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In little more than 20 years, the number of applications of the density functional (DF)
formalism in chemistry and materials science has grown in astonishing fashion. The
number of publications alone shows that DF calculations are a huge success story, and
many younger colleagues are surprised to learn that the real breakthrough of density
functional methods, particularly in chemistry, began only after 1990. This is indeed un-
expected, because the origins are usually traced to the papers of Hohenberg, Kohn, and
Sham more than a quarter of a century earlier. Olle Gunnarsson and I reviewed the DF
formalism, its applications, and prospects for this journal as we saw them in 1989, and I
argued shortly afterwards in Angewandte Chemie that combining such calculations with
molecular dynamics should lead to an efficient way of finding molecular structures. Here
I take that time (1990) as fixed point, review the development of density related meth-
ods back to the early years of quantum mechanics and follow their breakthrough after
1990. The two examples from biochemistry and materials science are among the many
current applications that were simply beyond our dreams in 1990. I discuss the reasons
why – after two decades of rapid expansion – some of the best-known practitioners in
the field are concerned about its future.
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I. INTRODUCTION

The density functional (DF) formalism shows that
ground state properties of a system of electrons in an
external field can be determined from a knowledge of
the electron density distribution n(r) alone. Thomas
(Thomas, 1927) and Fermi (Fermi, 1928) recognized the
basic nature of the electron density, and Dirac (Dirac,
1930) noted already in 1930 that the state of an atom is
determined completely by its density; one does not need
to know the much more complicated many-electron wave
function. This remarkable result was found in the con-
text of “self-consistent field” (Hartree-Fock) theory.

My main focus here is on a property for which DF cal-
culations are particularly valuable in chemistry and ma-
terials science: the total energy E of a system of electrons
in the presence of ions located at RI. Accurate calcula-
tions of the entire energy surface E(RI) are possible with
traditional (wave function based) methods only for sys-
tems with very few atoms, and E(RI) generally has vast
numbers of maxima and minima at unknown locations.
The lowest energy, however, corresponds to the ground
state structure, and paths between minima are essential
to our studies of chemical reactions, including their acti-
vation energies. The observation of Francis Crick in his
autobiography (Crick, 1988):
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“If you want to study function, study struc-

ture.”

may be self-evident to anyone interested in biology or
molecules in general, but it is true in other areas. The
DF approach allows us to calculate E(RI), and hence
the structure and many related properties, without using
experimental input.

Olle Gunnarsson and I reviewed the DF formalism, its
history, and its prospects in 1989 (Jones and Gunnars-
son, 1989), and I took a similar perspective in numerous
seminars. A more careful reading of the original liter-
ature some years ago caused me to change the format,
and I trace DF history here from the first years after the
development of quantum mechanics. It is a fascinating
story with many players, and I quote in several places
from the original texts.

Density functional calculations are well established
now in condensed matter physics and chemistry, but they
did not (and do not) find universal acceptance. The
choice of 1990 as fixed point coincides with the publi-
cation of the review (Jones and Gunnarsson, 1989) and
my article in Angewandte Chemie (Jones, 1991), where
I advocated DF calculations in the context of molecular
studies, particularly when combined with molecular dy-
namics (Car and Parrinello, 1985). As shown in Fig. 1
(Mavropoulos, 2014), it also marks the dramatic increase
in the number of publications on density functional top-
ics in recent years.1 Figure 1 shows clearly two other
features: there were three times as many publications in
1991 than in 1990, and there was almost no published
work claiming to be “density functional” or “DFT” be-
forehand. In 1985, twenty years after its modern formula-
tion and in the year that the combined DF/MD approach
(Car and Parrinello, 1985) was formulated, there were
just 77 publications! In this article, I revisit the period
before 1990 and focus on aspects of the development since
then. Recent perspectives on density functional theory
have been given by Kieron Burke (Burke, 2012) and Axel
Becke (Becke, 2014), and much more detailed information
is available in monographs and review articles cited there.
A recent issue of the Journal of Chemical Physics cele-
brates fifty years of density functional theory, and the ar-
ticles range across many topics of current interest (Yang,
2014). A recent review of solid state applications of DF
theory is provided by (Hasnip et al., 2014). I have used
numerous citations of participants in (and observers of)
this story to illustrate how perspectives of the approach
have changed over time. The two applications I discuss
are DF simulations of systems that were unimaginable
only a few years ago.

1 A similar plot is given by Burke (Burke, 2012) for two popular
approximations used in DF calculations.
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FIG. 1 (Color online) Number of publications per year (1975-
2013) on topics “density functional” or “DFT”, according to
Web of Knowledge (July 2014). Inset shows data near 1990
on an expanded scale (Mavropoulos, 2014).

I have several goals in writing this review. The huge
growth in the DF literature is only possible if many new-
comers are entering the field. This review is written for
them and for those in other areas of science who are cu-
rious about the DF world. I hope that all share my fasci-
nation with the formalism and its history. However, per-
sonal contacts over the years have shown that not only
newcomers are unfamiliar with the past or the reaction of
different scientific communities as the theory developed.
Density related methods are also important in other ar-
eas, including classical systems and nuclei, and I encour-
age readers to look beyond the horizons of their particular
interest. Finally, I note that both Burke (Burke, 2012)
and Becke (Becke, 2014) are uneasy about some recent
developments, and I shall raise my own questions about
the future.

II. THE DENSITY AS BASIC VARIABLE

The recent books by Gino Segrè (Segrè, 2007) and Gra-
ham Farmelo (Farmelo, 2009) give fascinating accounts
of the development of quantum mechanics in the years
following 1926. Methods for finding approximate solu-
tions of the Schrödinger equation followed soon after the
equations were published and have had a profound effect
on chemistry and condensed matter physics ever since.

A method for calculating the wave function of an
atom was developed by Hartree (Hartree, 1928a,b). The
“Hartree approximation” to the many-electron wave
function is a product of single-particle functions,

Ψ(r1, r2, ...) = ψ1(r1).......ψN (rN ) (1)
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where each ψi(ri) satisfies a one-electron Schrödinger
equation with a potential term arising from the average
field of the other electrons. Hartree (Hartree, 1928a) in-
troduced the idea of a “self-consistent field”, with specific
reference to the core and valence electrons, but neither
paper mentions the approximation (1). Slater (Slater,
1930) and Fock (Fock, 1930) recognized soon afterwards
that the product wave function (1) in conjunction with
the variational principle led to a generalization of the
method that would apply to systems more complex than
atoms. They showed that replacing (1) by a determinant
of such functions (Fock, 1930; Slater, 1930) led to equa-
tions that were not much more complicated than those
of Hartree, while satisfying the Pauli exclusion principle.
These determinantal functions, which had been used in
discussions of atoms (Slater, 1929) and ferromagnetism
(Bloch, 1929), are known today as “Slater determinants”,
and the resulting “Hartree-Fock equations” have formed
the basis of most discussions of atomic and molecular
structure since.

In 1929 Dirac wrote (Dirac, 1929):

“The general theory of quantum mechanics
is now almost complete, . . . The underlying
physical laws necessary for the mathematical
theory of a large part of physics and the whole
of chemistry are thus completely known, and
the difficulty is only that the exact applica-
tion of these laws leads to equations much
too complicated to be soluble. It therefore
becomes desirable that approximate practi-
cal methods of applying quantum mechanics
should be developed, which can lead to an
explanation of the main features of complex
atomic systems without too much computa-
tion.”

Dirac emphasizes the difficulty of solving the equations
of quantum mechanics and the desirability of develop-
ing “approximate practical methods of applying quantum
mechanics” to explain complex systems. I cannot think
of a better short description of density functional theory.

Dirac (Dirac, 1930) also sought to improve the model of
Thomas (Thomas, 1927) and Fermi (Fermi, 1928) for cal-
culating atomic properties based purely on the electron
density n(r).2 In the first “density functional theory”,
Thomas and Fermi assumed that the electrons form a
homogeneous electron gas satisfying Fermi statistics and
the kinetic energy has a simple dependence on the density

2 Fermi later extended the model to positive ions and spectroscopic
energy levels. It has been pointed out recently (Guerra and
Robotti, 2008) that the extension to positive ions and to Ryd-
berg corrections was described by Majorana already in 1928 (an
English translation is provided in (Guerra and Robotti, 2008)).

n(r). The TF equations are:

5

3
Ckn(r)

2

3 + e2
∫

dr′
n(r′)

|r− r′|
+ Vext(r) + λ = 0, (2)

where Ck = 3~2(3π2)
2

3 /(10m), Vext is the external poten-
tial, and λ is the Lagrange multiplier related to the con-
straint of constant particle number. Dirac noted the ne-
cessity of incorporating “exchange” phenomena, as in the
Hartree-Fock approach (Dirac, 1929), and he included
these effects in the “Thomas atom” (Dirac, 1930) by
means of the potential

V Dirac
x = −

(

1

π

)

(

3π2n(r)
)

1

3 . (3)

