, where skyrmions were not observed. The only exception is the so-called A-phase

– the high-temperature region in the bulk phase diagram, just below the ordering temperature,

where skyrmions have been proposed to exist due to thermal fluctuations [15]. However, the

real nature of the A-phase still is under debate [15, 68, 16]. The theoretical models predict that

in bulk crystals of ChMs, the magnetic skyrmions can be stabilized due to the strong cubic or

uniaxial anisotropy [21, 69] or special crystal symmetry, which suppress the formation of the

conical phase [1, 70]. However, such theoretical models as well as thermal fluctuations can not

be considered as the main mechanism for skyrmion stabilization in stand-alone thin films of
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B20-alloys where the skyrmions are observed in a wide range of temperatures, much lower than

the ordering temperature.

Figure 6: Schematic representation of different modulated states in bulk and thin films of chiral

magnets: (a) Helical spin spiral at zero field with wave vector k pointing along the z−axis. (b)

Conical state with inclined magnetization and wave vector along the magnetic field. (c) The

projections of the spins on unit sphere corresponding to helical spin spiral (H = 0) and conical

spin spiral (0 < H < HD) with k-vector pointing along external field H ‖ ez . (d)–(f) The

vector field and cross sections of corresponding isosurfaces, nz = 0, for: skyrmion tube with

homogeneous magnetization along the radial symmetry axis (d), for skyrmion tube in thin film

of chiral magnet with inhomogeneous magnetization in all three spatial directions and the twist

induced by the free surface (e), chiral bobbers – hybrid particle-like states localized near the

surface of the chiral magnet characterized by smooth magnetization distribution and presence of

singularity – chiral Bloch point at finite distance from the surface (f), for details see Section 3.4

and Ref. [71]. Note, the section of the isosurfaces in (d)-(f) corresponds to ny > 0, nx < 0.

As has been shown in Ref. [72] the key to the understanding of the mechanism of skyrmion

stabilization in thin films of ChM are presence of the free surfaces and the three-dimensional

rather than the two-dimensional structure of the equilibrium skyrmions. As shown in Fig. 6(e),

the solution for the skyrmion tube in a thin film is characterized by the twist of magnetization

with respect to the normal vector of the film surfaces. One can compare the twisted isosurface

of the skyrmion tube in Fig. 6(e) and the homogeneous non-twisted skyrmion tube in (d). The

magnetic moments in the top surface layer are slightly turned towards the center of the skyrmion,

while in the bottom of the film they are slightly turned outwards the center. The spin structure

on the top and bottom surfaces corresponds to a certain intermediate configuration in between

of pure Bloch- and Néel-type of skyrmions. Such surface induced twist propagates from one
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surface to another through the whole film. Note, it mainly affects the magnetic spins near the

surfaces where spins are weakly coupled to each other because of reduced number of neighbors

at the free surface. Far from the film surface, the spin structure of such a 3D skyrmion remains

almost the same as in a homogeneous skyrmion tube.

The energy gain by the DMI contribution accumulated along the film thickness reduces the

total energy of the state such that within a certain range of magnetic fields and film thicknesses

the skyrmion tube becomes energetically more favorable than the conical phase. Moreover, it

has been shown earlier that the same effect is responsible for the stability of chiral bobber –

particlelike objects localized in all three spatial directions near the surface of the chiral magnet,

Fig. 6(f), see also section 3.4.

It is obvious that for very thick films, the relative energy contribution of the surface twist

becomes very small, while the main contribution to the energy of skyrmion comes from the

volume part of the film. Thereby, there should be a critical thickness above which the energy

gain of the surface twist is not anymore sufficient to provide enough energy gain to stabilize a

skyrmion lattice. In order to identify the range of thicknesses and magnetic fields defining the

range of stability for the skyrmion lattice and other states, we have calculated a phase diagram

for the film of isotropic ChM in a wide range of thicknesses and applied magnetic fields, which

is presented in section 3.2.

3.1 Basic model of isotropic chiral magnet

The basic model for isotropic chiral magnet include three main energy terms: the Heisenberg

exchange interaction, the DMI and Zeeman energy term [73, 74]:

E= E0 +

∫
V

A
(
∂xn

2 + ∂yn
2 + ∂zn

2
)

+D n · [∇× n] +HMs(1− nz)dr, (7)

where n ≡ n(r) is a continuous unit vector field defined everywhere except at the singular points.

E0 is the energy of the saturated ferromagnetic state. A and D are micromagnetic constants

for exchange and DMI, respectively, and Ms is the magnetization of the material – the total

magnetic dipole moment per unit volume.

The constants of exchange stiffness, A, and DMI, D, for B20-type chiral magnets, in general,

can be found from the first principles calculations has been discussed in section section 2. As

compared to the two-dimensional systems, the high symmetry in the discussed bulk compounds

changes the relative importance of the interactions and some are rather challenging to access

quantitatively throughout the mentioned B20 compounds, but DFT certainly allows to study

interesting trends e.g. in the DMI values of Mn1−xFexGe [75, 76, 77].

We use the continuum model as the most general approach to describe long-period incommensu-

rate magnetic structures. The results presented here can be easily generalized for a wide class of

the systems. The functional (7) has to be considered as a continuum limit for the classical spin

models e.g. as simplified models considering a simple cubic lattice [78], and advanced models,

which take into account the exact B20 crystal symmetry [79, 80] .

The lowest period of an incommensurate spin spiral and equilibrium period of the conical phase,

LD, as well as the critical field corresponding to the saturation field of the conical phase, HD, have
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analytic solutions, which couple the material parameters with quantities that can be calculated

in DFT or measured experimentally [66, 70]:

LD = 4π
A
D
, HD =

D2

2MsA
. (8)

The comparison of the energy density of each of the equilibrium states obtained by direct energy

minimization of the functional (7) allows one to identify the geometrical and material parameters

corresponding to the phase transitions. The details of the energy minimization technique and

calculation of the phase diagram are provided in Ref. [81].

3.2 Phase diagram

In the phase diagram presented in Fig. 7 the thickness of the film, L, and magnetic field H are

given in reduced units, where LD and HD are the functions of material parameters A, D and

Ms, see Eq. (8). The unique pair of parameters LD and HD can be considered as a fingerprint of

each particular IChM. They can be measured experimentally, which allows to rescale the phase

diagram, Fig. 7(a), in real units of film thickness, L and magnetic field H.

The solid lines in Fig. 7 correspond to the first-order phase transitions between helical spin

spiral (red), skyrmion lattice (gray), conical phase (white) and a new, up-to-now unknown

phase, which we call stacked spin-spirals state (yellow) and is discussed in detail in section 3.3.

