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Abstract

We present an efficient methodology for the computational design of structural, electronic

and magnetic properties of complex magnetic oxides. Our approach combines several com-

plementary first-principles methods rooted in density functional theory. The optimization

of atomic positions and the optimization of the crystalline structure is achieved by means

of pseudopotential methods, known for yielding precise total energies and forces. The ob-

tained structural information constitutes an input for calculations of electronic and magnetic

properties using the Korringa-Kohn-Rostoker and Linear Muffin-Tin Orbital methods. The

resulting Kohn-Sham Green function is utilized in various applications, including the de-

scription of transport, spectroscopic properties and magnetism. This multi-code approach is

particularly well suited for strongly correlated systems and therefore enables a faithful de-

scription of complex oxides. In this highlight, we illustrate the strengths of the methodology

on examples of electronic and magnetic properties of transition metal monoxides, diluted

magnetic oxides and magnetic oxidic surfaces.

1 Introduction

In recent years magnetic oxides have attracted enormous interest due to a strong interplay

between their charge and lattice degrees of freedom and magnetic properties. They appear

promising for technological applications, especially in electronics, as most of them turn out to

be insulators. The electronic and magnetic properties of oxides have been the subject of intense

research over the last few years oriented towards synthesis of new materials with prescribed
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properties tuned by manipulation of composition and structure. This expanding experimental

field has recently profited substantially from theoretical support. In particular, first-principles

simulations of ground and excited state properties go hand-in-hand with experiments allowing

interpretation of experimental results in these complex systems and providing additional insight

into various properties of these materials. They also help to identify the technologically most

promising systems, reducing the experimental burden.

First-principles simulations of real materials and the prediction of their chemical and physical

properties remain one of the most ambitious aims of modern computational physics. Ground

state properties of any electronic system can be in principle exactly determined within den-

sity functional theory (DFT) by Hohenberg and Kohn [1]. The most popular local spin den-

sity approximation (LSDA) [2] and the generalized gradient approximation (GGA) [3, 4] of the

exchange-correlation functional enable an adequate parameter-free description of many realis-

tic materials, especially systems with itinerant electrons. However, the LSDA and GGA fail

to reproduce correctly ground state properties of systems with strongly or partially localized

electrons. This is associated mainly with an unphysical self-interaction (SI) of an electron with

itself [5], occurring in the Hartree term of the LSDA and GGA energy functionals on account of

the local approximation applied to the exchange-correlation energy functional. Another difficulty

for first-principles calculations is the correct description of excited state properties which is a

fundamental problem of the static nature of DFT. While the band structure and spectral density

can be approximately calculated for metals, DFT underestimates the size of the fundamental

band gap in semiconductors and insulators by about 50-60%. Since many oxides are insulators

and, in addition, may contain localized or partially localized electrons, first-principles simulations

of these systems are difficult.

Nowadays one can resort to several formalisms going beyond the LSDA and GGA which can

provide an adequate description of oxides. The spurious self-interaction can be subtracted for

all localized orbitals using the self-interaction correction to LSDA method (SIC-LSDA) [5], es-

tablished and widely used in computational chemistry and physics. Electronic correlations can

be in many cases efficiently modelled using the LDA+U method [6], in which a Hubbard term

with the on-site Coulomb interaction U is added to the LSDA functional to give a better account

of the Coulomb interaction between electrons. In many cases, U is an adjustable parameter,

which is chosen to optimize agreement with experiment. The so-called double counting term is

an additional shortcoming of the LDA+U approach. Besides LDA+U and SIC-LSDA schemes,

a class of hybrid functionals has recently been introduced [7]. These functionals treat Coulomb

correlations beyond the LSDA, accomplished by incorporating some fraction of the exact ex-

change. Excited state properties can be studied within the GW approximation, which provides

a self-energy and a one-electron Green function, alas practically always resorting to the random-

phase approximation [8]. Despite its enormous merit in semiconductor physics, this method is

not very suitable for complex oxides, since, firstly, it is still numerically very demanding and

time consuming, and, secondly, the random phase approximation is valid only for weakly corre-

lated systems. Another method to calculate excitations is dynamical mean-field theory (DMFT),

which is especially designed for strongly correlated materials and allows for local dynamical cor-

relations to be systematically included into lattice models [9]. However, most applications to

date invoke the Hubbard Hamiltonian, via the so-called LDA+DMFT implementation, and thus
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inherit the uncertainties associated with the LDA+U method.

In this highlight we overview our approach to the first-principles description of complex oxides

focusing, in particular, on their magnetic properties. This approach is based on a Green function

method, providing access to the magnetic susceptibility and excited state properties, e.g. spin-

waves. The key quantity of this approach, the one-electron Kohn-Sham Green’s function, can

be efficiently calculated for large complex systems within multiple scattering theory using the

Korringa-Kohn-Rostoker (KKR) [10,11] and the Linear Muffin-Tin Orbital (LMTO) [12] imple-

mentations. The crystal structures of the studied oxides can be obtained either from experiment

or from first-principles simulations using pseudopotential methods, which are known to provide

precise total energies and forces. This multi-code approach is presented in the next section 2.

Then, in sections 3 and 4 respectively, we discuss magnetic properties of the bulk transition

metal monoxides and diluted magnetic oxides. Section 5 deals with exotic magnetic surfaces of

nonmagnetic oxides, and conclusions are in section 6.

2 Methodology

The key input for any theoretical analysis is the electronic spectrum. In our approach it is given

by the one-electron Kohn-Sham Green function which in real space is represented in terms of a

complete set of orthonormal wavefunctions, ψi(r), the eigenfunctions of a Kohn-Sham Hamilto-

nian, and corresponding eigenenergies εi

G(r, r′;E) =
∑

i

ψi(r)ψ
∗

i (r′)

E − εi
. (1)

The Green function (1) can be also found as the resolvent of the Kohn-Sham equation avoiding

calculations of the Kohn-Sham eigensystem

(−∇2 + V (r) −E)G(r, r′;E) = −δ(r, r′) . (2)

Above, V (r) is an effective Kohn-Sham potential. Eq. (1) can be solved self-consistently within

the density functional theory for any arrangement of atoms. Within the multiple scattering

theory [13], the Green function can be directly constructed for any complex energy.

Using the Green function (1), the expectation value of an observable Ô can be straightforwardly

calculated as

〈Ô〉 = −
1

π
ImSp

+∞
∫

−∞

dE f(E)ÔG(r, r′;E) , (3)

where f(E) is the Fermi-Dirac distribution function.

The fundamental advantage of working with Green’s functions is the possibility to evaluate

readily the properties of a perturbed system by resorting to the Dyson equation

G(r, r′;E) = G0(r, r
′;E) +

∫

dr′′G0(r, r
′′;E)∆V (r′′)G(r′′, r′;E) , (4)

whereG0(r, r
′;E) is the Green function of an unperturbed system and ∆V (r′) is the perturbation.
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According to Eqs. (3,4) the expectation value of an observable Ô for the perturbed system can

be expressed in the linear response formalism as

〈Ô〉 = −
1

π
ImSp

+∞
∫

−∞

dE f(E)

[

ÔG0(r, r
′;E) +

∫

dr′′ ÔG0(r, r
′′;E)∆V (r′′)G0(r

′′, r′;E)

]

. (5)

The single particle Green’s function given by the Dyson equation (4) suffices to describe the

effects of static perturbations on the system of interest. When the perturbing potential varies

in time, the evolution of the system properties can be found from the time dependent density

functional theory [14]. When the coupling to the external field is weak one can resort to the linear

response time dependent density functional theory [15] to find the first order time variations of

the charge and magnetization densities. The response is completely determined by the ground

state properties of the unperturbed ensemble which simplifies considerably the formalism and

reduces the numerical effort. Physically, the linear response theory provides a picture of “natural”

excitations and fluctuations of the system [16, 17]. Formally, the calculations involve two steps,

leading to a two-particle Green’s function, i.e. the dynamic susceptibility of the system [18].