This term was derived for a homogeneous electron gas of
density n and should be valid for weak spatial variations
of n(r).3. The modified TF equation is often referred to
as the “Thomas-Fermi-Dirac” equation.
The Thomas-Fermi method and its extensions give

rough descriptions of the charge density and the elec-
trostatic potential of atoms, and its mathematical prop-
erties have attracted considerable attention (Lieb, 1981;
Schwinger, 1980; Spruch, 1991) However, it has severe
deficiencies. The charge density is infinite at the nucleus
and decays as r−6, not exponentially, far from it. Teller
(Teller, 1962) also showed that TF theory does not bind
neutral atoms or (with some restrictions) ions to form
molecules or solids, which rules out its use in chemistry
or materials science. There is also no shell structure in
the TF atom, so that the periodic variation of many prop-
erties with changing atomic number Z cannot be repro-
duced, and no ferromagnetism (Jones and Gunnarsson,
1989). Moreover, atoms shrink with increasing Z (as
Z−1/3) (Lieb and Simon, 1973).
One point made by Dirac (Dirac, 1930), however, has

been emphasized by many advocates of the DF method
over the years, even if we were unaware of his words of
over 80 years ago:

“Each three-dimensional wave function will
give rise to a certain electric density. This
electric density is really a matrix, like all dy-
namical variables in the quantum theory. By
adding the electric densities from all the wave
functions we can obtain the total electric den-
sity for the atom. If we adopt the equations
of the self-consistent field as amended for ex-
change, then this total electric density (the
matrix) has one important property, namely,
if the value of the total electric density at

3 The exchange energy in a homogeneous electron gas had been
derived by Bloch (Bloch, 1929) already in 1929.
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any time is given, then its value at any later
time is determined by the equations of mo-
tion. This means that the whole state of the

atom is completely determined by this elec-

tric density; it is not necessary to specify the

individual three-dimensional wave functions

that make up the total electric density. Thus
one can deal with any number of electrons by
working with just one matrix density func-
tion.”

The italics are in the original. The derivation is based
on the “self-consistent field” or Hartree-Fock approx-
imation, but the observation that the density follows
the equations of motion is much in the spirit of Ehren-
fest’s theorem (Ehrenfest, 1927), which has wider va-
lidity. Ehrenfest had proved in 1927 what has been
termed the “time-dependent Hellmann-Feynman theo-
rem” (Hayes and Parr, 1965), namely that the acceler-
ation of a quantum wave packet that does not spread
satisfied Newton’s equations of motion.
The central role played by the density means that we

must have a clear picture of its nature in real systems. In
Fig. 2, we show the spherically averaged density in the
ground state of the carbon atom. The density falls mono-
tonically from the nucleus and does not show the radial
oscillations that occur if we plot r2n(r). The charge den-
sity in small molecules is also relatively featureless, with
maxima at the nuclei, saddle points along the bonds, and
a generally monotonic decay from both. We must also
recognize that the electron density in molecules and solids
shows relatively small departures from the overlapped
densities of the constituent atoms. Energy differences,
including binding, ionization, and cohesive energies, are
the focus of much DF work and result from subtle changes
in relatively featureless density distributions. It really is
astonishing that this suffices to determine ground state
properties.

III. AN “APPROXIMATE PRACTICAL METHOD”

The basis of a quantum theory of atoms, molecules,
and solids was in place at the beginning of the 1930’s.
Linear combinations of atomic orbitals formed molecu-
lar orbitals, from which determinantal functions could
be constructed, and linear combinations of determinants
(“configuration interaction”) would provide approxima-
tions to the complete wave function. Dirac had noted
already, however, that this procedure could not be im-
plemented in practice, so that approximations are essen-
tial. Furthermore, numerical techniques for solving the
Schrödinger equation in extended systems needed to be
developed.
Wigner and Seitz (Wigner and Seitz, 1933, 1934) de-

veloped a method for treating the self-consistent prob-
lems in crystals, and the “Wigner-Seitz cell” is known to

FIG. 2 Logarithm of spherical average of density in ground
state of C atom as a function of the distance from the nucleus
(atomic units) (Jones and Gunnarsson, 1989)

.

all condensed matter physicists. The first application to
metallic sodium replaced the nucleus and core electrons
by an effective (pseudo-) potential, and calculations of
the lattice constant, cohesive energy, and compressibil-
ity gave satisfactory results. Of particular interest for
our purposes, however, is the calculation of the probabil-
ity of finding electrons with parallel spin components a
distance r apart (Fig. 3). This function obtains its half-
value for r = 1.79 d′ or 0.460 d for a body-centered cubic
lattice with cube edge d, which is close to the radius of
the “Wigner-Seitz sphere” ( 3

8π )
1

3 d = 0.492 d. The exclu-
sion principle means then that two electrons with parallel
spin components will usually be associated with different
ions (Wigner and Seitz, 1933). The corresponding curves
for spin up and spin down electrons, as well as for both
spins combined, were discussed in the 1934 review arti-
cle of Slater (Slater, 1934). Similar views of electrons in
metals have been given by Brillouin (Brillouin, 1934) and
Wigner (Wigner, E., 1934).

The picture that results is simple and appealing: the
exclusion principle means that an electron with a given
spin produces a surrounding region where there is a de-
ficiency of charge of the same spin. This region contains
unit charge and is referred to as the “Fermi” (Wigner
and Seitz, 1933) or “exchange” hole (Slater, 1951). The
hole is of crucial importance to DF theory and plays a
central role in the discussion below. In the Hartree-Fock
scheme, the exchange hole is different for each electronic
function, but Slater (Slater, 1951) developed a simplified
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FIG. 3 Probability that electrons with parallel spins are r/d′

apart in Na metal (d′
3
= V0/(3π

2), V0 is the atomic volume).
Adapted from Wigner and Seitz (Wigner and Seitz, 1933)

.

“exchange potential” that depended only on the density4

V Slater
x = −

(

3

2π

)

(

3π2n(r)
)

1

3 . (4)

Sharp and Horton (Sharp and Horton, 1953) noted the
advantages of an effective potential that is the same for
all electrons and constructed an “optimized effective po-
tential” (OEP) by varying the potential to optimize the
energy. A Slater determinant constructed from the one-
electron functions was used as the wave function of the
system. Talman and Shadwick (Talman and Shadwick,
1976) showed that this effective potential has the correct
asymptote far from an atom. The OEP is often discussed
in the context of DF calculations, but it is an indepen-
dent development.
The Slater approximation (4) was proposed at the time

that electronic computers were becoming available for
electronic structure calculations and proved to be very
useful in practice. Methods for solving the Schrödinger
equation had been developed around this time, includ-
ing the augmented plane wave (APW) (Slater, 1937) and

4 Slater wrote in this paper: “The discussion of Wigner and Seitz
was one of the first to show a proper understanding of the main
points taken up in this paper, which must be understood to repre-
sent a generalization and extension of previously suggested ideas,
rather than an entirely new approach. See also (Brillouin, 1934)
for a discussion similar to the present one.” Slater was more gen-
erous to his predecessors than some later authors were to him.

Korringa-Kohn-Rostoker (KKR) approaches (Kohn and
Rostoker, 1954; Korringa, 1947).
The exchange potential of Slater (4) is 3/2 times that

derived by Dirac and Bloch (3) for a homogeneous elec-
tron gas, but Slater (Slater, 1968) pointed out that an
effective potential proportional to the cube root of the
density could be obtained by arguments based on the
exchange hole that do not depend on the homogeneous
electron gas arguments used in the original derivation
(Slater, 1951). The exchange hole discussed above for a
spin up electron contains a single electron. If we assume
that it can be approximated by a sphere of radius R↑,
then

(

4π

3

)

R3
↑n↑ = 1 ; R↑ =

(

3

4πn↑

)
1

3

(5)

where n↑ is the density of spin up electrons. Since the
electrostatic potential at the center of such a spherical
charge is proportional to 1/R↑, the exchange potential

will be proportional to n
1

3

↑ . This argument was used
by Slater (Slater, 1972b) to counter a (still widespread)
misconception that local density approximations are only
valid if the electron density is nearly homogeneous.
In 1954, Gáspár (Gáspár, 1954) questioned the pref-

actor of the effective exchange potential (Eq. 4). If one
varies the spin orbitals to minimize the total energy in the
Thomas-Fermi-Dirac form, one obtains a coefficient just
2

3
as large. Gáspár applied this approximation to the Cu+

ion and found good agreement with Hartree-Fock eigen-
functions and eigenvalues. Slater noted that Gáspár’s
method was “more reasonable than mine” (Slater, 1974),
and he adopted the procedure in his later work (Slater,
1972a):

“There are important advantages in the
Gáspár-Kohn-Sham procedure of using a sta-
tistical expression for total energy and vary-
ing the orbital to minimize the energy, and
we shall henceforth adopt this approach.”