The horizontal dashed line indicates the second order phase transition between conical and

saturated ferromagnetic state (blue).

The triple point I defines the critical thickness of the film, L∗ = 8.17LD, above which the

skyrmions may exist only as a metastable state. For instance, for MnSi (LD = 18 nm) and

FeGe (LD = 70 nm) it gives L∗MnSi ≈ 150 nm and L∗FeGe ≈ 570 nm. With decreasing thickness

the range of existence for the skyrmion lattice in an applied magnetic field becomes wider.

This fact reflects the relative contribution of the surface induced twists, which increases with

decreasing thickness. There is another critical point, for L/LD < 0.68, the conical phase is

totally suppressed and becomes energetically unfavorable in the whole range of fields.

It is important to mention that the chiral surface twist discussed above also introduces an

additional modulation in the helical spiral state. Note, the k-vector of such helical spiral lies in

the plane of the film, orthogonal to the applied field. The surface induced modulation reduces

the energy of the helix and in a certain range of fields makes it energetically more favorable

than the conical state. Such a behavior of the system is totally different to the one of the bulk

crystals, where theoretically any infinitesimal magnetic field leads to convergence of the helix

to the conical phase or more precisely to the StSS according to results presented here, see right

panel in Fig. 7.

Finally, we have to emphasize that the effect of the chiral surface twist is not restricted to the

film surfaces, but also appears on the side edges of the sample. The presence of the edge twist

effect has been reported earlier in Ref. [20] and has been confirmed recently by direct observation

with the Lorentz Transmission Electron Microscopy (TEM) [18].

It is worth to emphasize that the continuum 3D model of chiral magnet strictly speaking does

not converge to a simple 2D model even in the limiting case of L/LD → 0. The left panel
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Figure 7: The phase diagram of magnetic states in film of isotropic chiral magnets: (a) The

phase diagram of magnetic states in reduced units of film thicknesses L and magnetic field H

applied normally to the film surface. The central panel corresponds to the reduced film thickness

varied between 0 and L = 50LD (LD is the period of helicoid at H=0). Inset shows details of

the phase diagram for thin films, 0 < L ≤ 10LD. Note, everywhere within the range of stability

of the conical phase, the isolated chiral bobber corresponds to the lowest metastable state, the

only exception is the small dashed area, where isolated skyrmions within the conical phase

become the metastable state with the lowest energy. The left panel corresponds to the case of

monolayer with surface induced DMI. The right panel corresponds to the case of infinitely thick

film, which qualitatively corresponds to the bulk crystal. Small open circles marked as I and

II, with corresponding coordinates indicated as (L/LD, H/HD) correspond to the triple-points.

The vertical (red) dashed line indicates the critical thickness above which skyrmions appear only

as metastable state.

in Fig. 7(a), which corresponds to the phase diagram of 2D chiral magnet illustrates such a

discrepancy. Note, in general 2D models are valid not only for the single monolayer but also for

multilayer with interface induced DMI and for chiral magnets of particular crystal symmetry

e.g. Cnv, D2d and S4 [1, 70].

3.3 Stacked spin spirals

A wide range of the phase diagram is occupied by the newly found stacked spin spirals state

(StSS). The triple point II defines the limiting thickness above which the StSS may appear as

the global energy minimum.

Fig. 8 illustrates the complex spin structure of the StSS obtained by direct minimization of

the functional (7). The StSS represents the coexistence of the conical phase in the bulk of the

sample and the quasi-helical modulation of magnetization localized in the vicinity of the surface

of the sample. Such free surface induced modulations have finite penetration depth and appear

on both the top and bottom surfaces. It exhibits a mixed helical- and cycloidal-like modulation,
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Figure 8: Stacked spirals states: (a) The magnetization distribution for the stacked spin spirals

in the film of cubic chiral magnet with the thickness of L = 4LD and external field applied

normally to the film plane. The the local magnetization direction is indicated by the colors

according to the standard color code, see Fig. 6 c. (b)-(d) The magnetization vector field near

the top surface of the film (b), in the middle part of the film with pure conical modulations (c)

and near the bottom surface (d). kc indicates the propagation direction of the conical spiral

in the bulk of the film, while kt and kb indicate the propagation directions of the complex

spin spirals on the top and bottom surfaces, respectively. Note, for the thickness L = 4LD the

vectors kt and kb are anti-parallel and both are orthogonal to kc. In this particular case, the

configuration corresponds to the lowest energy state.

Fig. 8b,d. The clock-wise rotation of magnetization in the helical-like part is chosen as direction

of the wave vector k for such a complex spin spiral.

It has been found that the relative orientation of the propagation vectors of the spin spirals on

the top and bottom surfaces, kt and kb, respectively, is thickness dependent. In other words,

the angle βtb between kt and kb for the equilibrium StSS in general varies as function of the film

thickness. Note, that this statement is valid only for the case when stray field effect is neglected.

The modulation of the out-of-plane component of the magnetization of the surface spin spiral

should lead to appearances of the stray fields above the sample, which in turn can be detected

by Magnetic Force Microscopy (MFM) in films as well as in bulk crystals. However, with an

ordinary MFM technique it seems to be hard to distinguish the StSS from the ordinary helical

state, which also produces a stray field around the sample. The most promising experimental

technique, which may allow to detect the StSS seems to be Lorentz TEM.

3.4 Magnetic chiral bobbers

Despite the fact that the presence of the DMI in chiral magnets commonly prevents the stability

and coexistence of topological excitations of different types, recently it was theoretically pre-

dicted that magnetic skyrmions in cubic chiral magnets can coexists with another new type of

localized particle-like object – the chiral bobber (ChB) [71]. ChB is a three-dimensional soliton

of the nonlinear equations for a unit vector field. On the other hand ChB represent a hybrid
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particle composed of a smooth magnetization vector field and a magnetic singularity (Bloch

point). Fig. 6f illustrate a pair of ChB localized near the top and bottom surfaces; however, due

to the mutual repulsion of Bloch points energetically more preferable is appearance of isolated

ChBs.

In the cross section with the plane parallel to the layer surface, its spin structure mimics the

magnetization distribution of the skyrmion with the diameter diminishing with distance from

the surface. It has been shown that the value of the penetration depth, P of ChB always satisfies

the condition PLD/2 with an accuracy up to one unit cell of crystal lattice. The term chiral

bobber is used because of the essential chirality of its spin texture and due to the fact that as

such it is localized close to the surface of the sample and in a certain sense behaves like a fishing

bobber on the waters surface.