First, one considers the Kohn-Sham susceptibility

χij
KS

(

x,x′, ω
)

=
∑

km

σi
αβσ

j
γδ(fk − fm)

ψk(xα)∗ψm(xβ)ψm(x′γ)∗ψk(x
′δ)

ω + (εk − εm) + i0+
, (6)

giving the retarded response of the formally non-interacting Kohn-Sham system. The 0+ notation

is introduced to stress that we deal with retarded quantities. fj ≡ f(ǫj) is the occupation of

state j. σ0,x,y,z
αβ are standard Pauli matrices associated with the charge and magnetization. The

induced charge and magnetization densities described by the Kohn-Sham susceptibility modify

the Hartree and exchange-correlation potential, giving rise to a self-consistent problem: the

induced densities contribute to the effective fields and are, simultaneously, induced by it. The

self-consistency is reflected in the second step of the formalism

χij
(

x,x′, ω
)

= χij
KS

(

x,x′, ω
)

+ (7)
3

∑

k,l=0

∫∫

dx1dx2χ
ik
KS(x,x1, ω)

(

Kkl
xc(x1,x2, ω) +

2δk0δl0
|x1 − x2|

)

χlj
(

x2,x
′, ω

)

.

The last equation is referred to as “susceptibility Dyson equation”, because of its characteristic

form. χ is the density-density response function of the system and describes charge neutral

excitations. It is often termed the enhanced susceptibility. The exchange-correlation kernel, Kxc,

is defined as a functional derivative of an exchange-correlation potential with respect to the

density

Kij
xc[〈σ̂σσ(x)〉]

(

x,x′, t− t′
)

=
δvi

xc(x, t)

δnj(x′t′)
(8)

evaluated at the ground state values of electronic and magnetic densities.

The enhanced susceptibility provides us with the spectrum of excited states of the system. The

spin excitations are particularly relevant for the determination of magnetic properties of ma-
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terials. For instance, the critical temperatures of magnetic transitions (Curie and Néel points)

crucially depend on the spin excitations.

The static magnetic susceptibility χ(q) can be used to determine the magnetic ordering in which

the system stabilizes below the critical (Curie or Néel) temperature Tc. The paramagnetic

state above Tc can be modelled using the disordered local moment (DLM) [19, 20] picture, in

which moments of different directions are assumed to form an alloy and are described within

the coherent potential approximation [19, 20]. Subsequently, one evaluates χ(q) [21–23] which

typically features a strong peak at the point in the Brillouin zone corresponding to the wave

vector associated with the magnetic order below Tc. A substantial strength of the method is

that it captures more correctly the electronic and magnetic properties of the system at elevated

temperatures corresponding to the magnetic phase transition which might differ substantially

from the ones evaluated at the absolute zero temperature for a fully ordered system.

The transverse magnetic fluctuations (spin-waves) can be also approximately described by means

of an adiabatic treatment of the magnetic degrees of freedom [24, 25] where one maps the spin

system onto an effective Heisenberg Hamiltonian of atomic moments which is much easier to im-

plement. These adiabatic methods utilize density functional theory and, therefore, do not involve

adjustable parameters. In this approach the existence of the single particle Stoner excitations is

neglected, but they play no role in insulating materials which are the topic of this highlight.

The Heisenberg Hamiltonian reads

H = −
1

2

∑

pr

Jprep · er, (9)

where ep ≡ Sp/Sp (Sp is the ground state magnetic moment, Sp is the size of the moment and

is always positive) and Jpr are the so-called exchange parameters. (We adopt a convention that

Jpp = 0.) One proceeds now as follows. First, one extracts the effective coupling constants Jpr

from an ab initio band structure calculation and in a second step Hamiltonian (9) is used to

study magnetization dynamics and thermodynamics, including the determination of the spin-

wave dispersion relation, the transition temperature, etc.

There are several computational schemes taking advantage of the outlined adiabatic spin dy-

namics. Using the so-called magnetic force theorem [26] one can determine directly the exchange

parameters Jpr using the Green function method:

Jpr =
1

π

EF
∫

∞

dE

∫

drp

∫

dr′rBxc(rp)G(rp, r
′

r;E)Bxc(r
′

r)G(r′r, rp;E) , (10)

where EF is the Fermi level, Bxc(r) is the exchange-correlation magnetic field, and G(r, r′;E) is

the retarded Green function. Another method, the frozen magnon approach is a formally equiva-

lent technique allowing to find directly the energies of different magnetic configurations [27]. The

matrix Jpr can be also extracted from the knowledge of the static magnetic susceptibility [28].

In the collinear systems the excited states of the Heisenberg Hamiltonian are spin-waves under the

assumption of small deviation of the moments from their ground state directions. Their spectrum

and the corresponding transverse magnetization deviations are given as the eigensystem of the
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torque matrix associated with the Heisenberg Hamiltonian

ωλe
+
λp =

∑

r

Tpre
+
λr, Tpr ≡ 2S−1

p δpr

∑

l

Jplel − 2S−1
p epJpr. (11)

The index λ labels eigenvalues. e+λp are interpreted as the spin-wave mode amplitudes on different

magnetic sites and ωλ is the spin-wave frequency.

Many oxides contain localized d- or f -electrons and cannot be correctly described within the

conventional local spin density approximation, which is designed for itinerant systems and cannot

take into account a strong on-site Coulomb interaction. As already mentioned, the self-interaction

corrected local spin density approximation [5] is a useful scheme for describing a static limit of

these correlations. In particular, it can determine whether an electron is localized or delocalized,

i.e. whether its orbital is a part of valence band or not. This leads to a determination of the

number of valence states and a nominal valence [29], as demonstrated by numerous calculation

on rare earth, actinides, transition metal oxides (TMO), including the parent compounds of the

high Tc superconductors and materials exhibiting a colossal magnetoresistance.

The so-called full SIC-LSDA scheme is rather time consuming [30], due to repeated transfor-

mations from reciprocal space (k-space) to real space to evaluate the self-interaction correction

potential and then back transformation to k-space to solve the band-structure problem. So

far most applications of the full SIC formalism have been performed with the SIC-LMTO-ASA

band-structure method [12,31, 32]. Later we have introduced a numerically simpler scheme, the

so-called local SIC (LSIC), [33] implemented in the multiple scattering KKR code, which has

opened up a new range of applications via its use of an alloy analogy and the coherent potential

approximation (CPA), where a description of valence and spin fluctuations is warranted. The

LSIC is based on the observation that more than 98% of the electron is localized on a site under

consideration. In the vernacular of scattering theory a localized state is characterized by a very

sharp resonance in its phase shift, associated with a large Wigner-delay time on that site. This

allows us to use a single-site approximation, within multiple scattering theory, to determine the

SIC charge density and potential. One of the advantages of the multiple-scattering implementa-

tion of the SIC formalism is that it can be easily generalized to include the coherent potential

approximation, extending the range of applications to random alloys. In addition, one can use

it to treat static correlation beyond the LSDA by studying pseudoalloys whose constituents are

composed e.g. of two different states of a given system: one delocalized, described by the LSDA

potential, and another localized, corresponding to the SIC-LSDA potential. Combined with the

disordered local moment formalism for spin fluctuations [19, 20] to describe magnetic properties

at finite temperatures, this also allows for different orientations of the local moments of the

constituents involved.

A very important input for the determination of the electronic structure and its derived properties

is the atomic structure, i.e. lattice constants, atomic positions, chemical composition, defects etc.

We combine experimental and theoretical methods to access this information. A very valuable

information is provided by XMCD experiments which we can fit to theoretical models using a

fully relativistic LMTO band structure code [12, 34]. Additionally, structural properties can be

extracted from LEED and x-ray diffraction (XRD) experiments [35]. On the theoretical side we
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resort to a multi-code approach. Several pseudopotential codes (e.g. VASP [36,37]) are used to

relax the atomic positions by minimizing the total energy.