However, he preferred to multiply this contribution to the
energy with an adjustable parameter α (α = 2/3 gives
the exchange energy of a homogeneous electron gas), and
the approximation was known as the “Xα method” (see
Sec. IV.B).
Slater and Gáspár were not alone in their focus on the

density. The “Hellmann-Feynman theorem” (Feynman,
1939; Hellmann, 1933, 1937) (see Appendix A)5 consid-
ered forces in molecules, and Berlin (Berlin, 1951) devel-
oped this to separate space near a diatomic molecule into

5 An interesting account of the history of the Hellmann-Feynman
theorem and its mathematical complexities is given in (Pupy-
shev, 2000).
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“binding” and “antibinding” regions according to the
electrostatic interaction between between the nuclei and
the electron charge distribution. The Hellmann-Feynman
equations apply only to the exact wave function of the
system. In his “electrostatic method”, however, Hurley
(Hurley, 1954a,b,c) showed that force calculations could
be performed with approximate wave functions if all vari-
able parameters in the wave function for a molecule were
chosen variationally. The procedure is simplified if the
parameters do not depend on the nuclear configurations,
and he described such functions as “floating functions”.
This approach has proved to be fruitful in many con-
texts, including dispersion interactions (Strømsheim, M.
D. and Kumar, N. and Coriani, S. and Sagvolden, A.
M. and Helgaker, T., 2011). It was around this time
that Richard Bader began his studies of the topology of
the density distribution that he pursued for many years
(Bader, 1990).
A variant of the Hellmann-Feynman theorem with a

variable nuclear charge Z was used by Wilson (Wilson,
1962) to show that the ground state energy of a system
of electrons in the field of a set of fixed nuclei can be
calculated if the electron density is known sufficiently
accurately as a function of the spatial coordinates x, y,
z and the parameter Z from 0 (non-interacting system)
to 1 (physical system). He concluded with the question:

“The important question remains: Does there
exist some procedure for calculating (the den-
sity) ρ which avoids altogether the use of 3N -
dimensional space? Such a procedure might
open the way to an enormous simplification of
molecular calculations. For example, it would
be tremendously simpler to expand a four
dimensional function than a 3N -dimensional
wave function.”

He did not have to wait long.6

IV. DENSITY FUNCTIONAL FORMALISM

The variational principle on the energy was the basis
of the formulation of the density functional formalism
given by Hohenberg and Kohn (Hohenberg and Kohn,
1964). The ground state (GS) properties of a system of
electrons in an external field Vext can be expressed as

6 I understand that density functional theory came as no surprise
to Wilson: If we know the density distribution, we can find its
cusps, from which we can determine (from the electron-nucleus
cusp condition, (Kato, 1957)) both the location of the nuclei and
their atomic numbers. Integration over the electron density gives
the total charge, so that we have all the terms in the Hamilto-
nian. This non-relativistic argument assumes point nuclei and
the Born-Oppenheimer approximation. See also (Handy, 2009).

functionals of the GS electron density, i.e. they are de-
termined by a knowledge of the density alone. The total
energy E can be expressed in terms of such a functional,
and E[n, Vext] satisfies a variational principle. These
theorems were proved by Hohenberg and Kohn (Hohen-
berg and Kohn, 1964) for densities that can be derived
from the ground state of some external potential Veff
(“V -representable”). In the spirit of the definition by
Percus of a universal kinetic energy functional for non-
interacting systems (Percus, 1978), Levy provided a sim-
pler and more general proof for (“N -representable”) den-
sities that can be derived from some antisymmetric wave
function (Levy, 1979). Lieb (Lieb, 1983) extended the
“constrained search” arguments by introducing the Leg-
endre transform of the energy as the universal functional.
The use of the variational principle in these works goes
beyond the insights of Dirac (Dirac, 1930) and Wilson
(Wilson, 1962) in providing a method for determining
the density. Of course, these proofs do not provide prac-
tical prescriptions for writing the functional relationship
between energy E and density n.

A. Single-particle description of a many-electron system.

The task of finding good approximations to the energy
functional E[n, Vext] is simplified greatly if we use the
decomposition introduced by Kohn and Sham (Kohn and
Sham, 1965),

E[n] = T0[n]+

∫

dr n(r)
(

Vext(r)+
1

2
φ(r)

)

+Exc[n]. (6)

T0 is the kinetic energy that a system with density n
would have if there were no electron-electron interactions,
φ is the classical Coulomb potential for electrons, and Exc

defines the exchange-correlation energy.7 T0 is not the
true kinetic energy T , but it is of comparable magnitude
and is treated here without approximation. This removes
many of the deficiencies of the Thomas-Fermi approach,
such as the lack of a shell structure of atoms or the ab-
sence of chemical bonding in molecules and solids. In
the expression (6) all terms other than the exchange-
correlation energy Exc can be evaluated exactly, so that
approximations for this term are crucial in density func-
tional applications.
The variational principle applied to (6) yields

δE[n]

δn(r)
=

δT0
δn(r)

+ Vext(r) + φ(r) +
δExc[n]

δn(r)
= µ, (7)

where µ is the Lagrange multiplier associated with the
requirement of constant particle number. If we compare

7 In the world of wave functions, the “correlation energy” is de-
fined as the difference between the exact and Hartree-Fock (single
Slater determinant) energies.
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this with the corresponding equation for a system with
an effective potential V (r) but without electron-electron
interactions,

δE[n]

δn(r)
=

δT0
δn(r)

+ V (r) = µ, (8)

we see that the mathematical problems are identical, pro-
vided that

V (r) = Vext(r) + φ(r) +
δExc[n]

δn(r)
. (9)

The solution of (Eq. 8) can be found by solving the
Schrödinger equation for non-interacting particles,

(

−
1

2
∇2 + V (r)

)

ψi(r) = ǫiψi(r), (10)

yielding

n(r) =
N
∑

i=1

|ψi(r)|
2

(11)

The functions ψi are single Slater determinants, and the
condition (9) can be satisfied in a self-consistent proce-
dure.

The solution of this system of equations leads to the
energy and density of the lowest state, and all quantities
derivable from them. The formalism can be generalized
to the lowest state with a given symmetry (Gunnarsson
and Lundqvist, 1976) and other systems with constraints
(Dederichs et al., 1984). Instead of seeking these quan-
tities by determining the wave function of the system of
interacting electrons, the DF method reduces the prob-
lem to the solution of a single-particle equation of Hartree
form. In contrast to the Hartree-Fock potential,

VHF ψ(r) =

∫

dr′ VHF(r, r
′)ψ(r′), (12)

the effective potential, V (r) is local.

The numerical advantages of solving the Kohn-Sham
equations (Kohn and Sham, 1965) are obvious. Effi-
cient methods exist for solving (self-consistently) single-
particle Schrödinger-like equations with a local effective
potential, and there is no restriction to small systems.
With a local approximation to Exc, the equations can be
solved as readily as the Hartree equations. Unlike the
Thomas-Fermi method, where the large kinetic energy
term is computed directly from the density, the kinetic
energy term is computed from orbitals ψi in Eq. (10).
The core-valence and valence-valence electrostatic inter-
actions can be evaluated directly, but Exc is the differ-
ence between the exact energy and terms we can evaluate
accurately, and approximations are unavoidable.

B. Exchange-correlation energy Exc

Kohn and Sham (Kohn and Sham, 1965) proposed us-
ing the “local density (LD) approximation”

ELD
xc =

∫

dr n(r) εxc[n(r)], (13)

where εxc[n] is the exchange and correlation energy per
particle of a homogeneous electron gas with density n.
This approximation is exact in the limits of slowly vary-
ing densities and very high densities. The authors noted
that this approximation “has no validity” at the “sur-
face” of atoms and in the overlap regions of molecules
and concluded (Kohn and Sham, 1965):

“We do not expect an accurate description of
chemical bonding.”

Whether this is true or not depends, of course, on the
definition of “accurate”, but I sometimes feel that it set
back chemical applications of DF theory by a decade or
more.
Generalizations to spin-polarized systems were given

by Barth and Hedin (von Barth and Hedin, 1972) and
Rajagopal and Callaway (Rajagopal and Callaway, 1973).
We write

ELSD
xc =

∫

dr n(r) εxc[n↑(r), n↓(r)], (14)

where εxc[n↑, n↓] is the exchange and correlation energy
per particle of a homogeneous, spin-polarized electron
gas with spin-up and spin-down densities n↑ and n↓, re-
spectively (von Barth and Hedin, 1972).8 The “Xα” ap-
proximation

EXα
x = −

3

2
αC

∫

dr {(n↑(r))
4/3

+ (n↓(r))
4/3

}, (15)

where C = 3(3/4π)
1/3

was used in numerous calcula-
tions in the late 1960’s and 1970’s. The α-dependence of
energy differences for a given atom or molecule is weak
for values near 2/3, the value of Bloch (Bloch, 1929),
Dirac (Dirac, 1930), Gáspár (Gáspár, 1954), and Kohn
and Sham (Kohn and Sham, 1965). We have noted that
the electron density in molecules and solids is generally
far from that of a homogeneous electron gas, and the va-
lidity of calculations based on properties of a gas of con-
stant density has often been questioned. We now discuss
some general properties of Exc using arguments closely
related to the “exchange hole” picture of Wigner and
Seitz (Wigner and Seitz, 1933) and Slater (Slater, 1934,
1951, 1968).