It turns out that due compact size of ChBs in a wide range of parameters they are energetically

more favorable than the chiral magnetic skyrmions. Note, everywhere in phase diagram, Fig. 7

within the range corresponding to the cone ground state an isolated ChB represents a measurable

state with the energy lower then the energy of isolated SkT. The only exception represents small

dashed region at high magnetic field and small thicknesses where isolated SkT has energy lower

than that of isolated ChB.

In Ref. [71] it has been shown that the energy barriers that protect skyrmions and ChBs are of

the same order of magnitude and the two objects are potentially ideal candidates for use as “1”

and “0” bit carriers, Fig. 9. Indeed, although magnetic hard disk drives show great reliability and

are some of the most in-demand devices on the market, their ultimate data density and operating

speed are limited due to the superparamagnetic effects [82] and the presence of energy-consuming

mechanical components, such as engines and actuators. Therefore, alternative approaches for

solid state magnetic memory devices that have no movable mechanical parts have been proposed.

One of the most promising candidates for a new solid-state magnetic memory device is based

on the concept of racetrack memory (RM) [83], in which the role of data bit carriers is played

by either (i) magnetic domain walls, which are small transition regions between domains whose

magnetization typically points in opposite directions [83] or (ii) chiral magnetic skyrmions [24],

which possess topologically protected stability and can be moved using currents that are several

orders of magnitude lower than those required for magnetic domain wall motion [4]. Skyrmion-

based RM is currently considered to be the most promising approach.

The presence of only one type of excitation currently defines the approach for data encoding,

which is based on the quantization of distances between adjacent excitations on a track. How-

ever, skyrmions are highly movable, interacting objects that can drift as a result of thermal

fluctuations, making it difficult to maintain their distribution along a track. The fabrication of

arrays of artificial pinning centers on the nanoscale to solve this problem is a serious challenge

that is likely to lead to higher costs. In a system with surface/interface-induced DMI, a solution

is the fabrication of a nanostripe with a special profile that results in the location of skyrmions

in two parallel channels [84].

A powerful alternative approach, which does not require fixed distances between movable bit

carriers has been proposed in Ref. [85]. It is proposed that the stream of binary data representing

a sequence of ones and zeros can be encoded via a sequence of two type of movable particles,
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for instance skyrmions and bobbers. In this approach, the need to maintain defined distances

between data bit carriers is then not required. The coherent motion of ChBs and SkTs is

expected to be stable because of cohesion effects due to interparticle interactions. The conceptual

scheme of a single register in such a memory device is shown in Fig. 9. The proposed concept of

data encoding promises to expedite the realization of a new generation of magnetic solid-state

memory, where a higher data density can be achieved in comparison to the existing skyrmion-

based racetrack memory concept.

Figure 9: New concept for magnetic solid-state memory based on encoding a data stream in a

nanostripe, which takes the form of a closed track containing a chain of alternating magnetic

skyrmion tubes and chiral bobbers that correspond to “1” and “0” bits. The actions of writing,

reading and erasing units are performed at different positions along the guiding track. The spin

structures for chiral bobbers and skyrmion tubes are schematically represented by corresponding

isosurfaces. The figure is adapted from Ref. [85].

4 Single skyrmions from full first-principles

In this section, we address simulations based on full ab-initio of single magnetic skyrmions,

which allows direct access to the details of their electronic structure, spin and orbital magnetic

textures and transport properties. As mentioned in the introduction, from the technological

perspective it is probably more interesting to generate and harness individual skyrmions than a

lattice of skyrmions. For instance, single sub-5nm skyrmions, i.e. nano-skyrmions, are ideal for

a racetrack memory device. Although computationally heavy, such first-principles simulations

can have direct implications in device concepts. For example, a novel magnetoresistance effect,

which we named spin-mixing magneto-resistance (XMR), was put forward to be used for efficient

all-electrical detection of non-collinear spin-textures (see Fig.10(a) and Ref. [10]). This effect was

simultaneously realized and addressed experimentally and theoretically in Ref. [11]. Another

example consists in proposing a way of accessing the topological nature of a complex spin-

texture by measuring with optical means the orbital moment generated by the non-collinearity

of the magnetic moments [7, 86]. Such a contribution to the total orbital moment inherits the
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Figure 10: (a) Illustrative concept for a device based on perpendicular reading of single nano-

skyrmions. Due to spin-mixing of the electronic structure as a function of position within

skyrmions, the electric current, i, depends on the local magnetic state, leading to a spin-mixing

magnetoresistance (XMR) and therefore magnetic data information can be sensed in a CPP-

geometry. (b-j Ab-initio relaxed skyrmions of different sizes generated in fcc-Pd/Fe overlayer

on fcc-Ir(111) bulk substrate. The top-view of the magnetic textures located in the Fe-layer are

shown in b-d and in (e-g) for the Pd-overlayer. The Pd magnetic moments are mainly induced

and controlled by the underlying magnetic Fe layer. A comparison between the two textures

can be grasped from the side views shown in (h-j).

topological nature of magnetic skyrmions and is thus called the topological orbital moment [7].

Here we review the work presented in Ref. [10] by showing data calculated with higher energy

resolution. The simulation of a single magnetic skyrmion embedded in an otherwise perfect

magnetic substrate requires the use of a Green functions based technique. For such problems,

self-consistent calculations based on the full-potential relativistic Korringa-Kohn-Rostoker Green

function formalism are possible [87]. To stabilize skyrmions, the Green functions of the ferro-

magnetic substrate are harvested and a single spin-flipped magnetic-atom is embedded in the

unperturbed ferromagnetic background. The potentials of the nearest neighboring atoms sur-

rounding the skyrmion are updated till self-consistency is reached. The procedure is based on a

multiple scattering approach to solve the Dyson equation: Gskyrmion = G0 +G0 ∆V Gskyrmion in

real space, where ∆V represents the modified atomic potential as compared to the unperturbed

substrate potential. G0 is the Green function of the perfect substrate while Gskyrmion represents

the skyrmion impurity cluster.