3 Transition metal monoxides

The 3d transition metal monoxides (TMO’s) exhibit a rich variety of electronic and magnetic

phenomena, and they justly have attracted a lot of attention over the last decades, in particular

concerning the nature of the band gap and excitation spectrum in general. In the ground state the

TMO’s crystallize in the rock-salt structure and exhibit antiferromagnetic ordering of type 2 (AF

II), with planes of opposite spins being repeated in alternating order along the [111] direction,

defining two sublattices consisting of spin-up and spin down metal ions, respectively. The TMO’s

are Mott-Hubbard insulators (some of them are also of charge-transfer type) and belong to the

class of strongly correlated systems. The origin of correlations in TMO’s is a strong Coulomb-

repulsion on the transition metal sites, which leads to localization of electrons and insulating

behavior even though the d-bands are partially filled. Due to the highly correlated nature of the

electron interaction in the TMO’s, theoretical investigations employing first-principles methods

to describe the electronic structure of these materials are difficult. The LSDA approximation fails

to describe correctly certain properties of these oxides, predicting too small magnetic moments

and gaps or even metallic behavior for CoO and FeO. Several approaches beyond the LSDA

approximation have been applied for a realistic description of the TMO’s. Among them is the

LDA+U method [6], which achieves an effective Hubbard-splitting of d-bands using an effective

Hubbard-U parameter. Another promising method appears to be the LDA+DMFT approach,

which combines band structure and many-body theory, the dynamical mean field theory [9].

However, as mentioned earlier, these methods suffer from uncertainty of the external parameter

U, which is difficult to obtain from first-principles, and the so-called double counting term. In

contrast to these methods, the SIC-LSDA approach provides indeed a parameter free ab-initio

description for the electronic structure of the TMO’s. Several investigations of TMO’s within

the SIC approximation have been performed during the last decades [31, 32, 38–40]. Applying

this approach to TMO’s yields an improved electronic structure of these compounds which is

then manifested in magnetic moments and band gaps, showing an adequate agreement with

experiments. A significant finding is an explanation of how large insulating gap can persist into

the paramagnetic state on account of disordered local moments.

3.1 Electronic structure

In our recent studies [38–40] we investigated electronic and magnetic properties of TMO’s within

the LSIC formalism [33]. One goal of these studies was to explore the consequences of applying

LSIC to TMO’s, since the LSIC is an approximation to the full SIC implementations. We found

that the LSIC can describe trends for many physical properties of these compounds and compares

well with full SIC implementations [31, 32]. First of all, we performed total energy calculations

for all possible valence configurations localizing particular electron 3d-states by applying to these

the self-interaction corrections. In agreement with other SIC calculations, we found the lowest

total energy corresponding to the transition metal valence of 2+, which corresponds to fulfiling
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the Hund’s first rule, namely maximizing the spin moment. In the case of NiO, all d-electrons

in one spin channel and 3 t2g electrons in another spin channel are localized and have to be

self-interaction corrected. The density of states of NiO, calculated within the LSIC-LSDA KKR

method, is in good agreement with results, obtained with the full SIC-LSDA LMTO implemen-

tation (Fig.1). The same trend was found for the other compounds of the TMO series [39].
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Figure 1: Density of states of NiO calculated with the SIC-LSDA-LMTO (blue line) and LSIC-
LSDA KKR (black line) implementations for the low temperature anti-ferromagnetic state. The
SIC results of two different implementations are very similar [39].

Other properties of TMO’s are compared in Table 1. The results show a significant improvement

of the SIC-LSDA calculations of the equilibrium lattice constant, local magnetic moment, and the

band gap in comparison to the LSDA approach. For all TMO’s the equilibrium lattice constants,

obtained within the LSDA, are too small, while our LSIC-LSDA calculations overestimate them

slightly, but show the correct trend for the whole series. The same trend can be seen for local

magnetic moments on the transition metals, which are getting larger in comparison to the LSDA

results and are in good agreement with the experimental values except for CoO (this is due to

missing the spin orbit coupling which should increase the moment). Our local moments are also

comparable to the results obtained with the full SIC-LSDA LMTO implementations. The LSIC-

LSDA approach increases systematically the size of the band gaps for all TMO’s. However,

the band gap is an excited state property and can not be correctly described with the SIC-

LSDA method, since the latter is designed for the description of the ground state. Nevertheless,

unlike in other local DFT approximations, in the SIC-LSDA formalism there is a contribution

to the magnitude of the band gap from the discontinuity of the exchange-correlation potential,

in particular when the states defining the gap are SI corrected.
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Table 1: Lattice constants, local magnetic moments and the band gaps for the series of tran-
sition metal oxides of our implementation, two other implementations and the corresponding
experimental values. The values in round brackets for the magnetic moment are calculated at
the experimental lattice constant.

Compound
MnO FeO CoO NiO CuO

lattice constant [Å]
LSDA KKR 4.27 4.13 4.05 4.01 4.08
SIC-LSDA KKR 4.49 4.39 4.31 4.24 4.27
Expt. 4.446 [41],4.44 [42] 4.326 [43] 4.26 [42,44] 4.176 [45],4.17 [42] 4.245 [44]

local magnetic moment on TM [µB]
LSDA KKR 4.11(4.27) 3.26(3.40) 2.20(2.33) 0.85(0.97) 0.00(0.00)
SIC-LSDA KKR 4.63(4.60) 3.68(3.66) 2.69(2.68) 1.68(1.67) 0.76(0.76)
Expt. 4.79∗,4.58∗ 3.32∗ 3.35∗ [46], 3.8∗ 1.77∗,1.64∗,1.90∗ 0.65∗

SIC-LSDA LMTO [31] 4.49 3.54 2.53 1.53 0.65
SIC-LSDA LMTO [32] 4.64 3.55 2.59 1.49 0.64

bandgap [eV]
LSDA KKR 0.83 (0.73) 0.00 (0.00) 0.00 (0.00) 0.23 (0.23) 0.00 (0.00)
SIC-LSDA KKR 3.07 (3.25) 3.38 (3.54) 2.78 (2.81) 3.56 (3.76) 1.52 (1.57)
Expt. 3.6-3.8∗ 2.4 [47],2.5 [48] 2.4∗ 4.3∗,4.0∗,4.3 [49] 1.37∗

SIC-LSDA LMTO [31] 3.98 3.07 2.81 2.54 1.43
SIC-LSDA LMTO [32] 3.57 3.25 2.51 2.66 1.00
∗ taken from ref. [31], for detailed references see references therein.

3.2 Exchange interaction and transition temperature

Here we discuss magnetic exchange interactions of MnO, FeO, CoO, and NiO. The exchange con-

stants Jpr, which enter the Heisenberg Hamiltonian (9), can be directly estimated from Eq. (10)

using the Green function method [26]. In our study [40], the Green function was calculated

for the ground state (the AFII structure with the equilibrium lattice constants from Table 1).

The corresponding exchange constants Jij were obtained for the first 11 neighbour shells. As

expected, only the first two of them, J1 and J2 are of relevance, which agrees well with the idea

of the super-exchange mechanism. The Jpr can be as well extracted from the total energy differ-

ences for a number of magnetic structures and mapping them onto the Heisenberg Hamiltonian.

In this approach the total energies of the TMO’s in the ferromagnetic (FM) and antiferromag-

netic AFI and AFII configurations are taken into account. The AFI structure is characterized by

oppositely magnetized planes which are stacked along the (001)-direction, while in the AFII the

planes are stacked along the (111)-direction. The mapping onto the Heisenberg Hamiltonians

yields

J1 =
1

16
(EAFI − EFM) (12)

and

J2 =
1

48
(4EAFII − 3EAFI − EFM ) , (13)

where J1 describes the interaction between the nearest neighbours and J2 that of the next

nearest neighbours. The choice of the three above mentioned structures restricts the method

to the determination of J1 and J2 only. Using more magnetic structures and hence calculating

more exchange parameters is in principle possible. However, due to the nature of the present

exchange mechanism, the super-exchange, this has usually not been done.

The Jij , obtained with these two approaches, are shown in Table 2, in which we compare the
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calculated exchange constants with the experimental results. From Table 2 one finds that the J2

parameters constitute the major part of magnetic exchange in TMO’s and that in magnitude they

agree reasonably well between the two theoretical approaches, the magnetic force theorem (MFT)

and ∆E, energy difference, methods. The results are about 70-80% of the experimental values,

except for FeO, where the agreement for the MFT J2 is almost perfect and the ∆E is larger

than the experimental one. This rather accidental agreement can be attributed to the fact that

the experimental values were measured for Wüstite samples Fe1−xO with x 6= 0 [50]. However,

both theoretical approaches provide the experimental trend of an increase of the absolute value

of J2 across the TMO series, which can be associated with the increasing number of 3d electrons,

responsible for the magnetic exchange.