8 The calculation by Bloch (Bloch, 1929) of ferromagnetism in a
homogeneous, spin-polarized electron model of a metal was the
first where the exchange energy was expressed as the sum of

terms proportional to n
4/3
↑

and n
4/3
↓

.
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C. Exchange-correlation hole and Exc

The crucial simplification in the density functional
scheme is the relationship between the interacting sys-
tem, whose energy and density we seek, and the ficti-
tious, non-interacting system for which we solve Eq. (10,
11). This can be studied by considering the interaction
λ/|r− r

′| and varying λ from 0 (non-interacting system)
to 1 (physical system).
Two equivalent ways of doing this have proved useful

in the DF context. The first (Harris and Jones, 1974)
considers the Hamiltonian

Hλ = T + VKS + λ(Vee + Vext − VKS), (16)

where VKS is the Kohn-Sham effective potential. This
construction reduces the qualitative difference between
the eigenfunctions ψ0 and ψλ and guarantees that the
densities of the non-interacting and interacting systems
are the same. It leads to an expression for the total en-
ergy E and its components, including the exchange and
correlation energies, in terms of integrals over λ.9 One
term can be related to the energy due to density fluctua-
tions in the system and the density response function of
a system of electrons described by Hλ, and all terms were
evaluated for a model of a bounded electron gas (Harris
and Jones, 1974).10

This approach, in which the density is constrained to
be the physical density of the system for λ = 0 and 1, but
not for intermediate values, can be implemented in stan-
dard program packages and provides detailed informa-
tion about the density functional in small systems (Savin
et al., 1998). It is possible, however, to add an external
potential Vλ such that the ground state of the Hamil-
tonian Hλ has density n(r) for all λ (Gunnarsson and
Lundqvist, 1976; Langreth and Perdew, 1975).11 The
exchange-correlation energy of the interacting system can
then be expressed as an integral over the coupling con-
stant λ (Gunnarsson and Lundqvist, 1976):

Exc =
1

2

∫

dr n(r)

∫

dr′
1

|r− r′|
nxc(r, r

′ − r), (17)

9 This appears to be the first use of “adiabatic connection” in the
DF context. The derivative of the Hamiltonian with respect to a
parameter and the integral form that follows are often attributed
to Pauli (Pauli, 1933) [see (Musher, 1966) and references therein].
Pauli himself (Pauli, 1933) (p. 161) gives the credit to his student
Paul Güttinger (Güttinger, 1931). See Appendix A.

10 This calculation was motivated in part by our feeling that the
LD approximation would not describe well the surface energy
of a bounded electron gas. Our estimates of the exchange and
correlation contributions were individually very different from
the LD results, but the sum of the two components was very
similar.

11 It has been shown (Colonna and Savin, 1999) that results for the
He and Be series atoms using the two schemes are very similar.

with

nxc(r, r
′ − r) ≡ n(r′)

∫ 1

0

dλ
(

g(r, r′, λ)− 1
)

. (18)

The function g(r, r′, λ) is the pair correlation function
of the system with density n(r) and Coulomb interac-
tion λVee. The exchange-correlation hole, nxc, describes
the fact that an electron at point r reduces the proba-
bility of finding one at r

′, and Exc is simply the energy
resulting from the interaction between an electron and
its exchange-correlation hole. This is a straightforward
generalization of the work of Wigner and Seitz (Wigner
and Seitz, 1933, 1934) and Slater (Slater, 1934, 1951)
discussed above.
Second, the isotropic nature of the Coulomb interac-

tion Vee has important consequences. A variable substi-
tution R ≡ r

′ − r in (17) yields

Exc =
1

2

∫

dr n(r)

∫ ∞

0

dR R2 1

R

∫

dΩ nxc(r,R). (19)

Equation (19) shows that the xc-energy depends only on
the spherical average of nxc(r,R), so that approximations
for Exc can give an exact value, even if the description of
the non-spherical parts of nxc is arbitrarily inaccurate.
Thirdly, the definition of the pair-correlation function
leads to a sum-rule requiring that the xc-hole contains
one electron, i.e. for all r,

∫

dr′ nxc(r, r
′ − r) = −1. (20)

This means that we can consider −nxc(r, r
′ − r) as a

normalized weight factor, and define locally the radius of
the xc-hole,

〈 1

R

〉

r

= −

∫

dr
nxc(r,R)

|R|
. (21)

This leads to

Exc = −
1

2

∫

dr n(r)
〈 1

R

〉

r

. (22)

Provided Equation (20) is satisfied, Exc is determined
by the first moment of a function whose second moment
we know exactly and depends only weakly on the details
of nxc (Gunnarsson and Lundqvist, 1976). Approxima-
tions to Exc can then lead to good total energies (and
structures), even if the details of the exchange-correlation
hole are described very poorly. This is shown in Fig. 4,
where the exchange hole in a nitrogen atom is shown for
a representative value of r for both the local density and
exact (Hartree-Fock) cases. The holes are qualitatively
different: The LD hole is spherically symmetric and cen-
tered on the electron, while the exact hole has a large
weight at the nucleus and is very asymmetric. Never-
theless, the spherical averages are very similar, and the
exchange energies differ by only a few percent.
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FIG. 4 Exact (solid) and LSD (dashed) exchange holes
nxc(r, r

′ − r) for spin up electron in N atom for r = 0.13 a.u.
Upper: hole along line through nucleus (arrow) and electron
(r− r

′ = 0). Lower: spherical averages of holes, and 〈1/R〉
(21) (Jones and Gunnarsson, 1989).

V. DF THEORY TO 1990

A. Condensed matter

Condensed matter physicists were generally pleased to
have justification for the “local density” calculations they
had been performing for years, and numerous electronic
structure theorists moved seamlessly from performing
“Xα” or “Hartree-Fock-Slater” calculations into the den-
sity functional world. I was so encouraged by our own
results that I wrote an article in 1984 proposing the DF
approach as the method for calculating bonding proper-
ties (Jones, 1984a). Nevertheless, Fig. 1 shows that there
was remarkably little impact of DF calculations prior to
1990. Volker Heine, a prominent condensed matter theo-
rist, looked back on the 1960’s in this way (Heine, 2002):

“Of course at the beginning of the 1960s the
big event was the Kohn Hohenberg Sham re-
formulation of quantum mechanics in terms
of density functional theory (DFT). Well, we
recognize it now as a big event, but it did not
seem so at the time. That was the second big
mistake of my life, not to see its importance,
but then neither did the authors judging from
the talks they gave, nor anyone else. Did you
ever wonder why they never did any calcula-

tions with it?”

There were also prominent critics of density functional
and related computational techniques, and one of the
best known solid state theoreticians, Philip Anderson,
made devastating comments in 1980 (Anderson, 1980):

“There is a school which essentially accepts
the idea that nothing further is to be learned
in terms of genuine fundamentals and all that
is left for us to do is calculate. . . . One is left,
in order to explain any phenomenon occur-
ring in ordinary matter, only with the prob-
lem of doing sufficiently accurate calculations.
This is then the idea that I call “The Great
Solid State Physics Dream Machine” . . . This
attitude is closely associated with work in a
second field called quantum chemistry.”

This article “never found a publisher” in the US (Ander-
son, 2011c), and the only version in print is in French
(Anderson, 1980). Anderson associated the “Dream Ma-
chine” with the name of John Slater (Anderson, 2011c)
and described the DF method as a “simplified rather me-
chanical kind of apparatus” that “shows disturbing signs
of become a victim of the “Dream Machine” syndrome”
(Anderson, 1980). While noting that DF calculations can
be particularly valuable in some contexts, he continued:

“. . . a great deal of the physics is concealed
inside the machinery of the technique, and
that very often once one has the answers that
these techniques provide, one is not exactly
clear what the source of these answers is. In
other words the better the machinery, the
more likely it is to conceal the workings of
nature, in the sense that it simply gives you
the experimental answer without telling you
why the experimental answer is true.”

These comments may sound harsh to some,12 but they
did apply to some electronic structure calculations at the
time. They may indeed have had prophetic character,
as I discuss in Sec. IV.B. The increasing availability of
computing resources allowed calculations that had pre-
viously been impossible, and not all users of the method
were critical of the approximations involved.

B. Chemistry

It took many years for DF calculations to be taken se-
riously by most chemists,13 and the reasons were often

12 He referred later to “the oxymoron ‘computational physics’”
(Anderson, 1999) and wrote that “. . .more recently ‘theoretical
chemistry’ has become a service skill” (Anderson, 2011a)).