Similar to section 2, we consider once more the case of an Fe fcc-monolayer on an Ir(111)

substrate, on top of which a single Pd–layer or –bilayer are deposited following for simplicity

an fcc stacking. In such materials with strong magnetic frustration, Pd overlayers enhance the

ferromagnetic Heisenberg exchange, which stabilizes spin-spirals over the skyrmionic lattice. A

reasonable magnetic field, however, generates isolated skyrmions with diameter DSk ≈1-5 nm

20



Figure 11: LDOS in a realistic 2.2 nm wide nano-skyrmion in Pd2/Fe/Ir. (a) Electronic struc-

ture in the magnetically-active Fe-layer resolved into minority (solid) and majority (dashed)

spin-channels changes across the skyrmion from the ferromagnetic (FM) background towards

the skyrmion’s core characterized by a quasi-antiferromagnetic (AFM) alignment of the mo-

ments. (b) The alteration of the LDOS in Fe impacts the vacuum structure via hybridization

through Pd-states. Arbitrary units are used so as to include in the same plot the nature of

the Pd-dz2 surface-state (black-dashed). (c) Illustrative legend for (a,b) where the numbered

spheres represent a line extending radially from the skyrmion’s center. The vacuum domains

are represented by empty spheres. FM-Fe, FM-Pd, and FM-Vac represent the unperturbed

background ferromagnet.

in size, and has been shown experimentally [11, 26, 88, 89]. We note that in the context of thin

films possibly hosting small skyrmions, new systems have recently been proposed theoretically,

such as PtIr alloy deposited on Fe/Ir(111) surface [90, 91] and Mn monolayer deposited on

/W/Co/Pt/W(001) [92], or discovered experimentally such as the Fe triple layer deposited on

Ir(111) [93].

In practice, we used a slab containing 34 Ir layers since it was the minimum thickness by which we

completely decoupled any wave function penetration from top-to-bottom surface. Relaxations

are incorporated using the data reported by Dupé et al. [59]. We chose an angular momentum

cutoff of lmax = 3 for the orbital expansions of the Green functions. The energy contour for

numeric integration of the spin and charge density contained 40 grid points in the upper complex

plane (including 7 Matsubara poles) with a Brillouin zone mesh of 30×30 k-points. The local

density of states (LDOS) were obtained by one-shot calculations using the ferromagnetic-state or

skyrmion-state as starting points, respectively. We found that increasing the k-mesh to 200×200

was sufficiently adequate to numerically stabilize the relevant observables.
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4.1 Non-collinear inhomogeneity in nano-skyrmions

Fig. 10(b-j) shows the self-consistent magnetic texture for different-sized nano-skyrmions gen-

erated in otherwise ferromagnetic single Pd overlayer material stacks. Results obtained for the

Pd-bilayer are rather similar and not shown for brevity; see Ref.[10] for a comparison with the

single Pd layer case. As expected, the DMI imposes a unique rotational sense for the magnetic

moments. We control the size of the skyrmionic defects, having a diameter DSk ≈ 1.1, 1.7,

2.2, and 2.7 nm, by allowing different finite numbers of atoms to relax their magnetic moments

in size and direction after the central atom has been spin-flipped as an initial condition. The

skyrmions are not confined to the Fe layer but extend towards the Pd overlayer and Ir substrate

(not shown). The generated magnetic textures are dictated by Fe, which induces magnetism in

Pd and Ir via a proximity effect.

We show in Fig. 11a the spin-dependent LDOS in the magnetically-active Fe-layer as a function

of the atomic position for the DSk ≈ 2.2 nm skyrmion. For brevity we plot only the Pd2/Fe/Ir

case. We note that the majority and minority spin-channels are given in the local spin-frame of

reference for each Fe-atom. The color-coding of the plot, which corresponds to different atoms

extending radially from the skyrmion’s center, is explained in Fig. 11c. Obviously, the LDOS

changes as function of the location of the Fe atom within the nano-skyrmion. Because of the

specific nature of the skyrmionic spin-texture, Fe atoms across the skyrmions are inequivalent

making the local magnetic environment inhomogeneous. For instance, the minority-spin elec-

tronic bands observed in Fig. 11a shift in energy as function of position. The essential physics

behind this process can be explained on the basis of the Alexander-Anderson model [94, 95]

extended to the case of non-collinear spin-structures [10]. When moving from the ferromagnetic

background towards the center of the skyrmion, the quantization axis between two neighboring

atoms becomes different, and majority-states of one atom can hybridize with minority-states of

its neighbors. This affects the effective hybridization strength between the electronic states of

adjacent atoms and thus the final electronic structure.

4.2 Angular dependence of the LDOS across nano-skyrmions

∆ni(E) denotes the change in the LDOS at site i inside an inhomogeneous non-collinear spin-

texture with respect to a fixed magnetic moment. The latter can be pointing along the z-direction

if located in the ferromagnetic background surrounding our skyrmions. ∆ni(E) originates from

the spin-orbit interaction (SOI) and/or from non-collinearity (NC): ∆ni(E) = ∆nSOI
i (E) +

∆nNC
i (E). The contribution from SOI, the so-called anisotropic magnetoresistance, is well

known:

∆nSOI
i (E) ∝ A(r, E) ·

[
1− (êzi )

2
]
, (9)

where Ai(E) is a site– and energy–dependent coefficient and êi defines the direction of the mag-

netic moment at site i. Thus upon including SOI, we expect, for example, a sin2 θi dependence,

which contributes to ∆ni(E) in second-order.

Even when SOI is ignored, NC induces changes in the electronic structure across a skyrmion

since the atoms are not necessarily equivalent. This effect holds true for any inhomogeneous

spin-texture. Multiple-scattering theory enables to relate the Green function G, describing the
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whole system upon rotation of the magnetic moments, to the Green function g, describing the

initial ferromagnetic state, via the Dyson equation:

∆G = g∆V G = g∆V g + g∆V g∆V g + ...., (10)

where ∆V describes the change of the potential upon rotation of the magnetic moments. The

change in the LDOS can then easily be extracted from:

∆nNC
i (E) = − 1

π
=
{

TrLS[Gii(E)− gii(E)]

}
, (11)

as given in a matrix notation where a trace over orbital and spin angular momenta has to be

performed.

Using properties of Pauli matrices and limiting the sum in Eq. 10 to the first- and second-order

terms, we find:

∆nNC
i (E) =

∑
j

Biji(E)(1− êzj ) +
∑
jk

Cijki(E)[êj · êk − (êzj + êzk) + 1], (12)

where j and k are sites surrounding site i, or can be the site i itself and the coefficients B and C

depend on G and ∆V (more details can be found in Ref.[10]). Thus we obtain a rather complex

dependence on the rotation angles of the magnetic moments, very distinct from the expected

SOI contribution. Of course, depending on the details of the electronic structure and strength

of perturbation related to the non-collinearity, higher-order terms can be important and have

to be included in Equation 12.