The situation is very different for the J1 exchange parameters. From our results in Table 2

one can see that, with the exception of NiO, the absolute magnitudes of J1 are, within about

30%, similar for the two theoretical approaches, but the sings are opposite. The results of the

MFT calculations show the opposite trend to that found for J2: the antiferromagnetic coupling

is getting weaker as one moves from MnO to CoO, and in NiO it becomes ferromagnetic. The

reason for this is a competition between a direct and an indirect exchange between the nearest

neighbour TM atoms. In the case of MnO, the Mn atom has half-filled d shells that leads to

antiferromagnetic coupling since an electron hopping from one Mn to the other one keeps its

spin. Moving across the TMO series the occupation of the minority spin channel is growing.

This increases the probability of an electron hopping, if the nearest neighbour TM atoms are

ferromagnetically aligned. The indirect exchange between nearest neighbour TM atoms can be

explained within Goodenough model [51]: nearest TM neighbours interact antiferromagnetically

when two electrons in the same oxygen p or s orbital are excited to the empty TM eg orbitals.

The strength of this interaction does not change much across the TMO series since the occupation

of both the oxygen p or s and the TM eg orbitals is almost constant. On the other hand, the

ferromagnetic coupling is provided by electrons of alike spin that are in different orbitals of the

oxygen atom. Its strength grows with the occupation of t2g orbitals, which is rising across the

TMO series from MnO to NiO. Thus, the antiferromagnetic coupling does not change much,

while the ferromagnetic interaction increases with the occupation of the 3d shells of TM atoms,

which can be clearly seen in the MFT values for J1 in Table 2.

Next, we discuss the transition temperatures of TMOs. The transition temperature can be

calculated from different approximations. In our work we used the mean-field approach (MFA),

the random phase approximation (RPA) [52] and Monte Carlo (MC) simulations. In addition,

we estimated the Néel temperatures of TMOs using the DLM method [19, 20]. The calculated

transition temperatures are presented in Table 3. One finds that the MFA overestimates the

experimental Néel temperatures, whereas RPA underestimates them, which is expected from the

general consideration [53]. One can also see that the Néel temperatures calculated with J1 and

J2 only do not differ significantly from those calculated using 11 neighbour shells, supporting

the idea of superexchange. The RPA and MC results for MnO and FeO are relatively small in

comparison to experiment. This can be explained by an underestimation of exchange constants

since the SIC-LSDA can slightly overestimate spatial localization of 3d orbitals. The DLM

results are, with the exception of NiO, in good agreement with experimental values. The trend

of the DLM calculations is opposite to the RPA and MC results, namely the ratio TDLM
N /Texp

N
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becomes smaller with increasing atomic numbers. This could be due to not taking into account

the quantum character of the system, which in the present calculations have been approximated

by the factor (S + 1)/S, where S is determined according to Hund’s rules.

Table 2: The exchange parameters, Ji, in meV, with i being the shell index, for the first two
shells of all the studied TMOs and both the magnetic force theorem (MFT) and ∆E, energy dif-
ference, methods. The experimental (exp.) values are given in the leftmost column, respectively,
according to the Hamiltonian in Eq. (9). For i > 2, the absolute magnitudes of the Ji’s for all
the TMOs have been less than 0.1meV. For both the MFT and ∆E approaches the calculated
equilibrium lattice constants from Table 1 have been used.

J1 J2TMO
exp. MFT ∆E exp. MFT ∆E

MnO -2.06, -2.64 [54] -0.91 0.68 -2.79 [54] -1.99 -1.65
FeO 1.04, 1.84 [50] -0.65 0.48 -3.24 [50] -3.17 -3.50
CoO 0.70 [55], -1.07 [56] -0.32 0.53 -6.30 [55], -5.31 [56] -4.84 -4.40
NiO -0.69 [57], 0.69 [58] 0.15 1.42 -8.66 [57], -9.51 [58] -6.92 -6.95

Table 3: Summary of the Néel temperatures calculated with the Jij from the MFT approach (see
Table 2). In the top two rows the experimental and the DLM values are listed, followed by the
RPA values based on the interaction of the first 11 TM-TM-shells and of only the nearest and
next-nearest neighbours (i.e. only J1 and J2). In rows 5 and 6 the MFA results shown, again
using 11 or 2 shells, respectively. In the last row the results of the Monte Carlo simulations are
presented.

TN [K] MnO FeO CoO NiO

Experiment 118 192 289 523
DLM [38] 126 172 242 336
RPA with J1−11 81 146 252 440
RPA with J1,2 87 155 260 448
MFA with J1−11 122 210 362 628
MFA with J1,2 129 221 373 644
MC 90 162 260 458

3.3 Magnon spectra

Based on the obtained exchange constants, we calculated the magnon spectra of all studied

TMO’s, shown in Fig. 2 together with the experimental results. Generally, the agreement between

the calculated magnon dispersion curves and the experimental observations is good. On the

whole, the theoretical curves underestimate the experimental energies, except for FeO, which is

due to the underestimation of the J2 parameters. The relative magnitude of the peak along [qqq]

varies strongly, as one goes through the TMO’s series, This effect can be ascribed to the changing

ratio of J2/J1. The results, presented above, were obtained at T=0 K. In a ferromagnet at T=0 K

the electronic band structure is spin-polarized. With increasing temperature, spin fluctuations

are induced, which eventually destroy the long-range magnetic order and hence the overall spin

polarization. These collective electron modes interact as the temperature increases, depending

upon and affecting the underlying electronic structure. For many materials, including magnetic

semiconductors, the magnetic excitations can be modelled by associating local spin-polarization

axes, {ê}, with all lattice sites which vary very slowly on the timescale of the electronic motions.
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These local moment degrees of freedom produce local magnetic fields on the lattice sites which

affect the electronic motions and are self-consistently maintained by them. By taking appropriate

ensemble averages over the orientational configurations, the system’s magnetic properties can be

determined. In particular, consideration of spin fluctuations above the transition temperature

(paramagnetic state) can provide information about the type of ordering that is likely to occur

as the temperature is lowered through a phase transition. This can be done within the DLM

formalism as it is implemented within the multiple scattering theory [19, 20]. The disordered

local moment method sets up a mean field treatment without the intermediate step of fitting to

an effective Heisenberg model. It uses the CPA to average over the local moment configurations.

By considering the response of the paramagnetic state, where the local moments have the same

probability of being oriented in any direction, to an external magnetic field the onset of magnetic

order and magnetic transition temperature can be determined. The resulting susceptibility has

the form χ(q) = µ2/(3kBT − S2(q)), where S2(q) is the direct spin correlation function.

In Ref. [38], we applied the DLM method to study paramagnetic spin fluctuations of TMO’s. In

particular, we investigated wavevector dependence of the susceptibility χ(q) taking into account

the electronic correlations within the SIC-LSDA method. In Fig. 3, we present the results of

our paramagnetic susceptibility calculations for MnO. These show the paramagnetic state to

be dominated by spin fluctuations with wavevector qmax=(0.5,0.5,0.5) (in units of 2π/lattice

constant). This indicates that the system will order into an antiferromagnetic type II structure,

where moments within a 〈111〉 layer are aligned but are antiparallel in successive layers. This

concurs with the experimentally observed ground state of this system and also T=0 K calcula-

tions [39], where the most stable structure was determined by comparing the total energies of

different magnetic configurations.
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Figure 3: Paramagnetic susceptibility of MnO, as a function of wave vector k.

We examine the temperature dependence of the static spin susceptibility χ(q), in particular
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line) and O sites (dashed). The upper (lower) panel shows the DOS associated with electrons
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looking for a divergence which would signify that paramagnetic state becomes unstable with

respect to the formation of a spin density wave, characterized by the wavevector qmax. For the

theoretical (experimental) lattice parameters, such a divergence occurs at 102 K (103 K). This

mean field estimate of the Néel temperature is in good agreement with the experimental value

of 118 K. The Néel temperatures of other TMO’s are presented in Table 3 and were already

discussed above.