13 Walter Kohn summarizes his own experiences, particularly with
John Pople, in (Kohn and Sherrill, 2014). For some of my own,
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convincing: (1) Unlike the TF theory, the Kohn-Sham ex-
pression for the energy is not an explicit “functional” of
the density, since the kinetic energy term is defined by an
effective potential that leads to the density, (2) the origi-
nal functional of Hohenberg and Kohn is not even defined

for all n, because not all densities can be derived from
the ground state of some single-particle potential (Levy,
1982; Lieb, 1983),14 (3) approximations to the exchange-
correlation energy are unavoidable, and their usefulness
can be assessed only by trying them out. Approxima-
tions based on calculations for a homogeneous electron
gas, in particular, were unfamiliar to users of atomic or-
bitals and the Hartree-Fock approximation.15 (4) There
is no systematic way to approach the exact solution of the
Schrödinger equation and, of course, the exact energy.
This last point was emphasized by many. In principle,

the Hartree-Fock method could be extended to multiple
determinants (“configuration interaction”) and, coupled
with a large basis set, lead to the exact wave function
and all properties obtainable from it. This is a very at-
tractive proposition, and the dramatic improvements in
computing power (three orders of magnitude per decade)
might make the reservations of Dirac (Dirac, 1929) less
formidable. It was often emphasized that solutions of
the Schrödinger equation led to the “right answer for the
right reason.” Nevertheless, obtaining numerically ex-
act total energies from calculations of the wave function
remains a major challenge to this day, and it is not sur-
prising that several groups looked at alternatives.
Hartree-Fock-Slater calculations on small molecules

were carried out in the early 1970’s, particularly by Evert
Jan Baerends and collaborators in Amsterdam [(Heijser
et al., 1976) and references therein]. The original motiva-
tion was to find a numerically efficient approximation to
Hartree-Fock calculations, but it was found that α = 0.7
gave better agreement with experiment, if the full po-
tential was used, not just the “muffin-tin” component
used in many “Xα” calculations at the time. Some of
the first DF calculations on small molecules were per-
formed by Olle Gunnarsson (Gunnarsson and Lundqvist,
1976). John Harris and I were sceptical that the local
density approximations would give reasonable results for
molecules, but we (with Olle) developed a full-potential
LMTO code for small molecules and clusters (Gunnars-
son et al., 1977). These calculations led to good geome-
tries and reasonable binding energies in most cases. In
spite of the shortcomings of the local density descrip-
tion of Exc, it was now possible to perform calculations

see (Jones, R O, 2012).
14 However, all mathematically well-behaved densities can be ob-

tained from an antisymmetric wave function (Harriman, 1981).
15 Condensed matter physicists, on the other hand, were aware of

the poor description of metals provided by the Hartree-Fock ap-
proximation, particularly the vanishing density of states at the
Fermi energy.

without adjustable parameters on families of molecules
and small clusters that had previously been inaccessi-
ble. I was unprepared for so many exciting results, my
own examples including the trends in the binding ener-
gies of group 2 dimers (Jones, 1979; Jones, R O, 2012),
the energy surfaces of ozone (Jones, 1984b), and the
structures of small phosphorus clusters (Jones and Hohl,
1990). Most condensed matter physicists were either not
surprised or not interested, but theoretical chemists re-
mained sceptical or critical, or they ignored the devel-
opment completely. This situation continued throughout
the 1980’s and into the 1990’s.

C. Menton, 1991

The Seventh International Congress of Quantum
Chemistry, held in Menton, France, from 2-5 July 1991,
marks for me a major turning point in the fortunes of
DF methods, particularly in chemistry (Fig. 5). Density-
related methods were discussed in detail, and commu-
nication between their proponents and the sceptics im-
proved. When I asked John Pople why he did not like
density functional methods, he replied that the total en-
ergies were not good enough. This cannot be denied, but
I pointed out our focus on energy differences, such as
binding energies, for which there is no variational princi-
ple. All such calculations rely on cancellation of errors.

FIG. 5 (Color online) Poster of Menton Congress, 1991

Axel Becke was awarded the Medal of the Interna-
tional Academy of Quantum Molecular Science for that
year, and he described his development of an approx-
imate functional that promised improvements over lo-
cal density approximations (Becke, 1988). In his end-of-
conference remarks, Pople maintained his distance from
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density-related methods, but the comments of Roald
Hoffmann immediately afterwards were more encourag-
ing. It is certainly no coincidence that Pople and his
coworkers tested this approximation on atomization en-
ergies of small molecules immediately after the meeting,
but many will have been surprised by the results (John-
son et al., 1992):

“In summary, these initial results indicate
that DFT is a promising means of obtain-
ing quantum mechanical atomization ener-
gies; here, the DFT methods B-VWN and B-
LYP outperformed correlated ab initio meth-
ods, which are computationally more expen-
sive.”

and (Johnson et al., 1993)

“The density functional vibration frequencies
compare favorably with the ab initio results,
while for atomization energies two of the DFT
methods give excellent agreement with exper-
iment and are clearly superior to all other
methods considered.”

The ab initio methods mentioned were Hartree-Fock, sec-
ond order Møller-Plesset (MP2), and quadratic configu-
ration interaction with single and double substitutions
(QCISD). In addition to the growing body of results
on molecules and clusters that were beyond the scope
of calculations of correlated wave functions, this change
in attitude by one of the most prominent theoretical
chemists led to a dramatically new attitude towards the
DF method in chemistry.16

D. Progress to 1990

The number of citations to density functional theory
and related topics was very small prior to 1990 and ex-
ploded thereafter (see Fig. 1). However, work was already
in place by 1990 that has proved to be crucial to the ulti-
mate acceptance of the method, and I now outline some
of it. More details can be found elsewhere (Dreizler and
Gross, 1990; Jones and Gunnarsson, 1989).
The generalizations to finite temperatures and to spin

systems were carried out soon after the original work
of Hohenberg and Kohn (Hohenberg and Kohn, 1964)
The former was provided by Mermin (Mermin, 1965),
who showed that, in a grand canonical ensemble at given
temperature T and chemical potential µ, the equilibrium
density is determined by the external potential Vext, and

16 Although one of the authors of these papers wrote an obituary on
density functional theory not long afterwards (Gill, 2001), noting
1993 as the year of its death.

the equilibrium density minimizes the grand potential.
Single-particle equations can be derived for a fictitious
system with kinetic energy T0 and entropy S0, with Exc

replaced by the exchange-correlation contribution to the
free energy.
The extension to spin systems (von Barth and Hedin,

1972; Rajagopal and Callaway, 1973) or an external mag-
netic field requires the introduction of the spin indices α
of the one-electron operators ψα(r) and replacing Vext
by V αβ

ext (r), and the charge density n(r) by the density
matrix ραβ(r) = 〈Ψ|ψ+

β (r)ψα(r)|Ψ〉. All ground state
properties are functionals of ραβ , and E is stationary
with respect to variations in ραβ . The expression for the
energy Exc is analogous to Equations (17,18). A current-
and spin density functional theory of electronic systems
in strong magnetic fields was formulated by Vignale and
Rasolt (Vignale and Rasolt, 1988). Time-dependent den-
sity functional theory, which has proved to be very valu-
able in discussing excited states, was described by Runge
and Gross (Runge and Gross, 1984).
Most of the early DF calculations on small clusters and

molecules used the LD and/or LSD approximations, of-
ten based on the quantum Monte Carlo calculations of
the correlation energy in the homogeneous electron gas
by Ceperley and Alder (Ceperley and Alder, 1980). Al-
though the results were generally encouraging, it soon
became clear that local density calculations can lead to
unacceptable errors. Examples were the exchange energy
difference between states with different nodal structures
(Gunnarsson and Jones, 1985), including the s − p pro-
motion energies in first-row atoms, particularly O and F,
s−d promotion energies in transition element atoms, and
d− f promotion energies in rare earth atoms.
Dispersion forces, the weak, non-local interactions be-

tween closed shell systems, are a particular problem for
such approximations. The long-range interaction be-
tween separated atoms or molecules is absent, and yet
the LD approximation overestimates the binding energy
in many such systems, e.g. He2 (Jones, 1979) and crys-
talline polyethylene (Montanari and Jones, 1997). It is
not surprising that new approximations were developed,
and corrections involving density gradients were soon
available for the correlation (Lee et al., 1988; Perdew,
1986) and exchange energies (Becke, 1988). The semi-
empirical approximation of Becke (Becke, 1988) was con-
structed so that the exchange energy density had the
correct asymptotic behavior (∼ r−1) for atoms.17

The combination of DF calculations with molecular
dynamics (Car-Parrinello method) (Car and Parrinello,
1985) made simulations of bulk systems at elevated tem-
peratures possible, and simulated annealing techniques

17 Although the asymptotic form of the corresponding potential

(∼ r
−2) did not (van Leeuwen and Baerends, 1994).
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could be used to study the energy surfaces of molecules
and clusters. My 1991 article (Jones, 1991) showed that
unexpected structures could result. An essential part of
DF work prior to 1990 was, of course, the gradual gener-
ation of a data base of results for molecules and clusters,
as well as extended systems.

VI. AFTER THE BREAKTHROUGH

There have been 150,000 publications on the topics
“density functional” and “DFT” between 1990 and June
2014 (Fig. 1). I leave detailed surveys of this vast and
rapidly expanding literature to others and refer again to
the very recent issue of the Journal of Chemical Physics

(Yang, 2014). The aspects I have chosen should be of gen-
eral interest, but not everyone will approve of my choice.
I give two examples of the possibilities provided by the
combination of DF calculations with molecular dynam-
ics.

A. Progress and problems

One of the first signs of growing acceptance of DF
methods in chemistry was the incorporation of such cal-
culations into popular “ab initio” program packages, with
Gaussian leading the way. Michael Frisch, first author of
that package, seems to have been a willing convert. At
the end of his talk at the ACS National Meeting in San
Francisco (13 April 1997) on “Ab initio calculations of
vibrational circular dichroism and infrared spectra using
SCF, MP2, and density functional theories for a series of
molecules,” an unknown (to me) member of the audience
asked:

“What about Hartree-Fock?”

His answer was memorable, and I wrote it down imme-
diately:

“It does not matter what you want to calcu-
late, and it does not matter what functional
you use; density functional results are always
better than Hartree-Fock.”