4.3 All-electrical skyrmion detection

The energy-dependent disturbance to the LDOS resonance-peaks as a function of position mov-

ing radially along the skyrmion implies that it will leave a non-trivial signature in the electrical

conductivity of a probed skyrmion. Current-in-plane (CIP) detection of skyrmions has been

already shown experimentally [8, 31, 96] and understood theoretically as a topological Hall ef-

fect [9], but may be costly in terms of power consumption and difficult to fabricate in terms

of device geometries. A better option would be the direct detection of the nano-skyrmions via

current-perpendicular-to-plane (CPP) [32, 97] geometry. The latter can be realized within the

context of scanning tunneling microscopy/spectroscopy (STM/STS), as shown recently in the

context of the present work [10, 11, 89], which can be simulated using the Tersoff-Hamann

model [98]. In the latter model the differential conductance dI/dV is proportional to the

LDOS of the sample, calculated at the STM-tip position. An example is shown in Fig. 11b

for Pd2/Fe/Ir(111), where electronic features of the majority-spin channel at negative or pos-

itive bias voltages change across the 2.2 nm nano-skyrmion, some of which originate from the

VBS characterizing the Fe atoms hybridizing with the states of Pd, which then decay into the

vacuum. The states involved in the hybridization processes and their energy location depend

strongly on the Pd film’s thickness and the size of the skyrmion. In the particular case of a

Pd bilayer, hybrid Fe-Pd-spdz2 states, named in short Pd-dz2 , are generated in the Pd layers

around -0.5 eV, as shown in Fig. 11b (black-dashed curve). It is clear that the surface-layer

Pd-dz2 state (shown only for the background-FM Pd-surface film), which has the proper orbital
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symmetry to decay slowly transverse to the substrate, controls the electronic structure in vac-

uum at negative bias voltage, characterized by a strong resonance in the vacuum-LDOS. In the

case of a single Pd overlayer, a similar state occurs around +0.5 eV [10]. Thus the changes in

the electronic structure induced by SOI and non-collinearity impact transport properties leading

to the aforementioned XMR effect, or TXMR effect where T stands for tunneling.

The TXMR efficiency is the percent deviation of the local conductance from a reference conduc-

tance, which in our case is the ferromagnetic (FM) background, due to the spin-mixing arising

from non-collinearity and SOI:

TXMRi(E) =
nvac
i (E)− nvac

FM(E)

nvac
FM(E)

× 100, (13)

where nvac
FM(E) is the LDOS in the vacuum just above the FM, and nvac

i (E) is the LDOS of the

complex spin-texture in the vacuum just above site i.

Integrating the TXMR over the entire device injection boundary, over all energies up to the

bias energy eVbias, would give a measure of the total change in conductance, and would be the

state-of-bit detection mechanism in a CPP-TXMR device like discussed in Fig. 10a. In an STS

experiment, however, the effect could be amplified by selecting specific energy windows where

the TXMR were largest as a function of position.

In Fig. 12a,b we show the energy-resolved TXMR of the DSk ≈ 2.2 nm skyrmion’s central spin-

flipped vacuum-site, with and without SOI, for the single- and double-Pd cases. We notice a

sizable TXMR effect for both systems. This holds true for all skyrmions that we studied, noting

a small size-dependence of the effect which varies weakly as a function of DSk. When switching-

off SOI and keeping the spin-texture fixed, the TXMR can differ by a factor of two with respect

to what is found if SOI is included. This indicates that the spin-mixing due to SOI competes

with the effects due to inhomogeneous non-collinearity, reducing or enhancing the overall TXMR

signal. The experimentally investigated single Pd layer deposited on Fe/Ir(111) [11, 89] shows

a TXMR signal similar to the one provided in Ref. [10]. As an example, the simulated TXMR

signal for the double-Pd case is plotted in Fig. 12c at a bias energy -0.85 eV. In the future,

it would be interesting to prospect the possibility of using the TXMR effect in the multilayers

geometry, which is crucial in spintronics. Also, recent ab-initio simulations demonstrated the

non-trivial impact of defects on the shape and stability of magnetic skyrmions [99]. Thus, it is

appealing to study the sensitivity of the TXMR effect to the presence of defects.

5 Topological (spin) Hall effect of large-scale skyrmions

The variation of the spin texture in a skyrmion that a propagating (e.g. in response to an electric

field) electron experiences has an influence similar to that of a magnetic field in real-space, which

is given by the so-called real-space Berry curvature Ωσ
z = −2Im〈∂xψσ(x, y)|∂yψσ(x, y)〉, where

σ stands for the spin character of the “local” electronic wavefunction ψ in real-space. Without

spin-orbit interaction the wavefunction has a trivial dependence on the (x, y)-coordinate via

the local magnetization direction M, and it can be shown that Ωσ
z = σM · (∂xM× ∂yM) /2.

The curvature Ωσ
z is often called an emergent magnetic field, Beff . The integrated value of

the emergent field over a skyrmion acquires integer values and is proportional to the winding
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Figure 12: Tunneling spin-mixing magnetoresistance at the vacuum site, Vac-0, just above the

core of the skyrmion (see Fig.11c). (a,b) TXMR signals comparing the effects of SOI in a DSk ≈
2.2 nm skyrmion, for single- and double-Pd systems. (c) Expected STS-signal when approaching

a skyrmionic defect in the double-Pd case. The electrical contrast has been projected onto the

plane below the skyrmion.

number:

S =
1

4π

∫
M · (∂xM× ∂yM)dxdy. (14)

The real-space Berry curvature is the magnetic field which changes sign depending on the spin

of an electron. One of the consequences of having a magnetic field in the system is the Lorentz

force which is exerted on electrons propagating in an electric field, which in turn gives rise to

the ordinary Hall effect. In case of a spin texture, however, the emergent field gives rise to a

Lorentz force which changes sign depending on the spin of an electron. The corresponding Hall

effect, which is a specific feature of spin textures, is called the topological Hall effect (THE) [100,

101]. The topological Hall effect is a purely geometrical phenomenon in that it is driven by

(adiabatically slow) modulation of the magnetic texture in space, and in that it can be written

in terms of Berry curvature of spin-up and spin-down electrons, which sums up to zero when

both spins are occupied. The magnitude of the emergent magnetic field at given point in space

directly depends on how quickly the texture changes in real space. For example, in case of a

skyrmionic lattice in MnSi, the winding number is −1 and given the skyrmion lattice constant

of approximately 165 Å, the magnitude of the emergent magnetic field can be estimated to

be −13 T [102]. Nowadays, the THE is one of the main effects which is used to demonstrate

the emergence of non-trivial spin textures in complex magnets. Correspondingly, the proper

understanding of the THE of skyrmions opens the road to their purely-electrical manipulation

and detection.