Finally, it is perhaps useful to add here, that combining DLM with LSIC leads also to a well

defined band gap in the paramagnetic state of TMO’s, whose magnitude is very much the same as

in their AFII ground states. [38] This shows that in SIC-LSD band gaps can be obtained without

imposed magnetic order and that at high temperatures our DLM-LSIC approach competes well

with the LDA+DMFT approach. To demonstrate this in Figure 4 we show the local DOS for

the paramagnetic DLM state of MnO, where an exchange-splitting is evident. Of course, when

an average is taken over all local moment orientations, the electronic structure does not have an

overall spin-polarisation. Nevertheless, it is possible to identify such ‘local exchange splitting’

experimentally, using photoemission and inverse photoemission techniques. The local moment

obtained for the Mn sites in the DLM paramagnetic state differs from that in the groundstate

by ≈ 0.03µB (see the table above). Such a small change between the ordered (zero temperature)

and disordered (high temperature) states justifies our DLM picture, where the magnitude of

the ‘local exchange splitting’ is independent of the orientational configurations of the moments.

Furthermore this feature is the cause of the spin-summed electronic structure showing little

difference between the paramagnetic state above TN and the magnetically ordered ground state.

Notably a sizeable band gap at the Fermi energy persists into the paramagnetic phase as found

experimentally.
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Figure 5: The electronic structure for MnO in its paramagnetic (DLM) state along symmetry
directions. The loci of the peaks of the Bloch spectral function are displayed and the shading
shows the broadening of these quasi-particle peaks caused by the spin fluctuation disorder.

Figure 5 shows the electronic structure of the paramagnetic (DLM) state in more detail and

demonstrates the wave-vector, k, dependence of the local exchange splitting. This figure is

constructed from calculations of the Bloch spectral function, AB(k, E). For non-interacting

electrons in an ordered system at T = 0K, AB(k, E) comprises a set of Dirac delta functions

which trace out the electronic band structure. When electron interaction, finite temperature or

disorder effects are included the spectral function is a set of broadened peaks describing quasi-

particle excitations. The broadening of the peaks shown in Figure 5 is a consequence of the local

moment disorder in the paramagnetic state [38].

4 Diluted magnetic oxides

Diluted magnetic oxides (DMO’s) are promising materials for a new class of devices, based on the

use of both charge and spin degrees of freedom. DMO’s are wide band gap insulating semicon-

ductors, which are usually doped with transition metals. The physical mechanisms underlying

ferromagnetic order in these systems are still elusive, although in the meantime some consensus

has been reached that ferromagnetic ordering might be intrinsic in nature and not simply re-

lated to the precipitation of metallic clusters. The presence of magnetic ions can influence the

free carrier behavior through the sp − d exchange interaction between the localized magnetic

moments and the spin of the itinerant carriers [60]. Parallel to spectroscopic evidence that tran-

sition metals are substituting cations of the oxide, several mechanisms for the stabilization of

ferromagnetism were discussed, involving an indirect carrier-mediated exchange mechanism [60],

the percolation of polarons [61, 62], or the presence of uncompensated spins at the surface of

nanocrystals [63]. Using SIC-LSD approximation we have investigated the ground state valency

configuration of transition metal (TM=Mn, Co) impurities in p− and n−type ZnO. [64, 65] We
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have found a stable localized TM2+ configuration for a TM impurity in ZnO, if no additional hole

donors have been present. This configuration has been energetically favoured over the itinerant

d−electron configuration of the local spin density picture. Our calculations indicate furthermore

that the (+/0) donor level is situated in the band gap, in agreement with experiments, [66, 67]

as a consequence of which the TM3+ becomes more favourable in p−type ZnO, where the Fermi

level EF is positioned near the top of the valence band. In this scenario, modelled here by co-

doping with N, the additional delocalized d−electron charge transfers into the entire states at

the top of the valence band, and hole carriers will only exist, if the N concentration, [N ], exceeds

the TM impurity concentration, [TM ]. This implies, that the applicability of the Zener model,

as proposed by Dietl et al., [68] can only be valid in the case when [N ] > [TM ]. Since, however,

co-doping with N has revealed itself to be a difficult task, [69] fulfilling the latter criterion con-

stitutes a considerable hurdle with regard to actually synthetising these DMS. For the n−type

conditions, with the Fermi energy EF close to the conduction band minimum, TM impurity

remains in the 2+ charge state.

There has been extensive search to find DMO’s that are ferromagnetic at room temperature.

Much attention was devoted to materials based on ZnO, which was identified as one of the

promising candidates for transparent electronic applications owing to its exciting optoelectronic

properties. Several groups have reported the observation of room temperature ferromagnetism

in TM-doped ZnO based systems. Unfortunately, many of these results are not or hardly re-

producible, which demonstrates an incomplete understanding of the underlying mechanism of

magnetism of these systems.

One of the main difficulties of theoretical considerations of DMO’s is a lack of information

about the crystal structure and their chemical composition. Usually DMO’s are fabricated using

epitaxial-growth technologies under far from equilibrium conditions. Therefore, an exact deter-

mination of their crystal structure is often not possible either with experiments or first-principles

methods. One way to get more insight is a comparison of particular properties of DMO’s, found

by first principles simulations, with experiment. First-principles method can often provide an

adequate description of many observable phenomena. The crystal structure can be used as a

parameter in such simulations. Varying atomic positions and the chemical composition, one

can achieve an acceptable fit of a particular observable quantity. The structural information,

obtained in this way, can be used for investigations of other properties of the considered sys-

tem. One of the observable quantities, which can be adequately calculated for many systems

from first-principles, is the x-ray absorption spectrum (XAS) as well as x-ray magnetic circular

dichroism (XMCD), which is the difference of the x-ray absorption spectra with opposite (left

and right) directions of circular polarization.

4.1 A study of (Zn,V)O

As an example of such complementary investigations, we demonstrate here a study of structural,

electronic and magnetic properties of (Zn,V)O diluted magnetic oxide. This system was stud-

ied by several experimental groups using x-ray absorption (XAS) and x-ray magnetic circular

dichroism (XMCD) experiments. The XAS was measured at the V K edge [70] and field and

temperature dependences of the XAS and XMCD spectra at the V L2,3 edges in the (Zn1−xVx)O
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(x=0.05) were reported by Ishida et al. [71]. They found a linear increase of the XMCD sig-

nal with external magnetic field H which indicates that the paramagnetic signal dominates the

XMCD signal and that the ferromagnetic component is small, consistent with their magnetization

measurements. The majority of the V ions were presumably strongly coupled antiferromagnet-

ically. They estimated that ∼10% of the V ions were paramagnetic, ∼90% were presumably

strongly coupled antiferromagnetically, and the ferromagnetic component was below the detec-

tion limit of XMCD. In our study we simulate the XAS and XMCD spectra from first-principles

using the crystal structure, the chemical composition and the magnetic order as external pa-

rameters. The obtained information is used for the extensive study of electronic and magnetic

properties of (Zn,V)O DMO’s.
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Figure 6: Schematic representation of the (Zn,V)O structure with two substituted V atoms with
the largest possible V–V for a giving concentration interatomic distance (see the text).

In Fig. 6 we show the supercell of the wurtzite-type ZnO unit cell with one or two of the Zn ions

replaced by V. Previous experimental and theoretical studies suggest that there is no clear site

preference for the V atoms in bulk ZnO and V doping in ZnO is almost homogeneous. The substi-

tutional (Zn1−xVx)O positions are illustrated in Fig. 6 for a 36-atom ZnO unit cell containing two

substitutional V atoms (x=0.1111) for the largest possible V–V interatomic distance of [ 5.53]Å.

The crystal structure was optimized using the Vienna ab initio simulation package (VASP). [36]

The crystal structure obtained with the VASP code served as input in the calculations of x-ray

absorption and dichroism spectra within an fully relativistic LMTO implementation [34].

Since the real structure and chemical composition of (Zn1−xVx)O was not known, we performed

numerous calculations fitting XAS and XMCD spectra to the experimental results. The fitting

parameters were positions of V atoms, Zn excess atoms, various oxygen vacancies and the mag-

netic order of V atoms. The best fit is shown in Fig. 7, which presents the calculated XAS as well

as XMCD spectra of the (Zn1−xVx)O DMS (for x=0.1111) at the V L2,3 edges compared with

the experimental data. [71] In this model, V atoms substitute cations and are antiferromagnetic

to each other. Thereby, they are positioned at the largest possible V1–V2 distance of [ 5.53]Å

(see Fig. 6). A relevant XMCD signal is possible only in the presence of oxygen vacancy located

in the first neighbourhood of the second V2 atom along z direction (see Fig. 6). Adding Zn excess

atoms also improves the agreement between the theory and the experiment.