The availability of such codes and the possibility of com-
paring the results of different types of calculation were
important to establishing the credentials of DF calcula-
tions in chemistry.

There has been progress in all the above areas. Time-
dependent DF theory has become a standard way to cal-
culate excited states and is an option in most DF pro-
gram packages (Botti et al., 2007; Isegawa et al., 2012).
The number of publications in a year that use the Car-

Parrinello method18has grown nearly linearly from al-
most zero in 1990 to over 1900 in 2013 (Mavropoulos,
2014). Many applications now use Born-Oppenheimer
molecular dynamics, which allow substantially longer
time steps in the simulations. The optimized effective
potential has been extended by Krieger, Li, and Iafrate
(Krieger et al., 1992) and many others, and there are
lengthy reviews of orbital-dependent (and other) density
functionals (Kümmel and Kronik, 2008) and constrained
density functional theory (Dederichs et al., 1984; Kaduk
et al., 2012). The random phase approximation (RPA)
is a long-established method for studying correlations in
the homogeneous electron gas, and it has become estab-
lished in the DF world (Eshuis et al., 2012; Ren et al.,
2012; Xiao et al., 2013).
The combination of DF calculations for a chemically

active region with classical molecular dynamics for the
surrounds (the “QM/MM approach”) (Carloni et al.,
2002) has found applications in many systems in biol-
ogy, organic, and solid state chemistry (Lin and Truhlar,
2007). Classical force fields that lead to simulations with
near-DF accuracy can be developed by a neural network
representation of the results of (many) DF calculations
on small systems (Behler and Parrinello, 2007). These
and other developments are very welcome, but the pro-
liferation of approximations to the exchange-correlation
energy has become the source of confusion.

1. Approximations for Exc

The local density (LD) [Eq. (13)] and local spin den-
sity (LSD) [Eq. (14)] approximations lead to overbinding
of many molecules, poor exchange energy differences if
the nodal structures of the orbitals change, and the cor-
responding Kohn-Sham eigenvalues often underestimate
measured optical band gaps. Nevertheless, calculations
that used them provided insight into many physical prob-
lems, and the reasons for the errors (and ways to assess
their magnitude) became clearer. However, if insight is
not enough and reliable numbers are needed, improved
approximations are essential.
The first generalized gradient approximations (Becke,

1988; Lee et al., 1988; Perdew, 1986) did lead to bet-
ter results, and “hybrid” functionals, which include a
Hartree-Fock-like exchange component, were introduced
by Becke in 1993 (Becke, 1993). This form of Ex has
three parameters, and its combination with Ec of Lee,
Yang, and Parr (Lee et al., 1988) (B3LYP) is still the
most common approximation used in chemical applica-
tions (Burke, 2012). Many other empirical and hybrid
functionals have been developed since, with parameters

18 I use this term to cover methods where the electronic and ionic
degrees of freedom are propagated.
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often fit to thermochemical data for particular groups of
molecules. The use of experimental data for fitting func-
tional forms may be understandable (Boese and Handy,
2001), but the result was that DF theory was now viewed
by some as “semi-empirical” in nature. The additional
parameters led to improvement over the LD and LSD re-
sults, and the use of “training sets” of atomic and molec-
ular systems to optimize the parameters improved the
calculated results for particular sets of molecules (Zhao
and Truhlar, 2008).
There is no doubt that the increased focus on Hartree-

Fock-like exchange and its role in “hybrid” functionals
has been one of the most significant developments in re-
cent years. The use of the standard technique of chemists
has brought the world of “chemistry” and “materials sci-
ence” closer, as the need for approximations that gave
satisfactory results in both areas became obvious.19 An
example of recent studies of functionals that give broad
accuracy in both fields is that of Peverati and Truhlar
(Peverati, R. and Truhlar, D. G., 2012). The implemen-
tation of HF-like exchange usually comes with a high
computational price, especially in calculations using very
large plane-wave basis sets. However, new algorithms on
massively parallel computers have reduced or even elim-
inated this drawback (Curioni, 2013).
An alternative path has been followed by others, par-

ticular Perdew and collaborators, who developed a se-
quence (“Jacob’s ladder”) of approximations without ex-
perimental input, where each “rung” built on the ex-
perience of lower level and satisfies particular physical
constraints. The gradient corrected form of Perdew,
Burke, and Ernzerhof (Perdew et al., 1996) (PBE) in-
corporates the LSD form below it, and the “meta-GGA”
form of Tao, Perdew, Staroverov, and Scuseria (TPSS)
(Tao et al., 2003), where n↑ and n↓ are joined by their
gradients and the kinetic energy density of the occupied
Kohn-Sham orbitals, built on both. The agreement with
experiment improves (and the computational demands
increase) as one climbs the “ladder” (Furche and Perdew,
2006). Models of the exchange-correlation hole continue
to provide a way of developing DF approximations [e.g.
(Giesbertz et al., 2013)], and systematic ways of correct-
ing for the results of DF calculations are still being pur-
sued. A recent example is the use of multi-determinant
wave functions for hybrid functionals (Savin, 2014).

2. Dispersion interactions

Two areas have remained particular challenges for DF
calculations, the first being the weak dispersion or van

19 Slater (Slater, 1974) noted that one characteristic of his work
“was the use of the same techniques both for molecular and solid
state problems.”

der Waals forces mentioned above. Crystalline polyethy-
lene, where parallel chains of covalently bonded molecules
are bound by such forces (see Fig. 6) provides an example
of the problems that arise.

(a)

(b)

FIG. 6 View of the orthorhombic structure of polyethylene
along (a) b-axis, (b) c-axis (the axis of the polymer chains)
(Montanari and Jones, 1997).

The structures obtained by complete relaxation of
all atomic coordinates are representative for many sim-
ilar systems. First, the bond lengths in the chains
are reproduced well by the LDA, PBE (Perdew et al.,
1996), and Becke-Perdew (Becke, 1988; Perdew, 1986)
approximations (Montanari et al., 1998): The C-H bonds
are slightly longer than the experimental values for or-
thorhombic hexatriacontane C36H74 (Teare, 1959), while
the C-C bond lengths are reproduced within the experi-
mental uncertainty. The LDA value is ∼ 1% shorter than
in the PBE and BP calculations, and the C-C-C bond
angle is farthest from the measured value. The shortest
distance between C atoms in different chains, however,
depends strongly on the choice of functional. The value
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for the LDA approximation (3.67 Å) is much less than
the experimental value (4.15 Å), the PBE value (4.66 Å)
is too large, and the Becke-Perdew functional results in
no binding at all!

The poor results obtained for van der Waals bonds
with “standard” approximations for Exc led to a pro-
nounced increase in dispersion-corrected DF studies in re-
cent years [see Fig. 1 of (Klimeš and Michaelides, 2012)].
The progress that has resulted (DiStasio et al., 2014;
Dobson and Gould, 2012; Klimeš and Michaelides, 2012)
is viewed by many as one of the success stories in recent
DF research.

The development of a functional that changes seam-
lessly on going from weakly interacting units to a com-
bined system has been a goal of many, and van der Waals
interactions can be built into the electron gas picture in
various ways (Berland et al., 2014; Dobson and Dinte,
1996; Rapcewicz and Ashcroft, 1991). The functional
of Langreth and coworkers (Dion et al., 2004) is free of
experimental input, involving results from electron gas
slabs and the electron gas itself, and has been imple-
mented in several program packages. We have seen above
that the exchange and correlation energy can be ex-
pressed as an integral over the coupling constant λ = e2,
and this is the basis of several approximations for dis-
persion (Dion et al., 2004; Dobson and Wang, 1999; Vy-
drov and Van Voorhis, 2009). An empirical correction
to DF results (DFT-D2) has been proposed by Grimme
(Grimme, 2006), and an alternative has been suggested
by Tkatchenko and Scheffler (Tkatchenko and Scheffler,
2009). A more recent parametrization by Grimme and
coworkers (DFT-D3) (Grimme et al., 2010) provides a
consistent description of dispersion forces for elements
up to Pu that can be added to DF packages. It depends
on the environment of the atoms involved, and has been
applied in a range of contexts.

The failure of local density approximations to describe
dispersion forces have led to numerous studies of the rea-
sons. One approach has involved the accurate determina-
tion of the wave function and correlation effects in simple
systems [e.g. He2 (Allen and Tozer, 2002)], another uses
the adiabatic connection theorem [(Tkatchenko et al.,
2013) and references therein]. Adiabatic connection is
also the basis of the range separation approach, where
short-range density functional and the long-range ran-
dom phase approximations are combined (Toulouse et al.,
2009). This method describes the bonds in Be and Ne
dimers well.

3. “Strongly correlated” systems

The term “strongly correlated” is often used in ex-
tended systems as a synonym for cases where “standard”
approximations in DF calculations give poor answers.
They are usually cases where the potential energy domi-

nates over the kinetic energy and often involve transition
element or rare earth atoms. The metal-insulator tran-
sition of Mott (Imada et al., 1998; Mott, 1968) is a well-
studied example. Local density approximations can give
qualitatively incorrect descriptions of these materials, ex-
amples being a metallic DF band structure in insulating
transition metal oxides.