Spin textures in the presences of external fields show many emergent phenomena that are directly

linked to the chirality and topology of the spin texture, such as the manipulation of the local

magnetic moments through spin orbit torques [49], or coupling of the magnetic moments to the

electric field in multiferroic materials. Through AMR and electrical resistivity measurements

one can distinguish between the different directions of the order parameter of the magnetic

system, while through the family of Hall effects, seemingly more complex in nature, one can

directly probe the magnetic structure under the application of perpendicular external magnetic

and electric fields. In addition to the THE, there are two more conventional effects that couple

the charge current to the spin textures, i.e. the ordinary and anomalous [103] Hall effects, and the

separation of the the three can be rather cumbersome. Each effect has a spin Hall counterpart
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(e)

Figure 13: The topological and anomalous Hall effect in B20 alloys: In Mn1−xFexSi alloys as

a function of magnetization (i.e. as a function of x) a) the experimental AHE and b) the first

principles AHE is plotted. c) the experimental topological Hall constant and d) the comparison

to first principles results. e) The green curve is the AHE and the blue is the THE in Mn1−xFexGe

varying with Fe alloying.

with zero net charge flow.

5.1 THE of ferromagnetic skyrmions

For large locally ferromagnetic spin textures it is normally assumed that experimentally the Hall

resistivity can be separated into three “independent” contributions [31, 103]:

ρxy = ρOHE
xy + ρAHE

xy + ρTHE
xy (15)

Typically, in experiments, the ordinary Hall effect (OHE), ρOHE
xy = R0H with R0 as the ordinary

Hall constant and H as the magnetic field, and the anomalous Hall effect (AHE), ρAHE
xy =

RSM where RS is the anomalous Hall constant, are fitted in the high field regime where M

is saturated and the AHE dominates. The fitted results are then subtracted from the Hall

resistivity for the whole range of the external magnetic field thus providing the values of the

topological Hall resistivity, ρTHE
xy = RTHE

xy Beff where RTHE
xy is the topological Hall constant which

is weakly dependent on the shape of the skyrmions, and that exists in the range of H where

there the emergent field Beff is non-vanishing owing to the non-trivial winding of the real space

magnetic texture. MnSi and FeGe in the B20 phase were among the first metallic materials

that displayed the formation of a skyrmion lattice and the THE [31, 63, 22]. Overall the B20

compounds are as interesting as oxides and Heusler alloys, where one can tune spin-orbit effects,

exchange parameters, and electronic structure by chemical engineering [76, 104]. This allows for

precise control of the Berry phase properties in real and momentum space. Also the so-called

mixed Berry curvature can be directly related to the DMI and the SOT by the torque-velocity

correlation [49, 105].

The intrinsic AHE can be seen as the consequence of the momentum-space Berry curvature [103].

The AHE also has contributions from non-geometric extrinsic effects due to scattering off

impurities and disorder giving rise to the side jump and the skew-scattering contributions

(within the very oversimplified terminology). Correspondingly, the AHE, ρAHE
xy = RSM , can
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Figure 14: The band structure, anomalous Hall conductivity and topological Hall resistivity

in FeGe as a function of the band filling, respectively. The values of ρTHE
xy are compared with

experimental results (dots) at the Fermi energy [22, 106, 23].

be separated into extrinsic and intrinsic mechanisms in terms of the longitudinal resistivity,

ρAHE
xy = [αρxx + (β + b)ρ2

xx]M , where α, β and b determine the contributions due to skew

scattering, side-jump and intrinsic mechanisms, respectively [106]. In principle, it is often as-

sumed that the strength and sign of the scattering mechanisms are strongly material and sample

preparation dependent, whereas the intrinsic mechanism is purely dependent on the electronic

structure of the clean crystal.

The intrinsic mechanism for the AHE (as well as the extrinsic ones) can be calculated from

DFT using the Kubo linear response formalism [103]. In Fig. 13(b) and (c) the intrinsic AHE

is plotted in MnFeSi [9] and MnFeGe [76] alloys, respectively. The size of the moment in the

metallic MnFeSi compounds decreases with larger Fe concentration, where the moment is largest

in MnSi (≈0.4 µB) while FeSi is a nonmagnetic semiconducting compound. The calculated

intrinsic AHE, obtained using the constrained LDA method, is in remarkable agreement with

the experimental results shown in Figure 13(a). In comparison, the moments in MnFeGe range

from 1.0–2.3 µB which is more than twice the values observed in MnFeSi. However, the intrinsic

AHE is comparable in both alloys (see green curve in Fig. 13). Contrary to the smooth variation

of the AHE in MnFeSi, the AHE in MnFeGe varies non-monotonically. This is due to the large

variation of the Fermi surface and electronic structure in general in MnFeGe as a function of

Fe concentration. In Fig. 14 we plot the band structure along with the AHE as a function of

the band filling in FeGe which is compared with the experimental results [106]. The last panel

shows the topological Hall resistivity which is discussed in the following [22, 106, 23].

Contrary to the AHE, which was discovered more than a century ago, the THE has only been

observed and discussed within the last decade and a half. It makes sense to distinguish two

limiting cases [107]: The contributions depend on the size of the magnetic texture, ΛM, and the
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Figure 15: The momentum space contribution averaged over the kz direction to the Hall effects

in FeGe at the Fermi energy: a) The momentum space dependent contribution to the Berry

phase for the AHE. b) Momentum space contributions to the THE.

mean free path, l. In one case, where l >> ΛM, it can be evaluated directly from the electronic

structure of the texture in reciprocal case. This “topological” contribution the Hall signal is

often found in small scale skyrmions, hexagonal, and kagome discrete magnetic systems, and

although it is not very clear neither how nor why to separate the THE from the AHE in this

case, it is often argued that the THE originates in the finite spin chirality of the texture as given

by Ω = Si · (Sj × Sk) [108], and might even exist without spin-orbit interaction. For a large

scale of the texture, the scalar spin chirality transforms into the density of topological charge

of the skyrmions. This brings us to the second mechanism for the THE in the regime when

l << ΛM. In this regime the adiabatic approximation is often applicable which justifies the

application of the Berry phase effective framework for incorporating the effect of the smooth

texture into the dynamical equations of electrons in terms of an emergent magnetic field, as

discussed earlier [100, 101].