The X-ray absorption spectrum at the V L3 edge is rather complicated and consists of two

major peaks c and d at the [ 515.6]eV and [ 517]eV, respectively, with two low energy additional
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shoulders a and b at the [ 513.8]eV and [ 514.6]eV and a high energy shoulder at the [ 518]eV. As

can be seen from the top panel of Fig. 7 the calculations for an ideal crystal structure with two

substituted AFM ordered V1 atoms (full green curve) provide a correct description of the x-ray

absorption intensity only for the peak c and shoulder b. The full explanation of the spectra is

possible only if crystal imperfections are taken into account.
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Figure 7: (Color online) Top panel: theoretically calculated (thick full black line) and experi-
mentally measured [71] (circles) x-ray absorption spectra of (Zn1−xVx)O at the V L2,3 edges.
Full green line presents the x-ray absorption spectrum without any additional defects. Dashed
blue and dotted red lines present the XA spectra with the oxygen vacancy and Zn exceed atom,
respectively. Bottom panel: theoretically calculated (thick full black line) and experimentally
measured [71] (circles) XMCD spectra at the V L2,3 edges. Dashed blue and dotted red lines
present the XMCD spectra with the oxygen vacancy and Zn exceed atom, respectively.

For a better understanding of electronic and magnetic properties the electronic structure of

(Zn1−xVx)O was studied in three different configurations: (i) the ideal wurtzite structure with

ferromagnetically ordered V, and the model, elucidated from the XAS and XMCD experiments,

with antiferromagnetically ordered V in presence of an oxygen vacancy in (ii) ideal and (iii) re-

laxed geometries.

Figure 8 presents total and partial density of states for a 36-atom ZnO wurtzite unit cell con-

taining one V substitution (x=0.06) in the LSDA (model (i)). The O s states are located mostly

between [ −21.0] to [ −19.7]eV below the Fermi level and the p states of the O are found between

[ −9.6]eV to [ −3.0]eV. The spin splitting of the O p states is quite small. Zn d states occupy the
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energy interval between [ −9.6] and [ −3.0]eV and hybridize strongly with the O p states.

The magnetic moment in the (Zn,V)O unit cell is [ 2.088]µB . Our band structure calculations

yield a spin magnetic moment of [ 1.920]µB for the V atoms in (Zn1−xVx)O (x=0.06). The

induced spin magnetic moments at the O first neighbour sites are [ 0.004]µB , and [ −0.003]µB ,

for longer and shorter distant O atoms, respectively. Twelve Zn ions in the second neighbour shell

couple ferromagnetically to the substituted V ion with spin magnetic moments from [ 0.034]µB ,

to [ 0.068]µB . The orbital moments at the Zn and O sites are small with the largest one at the

O first neighbour sites ([ 0.001]µB). The orbital magnetic moment at the V site is [ −0.082]µB

and is antiparallel to the spin moment.

Figure 9 presents vanadium d and oxygen p partial density of states for (Zn1−xVx)O wurtzite

unit cell containing two V substituted atoms (x=0.1111) ordered antiferromagnetically and one

oxygen vacancy near the V2 atom (see Fig. 6), at close vicinity of the Fermi level. The oxygen

vacancy has four nearest neighbours atoms: three Zn atoms at a distance of [ 1.9496]Å and one

V atom at [ 1.9505]Å. The vacancy does not affect much the energy distribution of the partial

DOS’s without taking into account the lattice relaxation (model (ii), full blue lines in Fig. 9).

However, it strongly affects the shape and energy position of the partial DOS’s for the relaxed

lattice (model (iii), dashed red curves) placing V2 d states right to the Fermi level and V1 d

states in its close vicinity. The lattice relaxation causes a shift of the V2 atom and three Zn

atoms the towards vacant place by the [ 0.14]Å and [ 0.26]Å, respectively.

The structural model, elucidated from our XAS and XMCD simulations, was utilized for calcu-

lations of the corresponding electronic structure and exchange parameters using the KKR Green

function method in the multiple scattering representation. [72] The schematic representation of

the exchange interaction between the magnetic moments of the nearest neighbours is shown in

Fig. 10.

The strongest magnetic interactions were found between V atoms only if there is either an oxygen

atom or an oxygen vacancy in between (see Fig. 6 and Fig. 10(a,b) respectively). Thereby,

one can distinguish two different vanadium atoms: V1 far from and V2 close to an oxygen

vacancy. The exchange interaction between V1 and V2 atoms is very small since the atoms are

separated by [ 5.53]Å and there is no connecting atom in between (see Fig. 6 and Fig. 10(c)).

The exchange interaction in V1–V1 is mediated mainly by the oxygen between the vanadium

atoms and is positive leading to a ferromagnetic order for this pair (see J11
01 at zero relaxation

in Fig. 11(b)). This changes if the oxygen is replaced by a vacancy (V2–V2 pair) in accordance

with our structural model. Removing the oxygen atom kills the exchange interaction between

the neighbouring vanadium moments (see J22
01 at zero relaxation in Fig. 11(b)). However, the

atoms around the vacancy experience strong relaxations and this promotes an antiferromagnetic

order for this pair. Our simulations show that the exchange interaction is very sensitive to these

atomic movements. We found that most substantial changes of Jij occur when the neighbouring

Zn atoms move towards the vacancy (see inset in Fig 11), while relaxations of V and O atoms

are insignificant for the magnetic interaction. According to our structural optimizations the

shift of the Zn atoms is about [ 0.26]Å. Due to these relaxations, the exchange parameters

between the first neighbours J22
01 were changed from ≈[ 0]meV in the non-relaxed geometry to

−16 meV. The interaction between the second neighbours experiences also significant changes and
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Figure 10: Schematic representation of magnetic interactions between V atoms in (Zn1−xVx)O:
(a) two V atoms substituting Zn positions with an oxygen in between. (b) two V atoms within
an oxygen vacancy in between; (c) V1–V2 pair (see the text for explanation). The dashed line
in (b) shows ideal wurtzite structure.
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Figure 11: Critical temperatures (a) and exchange parameters (b) for (Zn1−xVx)O calculated
for various positions of atoms around an oxygen vacancy. Inset shows scheme of movements of
Zn atoms towards to the vacancy.
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is positive at the relaxed geometry. This suggests that the V2–V2 pair with an oxygen vacancy is

antiferromagnetic. The vanadium pairs V1–V1 without oxygen vacancies remain ferromagnetic,

although the value of the exchange parameters J11
01 reduced from [ 5.8]meV in the non-relaxed

case to [ 2.6]meV after relaxations. The critical temperature, estimated within the random phase

approximation, is about [ 120]K in the relaxed geometry.

The most important question is why the relaxations of Zn atoms around the vacancy lead to

such substantial changes of magnetic interactions. The Zn states are deep in the valence band

and do not hybridize with the V states which are located close to the Fermi level (see Fig. 8).

Relaxations of oxygen atoms were found to be very small and do not change magnetic properties

of (Zn1−xVx)O. However, the hybridization between V 3d and oxygen 2p states is strongly

affected by the relaxations of Zn atoms (see the partial DOS in Fig. 9), which is evidently crucial

for the magnetic interactions in this system. Our analysis of the DOS and occupation numbers

yields a significant increase of the hybridization between V 3d and O 2p states. This is governed

by stronger d–d hybridization between Zn atoms moved towards the vacancy and, at the same

time, due to a decrease of hybridization between these Zn 3d and O 2p states.

4.2 Mn-doped zirconia

In the wake of Dietl’s prediction [68] that ZnO should become ferromagnetic when doped with

a transition metal and the experimental discovery of room temperature ferromagnetism in Co-

doped titania films, there has been considerable experimental and theoretical work on some other

DMO. As well as a high TC , a useful attribute of any DMO for a good spintronics material is

a large spin polarization (difference between the majority and minority spin density of states

at the Fermi energy). The material must also be easy to fabricate, stable and compatible with

conventional semiconductors and metals. Based on state of the art ab-initio electronic structure

calculations [73] we proposed that Mn-doped cubic zirconia, well-known both as a catalyst and

also as synthetic diamond is a promising spintronics material.