The use of model Hamiltonians has been a popular way
to avoid these problems, and a common way of modifying
DF calculations is the addition of an on-site Coulomb re-
pulsion (“Hubbard U”) in the “LSD+U” scheme (Anisi-
mov et al., 1997). The parameter U can be estimated
within a DF framework (Cococcioni and de Gironcoli,
2005), but it is often fit to experiment. The dynamical
mean field theory (Georges et al., 1996; Kotliar and Voll-
hardt, 2004) is a mapping of lattice models onto quantum
impurity models subject to a self-consistency condition,
and the “LDA+DMFT” method merges the DF theory
with a modern many-body approach. It allows the mod-
eling of structural, electronic, and magnetic properties of
transition metals, their oxides, and other “strongly cor-
related” materials.

In the chemical context, “strong correlations” are
present in systems that cannot be described well by
single-determinant solutions to the Kohn-Sham equa-
tions. The basic DF theorems tell us that a single

symmetry-restricted Slater determinant should be able
to describe even molecular dissociation, which is a well-
known deficiency of Hartree-Fock theory, but the devel-
opment of appropriate functionals remains a challenge.
The study of two-determinant mixing with a recently pro-
posed functional is promising (Becke, 2013).

The adiabatic connection between non-interacting and
interacting systems was used above [Eq. (17),(18)] to
show that local density approximations can give reason-
able results for systems that are far from uniform, but
it can also be used to understand why local density ap-
proximations sometimes fail badly. The crucial point is
the λ-dependence of the integrand that leads to Exc, and
this has been studied in the context of hybrid functionals
[see, for example, (Ernzerhof, 1996)] and in calculations
for a variety of systems [see, for example, (Teale et al.,
2010)]. In “weakly correlated” systems, the integrand
is only weakly λ-dependent, the “mapping” of the non-
interacting to the interacting system presents few prob-
lems, and standard DF prescriptions provide a reason-
able description. In cases where the nature of the system
changes even for small values of λ, the linear dependence
is a poor approximation (Teale et al., 2010), and other
ways of estimating the correlation energy must be used.

4. Developments related to QMC

There are developments in the quantum Monte Carlo
(QMC) studies of interacting electron systems that could
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be relevant for future DF work. The full configuration
interaction (FCI) implementation of QMC has been ap-
plied recently to the homogeneous electron gas (Shep-
herd et al., 2012) and to simple solids (Booth et al.,
2013). Condensed matter scientists have much experi-
ence with periodic boundary conditions and plane wave
orbital expansions, and this should aid the implementa-
tion of the method in extended systems. Another ex-
ample is the reformulation of the constrained search ap-
proach in DF theory (Levy, 1979; Lieb, 1983) in terms
of the density and the (N − 1)-conditional probability
density, which can be treated by ground state path inte-
gral QMC (Delle Site et al., 2013). It remains to be seen
whether the computational demands usually associated
with QMC can be reduced.

5. Notation

The terms “ab initio” and “first principles” are used
differently in the “chemical” and “materials” worlds. For
most chemists, the expressions mean solutions of the
Schrödinger equation for the system of interacting elec-
trons (e.g. by QMC), for many materials scientists it can
be a DF calculation without (or even with) adjustable pa-
rameters. I use the term “density functional” to describe
my work and “ab initio” for solutions of the Schrödinger
equation. I look forward to the day when I no longer hear
that correct predictions of DF calculations are “right for
the wrong reason.”

B. Two applications

I shall describe briefly the results of one DF simula-
tion in biology and one in materials science that indicate
the scale of DF calculations that are possible. They are
not “standard” applications by any means, requiring very
large computing resources and substantial human effort.
In the spirit of addressing newcomers to the field, I now
mention some practical points about DF calculations.

The ready availability of DF programs does not mean
that they are easy to use or that careful choices of input
parameters can be avoided. Some methods of calculation
consider all electrons, but many focus on the outermost
valence electrons that dominate structural properties and
replace the effect of inner “core” electrons by an effective
potential (pseudopotential) or a frozen core density. A
basis set must be chosen and its convergence checked, and
the final results depend on the approximation adopted
for the exchange-correlation energy functional. Both of
the applications discussed here use the PBE functional
(Perdew et al., 1996).

One of the many possibilities for the evolution of life
on Earth is the formation of protein molecules under
extreme—prebiotic—conditions. Schreiner et al. (Nair

et al., 2008; Schreiner et al., 2008, 2011) studied possible
reactions of N-carboxy anhydrides (a form of activated
amino acids) in water under high pressures and temper-
atures in the presence of pyrites FeS2 (the “iron-sulfur
world” of Wächtershäuser) (Wächtershäuser, 1988). The
presence of an FeS2 surface (Fig. 7) changes the free ener-
getics of the steps of reactions carried out under different
sets of conditions, and it stabilizes the peptide product
against hydrolysis. The reactions studied are just possi-
ble scenarios for the production of molecules that are es-
sential to life on Earth, but they demonstrate the value of
simulations under conditions that are difficult to attain
experimentally. They also show that simulations with-
out adjustable parameters can be performed on biological
systems that were unthinkable with earlier generations of
computers. Of course, there are many biological systems
for which the simulation sample sizes currently accessible
with this method are simply inadequate. Classical force
fields with appropriately chosen parameters are likely to
remain the method of choice for such systems.

FIG. 7 (Color online, schematic) Glycine (left), activated
glycine (center), and the glycine-glycine dipeptide (right) be-
tween an FeS2 surface (below) and water (blue).

Phase change (PC) materials are alloys of chalcogens
(group 16 elements) that are ubiquitous in the world of
rewritable optical storage media, examples being the dig-
ital versatile disk (DVD-RW) and Blu-ray Disc. Nano-
sized bits in a thin polycrystalline layer are switched re-
versibly and extremely rapidly between amorphous and
crystalline states, and the state can be identified by
changes in resistivity or optical properties. Crystalliza-
tion of the amorphous bit is the rate-limiting step in the
write/erase cycle, and much attention has been focused
on this process. Alloys of Ge, Sb, and Te are often used
in PC materials, and 460-atom simulations have been
carried out at 600 K on amorphous Ge2Sb2Te5 (Kalikka
et al., 2012) (Fig. 8). Crystallization takes place in just
over 1 ns, and it is possible to monitor changes in the
distribution of the cavities, the diffusion of atoms of the
different elements, and percolation of crystalline units
in the sample. These calculations involve over 400,000
(!) self-consistent DF calculations of structure, energies,
and forces for a 460-atom sample. It is very unusual for
a phase transition to be fast enough (here nanoseconds)
that it is accessible to DF calculations under the actual
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physical conditions, and we are sure that the details of
the structural change will shed light on the mechanism
of other phase transitions. The steady (and essential)
improvement in numerical algorithms has played an im-
portant role, but such calculations also require computers
of the highest performance class.

a)

b)

FIG. 8 (Color online) Crystallization in GST alloy at 600 K.
(a) Amorphous structure after 215 ps, (b) crystalline struc-
ture after 1045 ps. Green: Ge, purple: Sb, Orange: Te

C. Other systems

The dominant role of the electron density functional
theory in materials science and chemistry means that
many of its practitioners identify the term solely with
electrons. “DF calculations” are also performed in other
contexts.

1. Classical density functional theory

Work in this area focuses on the thermodynamics of
systems interacting with classical potentials and is based

on the Hohenberg-Kohn-Mermin formulation at finite
temperatures (Sec. V.D). The focus is on the Helmholtz
free energy and its expression as a functional of the den-
sity. The systems considered are very large by electron
density functional standards (I have read about parti-
cle numbers “up to Avogadro’s number”), with partic-
ular emphasis on phase transitions, but surveys of the
field show that we have much in common (Ashcroft,
1995; Baus, 1990; Evans, 1979, 1992; Haymet and Ox-
toby, 1981; Wu and Li, 2007). Electron density functional
theory needs approximations for the exchange-correlation
energy, the classical counterpart an expression for the ex-
cess free energy arising from interactions in the system.
The free energy is written as the sum of terms involving
a reference system (e.g. a liquid) and a second system
of interest (such as a solid), and the “coupling constant
integration” technique can be used to switch from one
density to the other or from a “non-interacting” to an
“interacting” system.
Particularly familiar to me were the weighted density

(WD) approximations for the excess free energy in an
inhomogeneous liquid (Curtin and Ashcroft, 1985; Tara-
zona, 1984), where the free energy density at a given
point is taken to be that of a homogeneous system with
a density determined by weighting over a physically rele-
vant region. This is precisely the motivation of the “WD
approximation” in electronic systems (Gunnarsson and
Jones, 1980; Gunnarsson et al., 1979), where the “phys-
ically relevant region” is determined by the exchange-
correlation hole [Eq. (18)]. In the WD approximation,
this can be written

nWD
xc (r, r′ − r) ≡ n(r′) GWD

(

r, r′; ñ(r)
)

, (23)

where GWD is a model pair-correlation function, and ñ(r)
is a non-local parameter chosen to satisfy the sum rule
Eq. (20). GWD can be chosen to satisfy additional re-
quirements, such as reproducing the LD result in a ho-
mogeneous system. A particularly simple form has been
tested for atoms with mixed success (Gunnarsson and
Jones, 1980; Jones and Gunnarsson, 1989).