Within this second, adiabatic regime, the relation between the THE and the ordinary Hall

effect (OHE) is analogous to the relation between the anomalous and the spin Hall effect, since

the topological Hall conductivity can be obtained as the difference between the ordinary Hall

conductivities for each spin and the OHE is obtained as their sum [9]. The corresponding

semiclassical expression for the topological Hall conductivity reads:

σTHE,σ
xy ≈ σ|Bσ

eff |
∫ ∑

n

τ2
σn

(
(vxkn)2 ·myy

knσ − v
x
knv

y
kn ·m

xy
knσ

) ∂f0(εσkn)

∂ε

d3k

(2π)3
, (16)

where mij
knσ =

∂2εσkn
h̄2∂ki∂kj

is the inverse effective mass tensor, τσn are the relaxation times, f0 is

the Fermi-Dirac distribution function, and εσkn are the eigenvalues. In practice it is easiest to

calculate the topological Hall constant RTHE
xy by referring to the Boltzmann transport theory

from above using the constant relaxation time approximation [9]. In this approximation we are

able to calculate, from first principles, RTHE
yx = ρTHE

yx /Beff , which is parameter free. In turn,

the topological Hall resistivity can be found as the difference in ordinary Hall conductivities for
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each spin channel:

ρTHE
yx (Beff) =

σOHE,↑
xy (Beff)− σOHE,↓

xy (Beff)

(σ↑xx + σ↓xx)2
. (17)

In Fig. 13(c) and (d) the comparison of the experimental and calculated values of the topolog-

ical Hall constant in MnFeSi is shown. For pure MnSi the value of about 3.0 × 1011 Ohm·m/T

compares well to the experimental value of 4.5 × 1011 Ohm·m/T. Further, upon doping, both

the experimental and theoretical variation of RTHE exhibit a change of sign and a noticeable

reduction in magnitude in reasonable agreement with each other. This behavior can be under-

stood on the basis of the band structure of paramagnetic MnSi in terms of (i) the change of sign

of ordinary Hall conductivity for both spin channels, (ii) a significant decrease in magnitude of

spin-up ordinary Hall conductivity as the Fe concentration increases, and (iii) a redistribution

of the d states at the Fermi energy. In the last panel of Fig. 14 we plot the topological Hall

resistivity as a function of the Fermi energy utilizing Eq. 17. To arrive at these values the magni-

tude of the effective field was calculated from Beff ≈ 1/Λ2
M, where ΛM = 4π A/D was estimated

based on first principle parameters for the exchange spin stiffness A and Dzyaloshinskii-Moriya

interaction strength D. The extremely non-trivial behavior of the THE in FeGe as a function

of energy explains the large variation of the topological Hall constant in magnitude for MnFeGe

alloys, Fig. 13. In Fig. 15 we compare the momentum space distribution of the AHE and the

topological Hall effect in FeGe (averaged over the kz-direction). In a) the Berry curvature of

the AHE has distinct hot spots where interband transitions give rise to the AHE, whereas the

momentum space contributions to the topological Hall effect are more dispersive due to the

intraband nature of this phenomenon. The presented results thereby demonstrate the enormous

sensitivity of the magnitude of the topological Hall signal to details of the electronic structure,

in particular to the Fermi surface topology.

5.2 Topological spin Hall effect of antiferromagnetic skyrmions

In addition to previously considered ferromagnetic (FM) skyrmions it is worthwhile to esti-

mate the transport properties of antiferromagnetic (AFM) skyrmions. To date, no true AFM

skyrmions have been experimentally observed, possibly due to difficulties in detection of antifer-

romagnetic textures. With the advent of antiferromagnetic spintronics and the recent advances

in controlling and detecting the antiferromagnetic domain walls, AFM skyrmions have naturally

moved into research focus of the skyrmionics community.

Two distinct kinds of AFM skyrmions can be imagined: the synthetic AFM skyrmions [109], and

the intrinsic AFM skyrmions [110, 111]. Similarly to the FM multilayer skyrmions considered in

section 2.2, synthetic AFM skyrmions have AFM interlayer coupling thus keeping the skyrmionic

texture within one layer and inverting the direction of local magnetization in the other (see

Fig. 16d). The realization of intrinsic AFM skyrmions relies on in-plane nearest-neighbor AFM

coupling so that the anti-parallel magnetic sublattices follow either a skyrmionic texture or its

spin-reversed image [110, 111]. Since the winding number S (see Eq. 14) and the topological Hall

effect change sign when inverting the magnetization direction, the combination of two skyrmion

sublattices with opposite winding yields counter-propagating topological Hall currents. If the

spin up and down states are degenerate, as it is the case for many AFMs, each spin sub-band
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Figure 16: Fermi surface resolved contributions Aszk to the TSH conductivity for a) FeCu6Fe

trilayer and b) bcc Cr(110) thin film. c) Example spin trajectory in local frame restricted to a

prolate spheroid with ξ ≈ 0.53 for the case of a). d) Schematic picture of a FeCunFe trilayer

system with imprinted synthetic AFM skyrmion lattice exhibiting the TSHE, where Js stands

for the transverse spin current generated by an applied electric field.

yields the same topological Hall constant with opposite sign. Hence, the topological Hall effect of

charge in symmetric AFM skyrmions vanishes. On the contrary, the spin currents generated by

each sublattice are added constructively which results in the so-called topological spin Hall effect

(TSHE). In skyrmions of low-symmetry AFMs or ferrimagnets, for which the spin degeneracy

of the bands does not occur, the charge cancellation is not enforced, so that the spin and charge

topological Hall currents co-exist. In the following we restrict the discussion to the case of AFM

skyrmions with spin-degenerate local band structure and vanishing charge THE, since they are

most distinct in comparison to FM skyrmions.

Similar to their ferromagnetic counterpart several possibilities exist to calculate the topological

spin Hall effect of AFM skyrmions. For small skyrmions it is possible to describe the whole

skyrmion by considering large unit cells and diagonalizing the corresponding Hamiltonian [112].

Thereby the skyrmion’s topology is effectively described in reciprocal space and the topological

transport properties are encoded in the reciprocal Berry curvature, in analogy to the THE

of small non-collinear structures mentioned before. Another prominent method for studying

transport properties is the Landau-Büttiker approach in the Hall bar geometry, which can be

also used to study the influence of skyrmion dynamics on transport [113]. In the following we

describe a third possibility most applicable to large scale AFM skyrmion lattices [114].

The semiclassical approach has been already used in subsection 5.1 for FM skyrmions, however a

significant modification of this method is necessary for AFM skyrmions. This method is based on

tracking wave-packet trajectories as described by the semiclassical center-of-motion dynamics.

While utilizing the semiclassical dynamics together with the Boltzmann equation in the FM case
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yields Eq. 16, in the AFM case complications arise originated in the band’s degenerate nature.

The corresponding wave-packets are superpositions of spin up and down states with SU(2) gauge

freedom, while the wave-packet’s composition within the degenerate basis is described by the

so-called isospin determining the wave-packet’s relative spin character. The isospin has to be

included into the coupled equations of motion [115] which further complicates finding their

solution and enables the change of the wave-packet’s spin throughout the evolution: a wave-

packet initially aligned with the staggered order parameter can quickly become misaligned and

even anti-aligned during the propagation in the texture (see Fig. 16c). This type of dynamics

is governed by the overlap parameter ξ(k) which reflects the strength of the coupling between

two spin sublattices. According to the Boltzmann formalism in a thin film of thickness dz the

topological spin Hall conductivity reads

σTSH
ij = τ2dz

∫
dk

∂f

∂E
(1− ξ2)

∂2ε

∂kj∂kl
[(s · n)(ṙ×Be)lṙi] (18)

thus retaining the shape similar to that of FM skyrmions as given by Eq. 16. Additionally to

the scaling by (1 − ξ2) factor, modifications arise due to the variation of the spin character of

the wave-packets during the evolution and the emergent magnetic field’s spin dependence via

the (s ·n) term describing the spin alignment with the local staggered order parameter, n. As a

result, wave-packet’s contributions to the TSHE can change tremendously during the evolution.