Pure ZrO2 is one of few high dielectric constant and wide-gap insulators and is known to be ther-

mally stable on SiGe. It is being investigated as an insulating gate in complementary metal-oxide

semiconductor field effect transistors. The cubic phase is stabilized at room temperature by the

addition of 3 to 40 mol% MnO to ZrO2 [74]. Our calculations show that manganese-stabilised cu-

bic zirconia remains ferromagnetic to reasonably high temperatures. Epitaxial growth of zirconia

thin films on Si, SiGe and Ge substrates is now easily achievable [75,76] and of sufficient quality

to be important for future low-leakage transistors with vertical channels. From the characteri-

zation of ZrO2 on Si, SiGe and Ge it seems that ZrO2 meets all requirements for incorporation

into a field effect transistor device.

Thanks to the commercial applications much is known about cubic zirconia. The cubic phase of

ZrO2, which exists between 2370◦C and the melting point, has the fluorite structure with each

metal ion in regular 8-fold coordinated sites. When doped with other binary oxides, such as Y2O3

or MnO, the cubic phase of zirconia can be stabilised below 1000 K down to room temperature.

Cubic zirconias are also well known as synthetic substitutes for diamond. For instance, Mn-ZrO2

has green or violet colour due to Mn electronic states in the fundamental band gap of ZrO2.

Here the Mn impurities substitute some of the host Zr sites and up to 40% doping has been
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achieved [74].

The essential part of our study concerns the effects of thermally induced magnetic fluctuations

upon the electronic structure and the estimate of TC . The CPA is used also to handle both the

local moment disorder as well as the location of the randomly distributed magnetic impurities.

For a ferromagnet kBTC = S2(0)/3. We complement these calculations with further ones based

on the KKR technique, in which periodic boundary conditions are imposed on a 12-atom fluorite

supercell. This allows us to study the effect of short-range order of the magnetic impurities.

Fig. 12 shows our estimates of TC of (Zr(1−x) Mnx)O2 for the range of concentrations x at

experimental lattice constants using our KKR-CPA techniques and DLM theory. TC rapidly

increases to well above room temperature as x is raised above 5%. At 25% TC is 570 K (the

figure also shows the estimate of TC from the difference in total energies of the ferromagnetic

and paramagnetic DLM states). The spin-resolved DOS of Mn-ZrO2 (Fig. 13) in its FM state

shows a pronounced half-metallicity. Its origin comes from the Hund’s rule that the majority

spin 3d impurity states are fully occupied. The minority spin states lie partially in zirconia’s

fundamental band gap. For each spin, there are two impurity DOS peaks above the top of

the valence band separated by the pseudogap, which can be associated with the eg-t2g-splitting

expected from a simple ligand field model of the bonding in cubic ZrO2.

Fig. 14 shows the dependence of the calculated TC on volume and Mn concentration x. The lat-

tice parameter of zirconia decreases from 5.11 Å to 5.044 Å at 30 at.% Mn [74]. The theoretical

values (also in Fig. 14) are in reasonable agreement with the experiment, typically underesti-
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mating the equilibrium volume by ∼5%. (The use of the generalised gradient correction to the

LDA would result in better agreement whilst affecting our key conclusions for the magnetic

properties.)

The important part of our investigation concerns the sensitivity of the magnetism in Mn-ZrO2 to

the presence of oxygen vacancies. The inset of Fig. 12, shows our KKR-CPA calculations of the

TC of 25% Mn-ZrO2 as a function of the O vacancy concentration from the difference in total

energies of the ferromagnetic and paramagnetic states. TC remains high when there is up to one

oxygen vacancy for every three Mn (4y <33%). Beyond that TC decreases near linearly so that

when the number of vacancies approaches the number of Mn impurities (4y >65%) the system

is no longer ferromagnetic. For 4y=50%, the system, comparable to that of Y-stabilized zirconia

where each pair of yttrium impurities creates one vacancy, should still be ferromagnetic and

a half-metal. Consideration of both the oxidation state of the Mn-impurities and the number

of extra electrons provided by this doping indicates that the number of oxygen vacancies in

Mn-ZrO2 should be less than in Y-ZrO2 and TC well above room temperature.

Therefore, the ab initio based theory anticipates that manganese stabilised cubic zirconia can

become a room-temperature single-spin injector. The insulating wide gap of the host ZrO2 plays

no important role when the magnetic dopant level is high since the electronic density of states

is completely spin polarised at the Fermi level. If this is true then the conductivity must be

dominated by this metallic single-spin channel.

Very recently, it has been shown experimentally [77, 78] that nanosized 5-at.% Mn-doped ZrO2

thin films grown on LaAlO3 substrates can be ferromagnets with TC above 400 K. The saturated

magnetic moment measured there decreases as the Mn content increases. The authors suggest

that intrinsic ferromagnetism is strongly associated with the cubic structure of Mn-doped ZrO2,

and the Mn-Mn interactions via oxygen intermediates are important. No electrical conductivity

was observed.
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Figure 14: TC of Zr1−xMnxO2, calculated with the use of KKR-CPA, is plotted as a contour map
versus Mn concentration and volume. The theoretical equilibrium volumes (solid line) obtained
at each x are plotted together with the experimental data (dashed line).

4.3 Mn-doped HFO2

Pure HfO2 is being investigated as a high dielectric constant insulating gate for field effect tran-

sistor technology. Previously, Coey et al. [79] have reported that thin films of HfO2 produced

by pulsed-laser deposition on sapphire, yttria-stabilized ZrO2 and silicon substrates show ferro-

magnetic magnetization curves with Curie temperature of the order of 400 K. On the basis of ab

initio calculations [80] we suggested that Mn-doped cubic HfO2 may match extremely demanding

spintronics criteria. Although the upper limit of solubility of manganese in hafnia is unknown,

it might be compatible with that of Mn-ZrO2.

Using the KKR-CPA technique, the equilibrium volume of Hf1−xMnxO2 was calculated for several

compositions between 0< x <0.5. In Fig. 15, we plot the calculated TC as a function of x. The

volume decreases with increasing x. When x >5% TC increases to well above room temperature.

A similar effect was reported for Mn-ZrO2 [73]. However, the TC value of Mn-HfO2 increases

more rapidly with the Mn concentration than that estimated for Mn-doped zirconia. For instance,

at x =0.25 the estimated TC of Mn-HfO2 is about 30 K larger compared to that of Mn-ZrO2.

For Hf0.75Mn0.25O2 we calculated the interatomic Heisenberg exchange parameters. The TC

calculated within the mean field approximation is 682 K while the use of RPA yields TC=578 K.

Until recently, the effect of the oxygen vacancy defects in ceramics on their possible high-TC

ferromagnetism was not studied. To model the presence of oxygen vacancy in Mn-HfO2 the CPA

can be used. The inset of Fig. 15 illustrates the dependence of Curie temperature of 25% Mn-

HfO2 upon the number of oxygen vacancies δ. It is shown that the system is a room temperature

ferromagnet when δ <1/8. It means that to keep TC above 300 K the upper limit for the O

vacancies accommodated in Mn-HfO2 is one vacancy per two manganese atoms. Formally, it
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corresponds to the Mn 3+ oxidation state. If x <0.25 then the O vacancy limit becomes smaller.

We suggest that the coexistence of Mn(IV) and Mn(III) in Mn-doped hafnia is essential for

obtaining high TC .

Another important property of Mn-HfO2 from the spintronics point of view is its half-metallicity.

Fig. 16 shows the electronic DOS calculated for the 25% Mn-HfO2 composition, using both the

supercell and CPA approaches. The spin-resolved DOS shows the metallic character for majority

spin (Fig. 16a) and the band gap of ∼1eV for minority spin (Fig. 16b). Hence, the 25% Mn-HfO2

as well as Mn-stabilized zirconia can be half-metallic at 0 K. The lowest unoccupied electronic

states for the minority spin channel of 25% Mn-HfO2 are composed by the Mn 3d states, namely,

the eg and t2g subbands, which are separated from each other by the crystal field. Because of

the well known strong localization of the eg and t2g states, it is unlikely that the half-metallic

behavior of Mn-HfO2 can be significantly affected at the finite temperatures. This makes this

material very appealing.