2. Nuclei

The number of nuclides (isotopes) that occur or can be
synthesized on Earth is approximately 3000 and increases
every year. Of these, less than 300 are considered stable
(Erler et al., 2012). The stability of a nuclide is deter-
mined by the amount of energy needed to remove a single
neutron or proton or a pair of neutrons or protons, and
it is natural that the limits of nuclear binding have re-
ceived much attention. The microscopic method of choice
in describing weakly bound complex nuclei is the nuclear
density functional theory based on a self-consistent mean-
field approach (Bender et al., 2003). Nuclear many-body
theories are not yet able to provide input for effective
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energy-density functionals, and experimental input is un-
avoidable. Many calculations are based on the functional
form suggested by Skyrme (Skyrme, 1956, 1959), and the
optimization of the parameters involved is an ongoing
challenge (Klüpfel et al., 2009; Kortelainen et al., 2010).
A detailed study of the “nuclear landscape” using a range
of functionals concluded that the number of bound nu-
clides with between 2 and 120 protons is 6900±500 (Erler
et al., 2012).
Numerous concepts that one encounters in the

nuclear physics literature (such as “Skyrme-Hartree-
Fock”, “mean-field theory”, “DFT”, “Bardeen-Cooper-
Schrieffer (BCS) wave function”, superfluidity, spin-orbit
coupling, even Thomas-Fermi) sound very familiar to
many in the condensed matter world. It really is in-
teresting to look outside one’s own field.

VII. SUMMARY AND OUTLOOK

A. An “approximate practical method”

The astonishing growth of density functional calcula-
tions since 1990 was due in part to the relabeling of “elec-
tron band structure” and “Hartree-Fock-Slater” calcu-
lations (and the programs developed for them) with a
more modern term. Few can doubt that such calcula-
tions would have continued with a variety of local den-
sity approximations, but the theoretical justification of
the density functional was an essential step that resulted
in Walter Kohn being awarded (with John Pople) the
1998 Nobel Prize for Chemistry. Anderson noted that
this award may indicate that (Anderson, 2011b)

“the labors and controversies . . . in under-
standing the chemical binding in materials
had finally come to a resolution in favor of
‘LDA’ and the modern computer”

(“Dream Machine ↑ Mott ↓”) (Anderson, 2011c), but he
emphasized that “very deep problems” remain with the
former (Anderson, 2011b).
The recognition of the basic role of the electron den-

sity goes back to the earliest days of quantum mechanics.
Thomas and Fermi developed the first density functional,
and Dirac (1930) not only incorporated exchange effects
into it, but observed that the density could determine
completely the state of an atom. It is not necessary to
specify the wave function. The self-consistent field of
Hartree and the use of determinantal wave functions by
Slater, Bloch, and Fock, were followed by the calcula-
tions of Wigner and Seitz, who showed that the exchange
hole of an electron in Na metal was localized to a single
ion. The exchange hole picture is a central concept in
DF theory and was developed further by Slater in 1951.
An effective exchange potential of the form of Bloch and
Dirac was derived and tested by Gáspár in 1954. The

work of Hohenberg, Kohn, and Sham (Hohenberg and
Kohn, 1964; Kohn and Sham, 1965) is known to every-
one.

Kohn and Sham (Kohn and Sham, 1965) did not ex-
pect the local density approximation for exchange and
correlation to give “an accurate description of chemical
binding”, and this view was shared by most theoretical
chemists for many years. Nevertheless, we now know
that approximations to the exchange-correlation energy
based on the homogeneous electron gas (LD, LSD) and
their modifications provides a scheme that can give valu-
able information about large molecules and extended sys-
tems. It was shown later why approximations to Exc

could give good results for density distributions far from
those where they are obviously valid (Jones and Gun-
narsson, 1989). The approach does appear to satisfy the
80-year-old goal of Dirac (Dirac, 1930) to find “approxi-
mate practical methods of applying quantum mechanics
to [explain] the main features of complex atomic systems
without too much computation.” Those involved in this
activity know that few of us took the last point seriously.

B. Exchange-correlation approximations

The LD and LSD approximations have well docu-
mented drawbacks, and the resulting numbers (binding
energies, band gaps, . . . ) should always be treated with
caution. However, the approximations and their further
developments satisfy important physical criteria, such as
the sum rule on the exchange-correlation hole, and our
long experience with them helps us to judge when the
results may be wrong and by how much. After spending
several years developing functional forms based on exper-
imental data, Nicholas Handy noted that some simpler
functionals allow us to separate different types of corre-
lation in molecules and concluded (Handy, 2009; Handy,
N C, 2002):

“We are returning to the view that the sim-
plest parameter-free GGA functionals are the
best functionals to use with DFT, because
they offer the simplest interpretation and
have greater global predictive power.”

In fact, the bonding patterns are correct in most cases,
which is no doubt one reason why LD approximations
and their modifications are still in widespread use. They
make possible the simultaneous study of numerous re-
lated systems, such as families of molecules or materials,
with the computational resources needed to determine
the wave function of a single much smaller system. Is this
pragmatic approach giving way to the search for schemes
that produce better numbers automatically, as the long
list of approximate functionals and publications compar-
ing their predictions might suggest?
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C. Quo vadis?

Figure 1 shows that density functional theory will be
with us for the foreseeable future, and we can be sure that
some exciting results lie ahead. Why then should two of
the most cited workers in the field have serious reser-
vations about the future of DF theory? Kieron Burke
(Burke, 2012) wrote that “it is clearly both the best of
times and the worst of times for DFT” and wondered
whether it is time for a “paradigm shift”. A newcomer
to the field might indeed despair of understanding why
one of the countless approximations for Exc, even those
with a sound physical basis, should be favored over an-
other, or the real physical reasons behind a particular
result. Are DF calculations now following the “Dream
Machine” scenario foreseen by Anderson in 1980 (Ander-
son, 1980)? Furthermore, the identification of the “best”
functional may be ambiguous. A recent comparison of
the band gaps in LiH and four alkali halides, four ox-
ides, and solid Ne and Ar (gaps between 0.2 and 20 eV)
with the predictions of many popular functionals (Cival-
leri et al., 2012) showed that finding the “best” functional
also depends on the choice of statistical measure (mean
error, mean absolute error, variance, . . . ).

The concerns of Axel Becke (Becke, 2014) are just as
real. It is obvious that great progress has been made in
applying DF methods to systems that seemed beyond us
only 10 or 15 years ago, and the use of Hartree-Fock-
like exchange in many modern functionals has helped
communication between the different fields where DF
methods are used. However, Becke (and many others,
including the author) have focused for years on on the
“Kohn-Sham” version of DF theory (“occupied orbitals
only”), which is a major reason for the popularity of the
method. Will the inherent accuracy of wave function-
based methods prove to be decisive as computational re-
sources expand? Many years ago, a colleague predicted
that DF methods would ultimately lose out to solutions
of the Schrödinger equation as computer power increased.
He was not impressed by my view that DF calculations
would always be years ahead (I think I said 5 − 10, but
it is more) in the size of system we could calculate, and
he moved on. I didn’t.

Density functional theory has a long and fascinat-
ing history involving some of the best known names
in physics. It deserves better than to be the basis for
developing a vast array of approximations seeking the
“right” numbers. It cannot be expected to provide pre-
cise answers to all questions when simple descriptions of
the exchange-correlation energy are used, but its ability
to outperform methods that seek exact solutions of the
Schrödinger equation is not threatened. We shall con-
tinue to obtain insight into all sorts of problems that we
cannot imagine today.
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Appendix A: ADIABATIC COUPLING

If we make infinitesimally slow changes to a parameter
describing a system in a stationary state, the system re-
mains in its original state. This adiabatic principle is fa-
miliar from the earlier quantum theory (Ehrenfest, 1916)
and was shown already in 1926 to be valid in quantum
mechanics (Born, 1926; Born and Fock, 1928). If the
Hamiltonian H of a system depends on some parameters
λ, Güttinger (Güttinger, 1931) showed that

∂En

∂λ
=

(

∂H

∂λ

)

nn

(A1)

for the diagonal terms, and

∫

dr u∗m
∂un
∂λ

=
1

En − Em

(

∂H

∂λ

)

mn

(A2)

for n 6= m. En is the energy eigenvalue and un the
eigenfunction of state n. These results are implicit
in first-order Rayleigh-Schrödinger perturbation theory
(Schrödinger, 1926) and in the proof of adiabaticity of
Born and Fock (Born and Fock, 1928), who consid-
ered only off-diagonal terms (A2). If λ is a coordinate
of an atom in a molecule, Eq. (A1) is familiar as the
“Hellmann-Feynman theorem” for forces in a molecule
(Feynman, 1939; Hellmann, 1933, 1937).

The integrated form of A1

En(λ) =

∫ λf

0

dλ

(

∂H

∂λ

)

nn

. (A3)

is often attributed to Pauli (Musher, 1966) and described
as the “Pauli trick”. However, it is an intermediate result
of Güttinger in the context of the adiabatic principle (λ is
the time). The “integration over the coupling constant”
method is an obvious choice in studies of the relationship
between the non-interacting (λ = 0) and interacting (λ =
e2) electron systems.
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