Furthermore, the real-space velocity of the wave-packet, ṙ, has a more complex structure owing to

an additional anomalous velocity term originating in the systems non-abelian nature [114, 115].

Hence, ṙ becomes implicitly dependent on the spin alignment, which makes tracking of the

precise evolution of the wave-packet in time necessary. Since the TSHE depends on the lifetime,

an expedient quantity to look at is the topological spin Hall constant RTSH
ji = σTSH

ij /(σiiσjjB
av
eff),

which is independent of τ (in the constant relaxation time approximation), and, owing to the

division by the averaged emergent magnetic field Bav
eff , depends little on the skyrmion size.

Starting from a collinear DFT calculation, one obtains the necessary reciprocal space proper-

ties in terms of the derivatives of the band energies and k-dependent overlaps of the states

ξ. Additionally choosing a skyrmion lattice magnetic texture parameterization, all necessary

parameters are available to estimate the TSHE. As a hypothetical example system for a syn-

thetic AFM skyrmion, a Cu spacer sandwiched between two AFM coupled Fe monolayers with

imprinted 3Q-skyrmionic lattice has been investigated, see Fig. 16(a,d) [114]. Overall, when

translating spin to charge, the magnitude of the TSHE, as reflected in the topological spin Hall

constant RTSH, is found to be comparable to the FM version of the TSHE, i.e. the THE as given

by RTHE and shown e.g. for MnSi in Fig. 13. Comparing to calculations which neglect the cou-

pling ξ between the states localized on opposite spin sublattices, i.e. calculating the transport

as if originating in two independent staggered FM systems, a significant enhancement of the

signal is observed, while the qualitative trends, as for example the thickness dependence, remain

comparable. As for intrinsic AFM skyrmions, taking as an example system a thin Cr(110) film,

a similar magnitude of the TSHE values can be obtained, see Fig.16b. As the overlap ξ de-

creases the TSHE’s magnitude k-dependently and since k-dependent conductivity contributions

can compensate each other (see Fig.16(a,b)), huge variations, and even an increase of the TSHE

could be also anticipated as compared to the uncoupled case [114]. Since both the THE and

TSHE are Fermi surface properties, they are very sensitive to electronic structure details. Small
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Fermi energy variations can cause large transport modifications, as shown for the THE in Fig.14.

Especially crossing Dirac points and band edges has huge impact, which on the one hand offers

a great engineering potential, while on the other makes ab-initio studies of the THE and TSHE

computationally very demanding.

The ab-initio studies of the TSHE imply that the spin currents of typical magnitude found in

calculations can be detected experimentally, resulting thus in an experimental observation of the

AFM counterpart of the THE. Such a discovery would open new vistas for the detection of AFM

skyrmions in various systems, and we believe that the TSHE will play the role similar to that

of the conventional THE for the discovery of ferromagnetic skyrmions. Moreover, the promi-

nent TSHE marks the AFM skyrmions as promising objects for pure spin current generation,

which, as opposed to the spin Hall effect in paramagnets, is not relying on relativistic effects

in the electronic structure. We suggest that such spin currents can be detected with standard

techniques, i.e. by detecting the spin-torque that topological spin Hall currents would exert on a

ferromagnet brought in contact with the AFM skyrmionic system, or by magneto-optical means

in terms of corresponding spin accumulation at the edges of the sample.
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Perpendicular reading of single confined magnetic skyrmions, Nature Commun. 6, 8541

(2015).

[11] C. Hanneken, F. Otte, A. Kubetzka, B. Dupé, N. Romming, K. von Bergmann, R. Wiesen-
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Dzyaloshinskii-Moriya interaction at 3d-5d interfaces, Phys. Rev. Lett. 117, 247202 (2016).

[62] X. Yu, A. Kikkawa, D. Morikawa, K. Shibata, Y. Tokunaga, Y. Taguchi, and Y. Tokura,

Variation of skyrmion forms and their stability in MnSi thin plates, Phys. Rev. B 91,

054411 (2015).

[63] X. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Zhang, S. Ishiwata, Y. Matsui, and

Y. Tokura, Near room-temperature formation of a skyrmion crystal in thin-films of the

helimagnet FeGe, Nature Mater. 10(2), 106–109 (2011).

[64] K. Shibata, X. Yu, T. Hara, D. Morikawa, N. Kanazawa, K. Kimoto, S. Ishiwata, Y. Mat-

sui, and Y. Tokura, Towards control of the size and helicity of skyrmions in helimagnetic

alloys by spin-orbit coupling, Nature Nanotech. 8(10), 723–728 (2013).

[65] T. Yokouchi, N. Kanazawa, A. Tsukazaki, Y. Kozuka, M. Kawasaki, M. Ichikawa, F. Ka-

gawa, and Y. Tokura, Stability of two-dimensional skyrmions in thin films of Mn1−x Fex

Si investigated by the topological Hall effect, Phys. Rev. B 89(6), 064416 (2014).

[66] I. Dzyaloshinskii, Theory of helicoidal structures in antiferromagnets. III, Sov. Phys.

JETP-USSR 20(3), 665 (1965).

[67] B. Lebech, J. Bernhard, and T. Freltoft, Magnetic structures of cubic FeGe studied by

small-angle neutron scattering, J. Phys. Condens. Matter 1(35), 6105 (1989).

[68] S. Maleyev, A-phase origin in B20 helimagnets, arXiv preprint arXiv:1102.3524 (2011).
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the non-collinear phase of an antiferromagnet., Nat. Commun. 5, 3400 (2014).

[109] X. Zhang, Y. Zhou, and M. Ezawa, Magnetic bilayer-skyrmions without skyrmion Hall

effect., Nat. Commun. 7, 10293 (2016).

[110] X. Zhang, Y. Zhou, and M. Ezawa, Antiferromagnetic Skyrmion: Stability, Creation and

Manipulation, Sci. Rep. 6, 24795 (2016).

[111] J. Barker and O. A. Tretiakov, Static and Dynamical Properties of Antiferromagnetic

Skyrmions in the Presence of Applied Current and Temperature, Phys. Rev. Lett. 116(14),

147203 (2016).
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