The Mn magnetic moments calculated for xMn=0.25 using the CPA and supercell approaches

are 3.35 µB and 3.41 µB , respectively. The total magnetization calculated per cell shows rather

different values: 2.37 µB in the case of CPA and 2.99 µB when the 12-atom supercell is used.

Hence, the induced magnetic moments are directed antiparallel to the Mn magnetic moment. It

is clear that the widely used local CPA cannot properly treat the long-range interactions, which

can play an important role in the system. The Mn magnetic moment weakly depends on xMn

while it notably increases with the O vacancy concentration δ. For xMn=0.25 and δ=0.25 we

obtain 4.21 µB on the Mn site and 4.69 µB per cell. It seems that at the presence of unrelaxed

oxygen vacancy in Mn-HfO2 some induced magnetic moments being aligned parallel to the Mn

moment, contribute to the total magnetization. The sign of the O magnetic moments is negative

between 0< δ <0.5 and then it vanishes at δ=0.5 while the Mn moment adopts its integer value

of 4µB. We suggest that in search for high-TC Mn-doped 4d oxides one must keep the number

of oxygen vacancies below 1/8.

Thus, based on the ab initio aspects of our work, we anticipate that Mn stabilized cubic haf-

nia, Hf1−xMnxOδ, can become a room temperature half-metallic ferromagnet when x >0.2 and

δ <0.125. This means that the Mn/Hf ratio is larger than 1:5 and, simultaneously, the ratio

between the number of possible oxygen vacancies and Mn impurities must be less than 1:2,

providing the coexistence of Mn(IV) and Mn(III) in the system.

In the context of experimental studies reported so far on such DMO thin films, as Mn-ZrO2, it

seems that the mechanism responsible for ferromagnetism is different from what was expected.

Here the interface/surface defects and oxygen vacancies can be the source for magnetism. This

stimulates further ab initio studies of a more stable DMO material.

5 Magnetic oxidic surfaces

The investigation of diluted magnetic oxides, of which some examples were presented in the

previous section, is strongly connected to the study of surfaces of formally non-magnetic oxides.

In fact, it is now believed that the experimentally observed defect-induced magnetism is mainly

located at surface and interface regions [81], thereby explaining its tiny magnitude. There are
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several reasons for this. For instance, foreign atoms and lattice defects are more likely to exist

near surfaces due to a reduction of their formation energy in such regions. Moreover, surfaces

are easier to access experimentally than bulk materials and can as well be manipulated more

effectively. Finally, it is the surface itself which can create magnetism in materials, which are

non-magnetic as bulk. This is caused by the occurrence of broken bonds, which often lead to

structural or electronic reconstructions and to increased adsorption of foreign atoms, which in

turn promote the formation of magnetic moments [82–85]. Their formation can be caused by

localized electrons, but as well by localized holes. Ideally, these moments are coupled via a strong

magnetic exchange that leads to magnetic order, such as ferromagnetism, at room temperature

and above.

5.1 ZnO surfaces

One of the prototypes of such high temperature ferromagnetic oxides is ZnO. Using a multi-code

approach as described above, we investigated its (0001) surface terminated with a full oxygen

layer [86]. To describe the 3d electrons of Zn adequately we used Hubbard corrections with

U = 5.7 eV within the pseudopotential approach and SIC applied to all 3d spin channels of

Zn within KKR. The relaxed geometrical structure, shown in Figure 17, was obtained using

SIESTA. As can be seen in Figure 17, the topmost O atom, O1, is not found right on top of

Figure 17: (a) The investigated ZnO slab unit cell (vacuum region not shown) in its ground state
structure after relaxation, with oxygen (small yellow and orange) and zinc (big blue) atoms. The
(0001) surface is on the right and is characterized by the topmost O atom in the three-fold
coordinated hollow position, O1, and the Zn and O atom underneath, labeled Zn1 and O2,
respectively. (b) Top view of the (0001) surface.

the uppermost Zn atom, Zn1, but it relaxes into the three-fold fcc symmetric hollow site. This

reduces the surface energy by ≈ 1 eV. Due to the only one out of four remaining Zn neighbours,

there are 1.5 electron holes introduced and mainly localised at O1. This can clearly be seen

in Figure 18a). The holes exclusively localize in the minority spin channels, mainly in those of

the p states of O1 and O2. Thus, the O-terminated (0001) ZnO surface is half-metallic. Due

to hybridisation effects, a tiny fraction of the holes is also present at the Zn atoms near the

surface. This results in a magnetisation distribution as shown in Figure 18b). Large magnetic

moments are found at O1 and O2, the values of which are given in Table 4 in the first row. They

Table 4: Magnetic moments (in µB) for the topmost layers of the (0001) surface. The layers are
labeled according to Figure 17.

O1 Zn1 O2

MM (SIESTA) 0.94 0.01 0.53
MM (LSIC-KKR) 1.06 -0.06 0.42
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Figure 18: a) Spin resolved local DOS of the topmost layers of the O-ended (0001)-h surface.
Red filled (black) values represent majority (minority) spin states. b) Spin density distribution
of the (0001)-h surface. c) COOPs between the atoms in the first three layers. Energies are
relative to EF .

demonstrate the strong localization at the two topmost oxygen atoms. Figure 18c) shows the

crystal orbital overlap populations (COOPs) between the first two layers (O1 and Zn1; Zn1 and

O2) and between the two O atoms O1 and O2. Being a measure for the amount of hybridisation

between two atoms the COOPs not only show a strong coupling between the first three layers,

but they also indicate a significant direct electronic overlap between O1 and O2. The reason

for this is, on the one hand, the relatively close distance between these two atoms (2.30 versus

3.25 [Å] for nearest neighbour O atoms in ZnO bulk) and, on the other hand as can be seen in

Figure 17, the fact that no Zn atom is between them. This suggests, that the magnetic moment

at O2 is rather induced from O1 and that its localization is not very strong.

Using the KKR approach and Equation (10) to determine the Heisenberg exchange parameters

Jij , we find strong magnetic interaction at the surface. The strength of the first interaction

pairs are visualized in Figure 19. They are strongly ferromagnetic and demonstrate that the

interaction is significant only if there is at least one O1 involved. This supports the rather

induced character of the magnetic moment at O2. Any interaction involving other atoms than

these is negligibly small. Using the calculated Jij in Monte Carlo simulations yields a Curie

temperature above 300 K, the exact value depends on the assumed value anisotropy. This means

that the O-terminated ZnO (0001) surface as shown in Figure 17 exhibits ferromagnetism at

room temperature.

It had been pointed out before that localized electron holes may not be adequately described by

standard LDA or GGA [87–89]. Therefore, we also investigated the necessity of applying SIC
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to the p states of O, in addition to the SIC treatment of the Zn 3d states. We did indeed find

that the global SIC ground state corresponds to the one in which all three majority p electrons

of O1 are SI-corrected, together with SIC on the 3d orbitals. The resulting electronic structure

does not differ significantly from that presented here. The localization of the electrons at O1

and, thus, the magnitude of the magnetic moment at O1, too, is increased at the expense of the

magnetic moment at O2. The enhancement of the Jij due to the increased moments (note, that

the magnitude of the spin vectors is implicitly included in the J ’s) and their weakening due to

the reduced delocalization and, accordingly, electronic overlap, more or less even out. Thus, the

Curie temperature of the system with SIC additionally applied to the majority p states of O1is

almost the same as that of the system with SIC only at the Zn 3d states.

5.2 BaTiO3(001) surface

Another possibly spin-polarized surface of a non-magnetic system was investigated recently in

the work of Meyerheim et al. [90]. In this study, the (001) surface of BaTiO3, which is a

prototypical ferroelectric system, was modified using a mild Ar+ ion sputtering followed by two

annealing cycles of 20 min each at a temperature of about 850-900◦C. This leads to a 2×1 surface

reconstruction with a double layer TiO2 termination. The crystalline structure of the surface was

investigated using surface x-ray diffraction (SXRD), which can provide precise atomic positions

and the chemical composition of thin films [35].

The structure model, elucidated from this experiment, is shown in Fig. 20. In this model, the

Ti-atom originally located at (1
2 , 0) (see dashed circles in Fig. 20(a)) is shifted to the position

(1, 1) in the center of the unit cell. This atom is labeled as 5. An oxygen atom (4) was found

on above the Ti atom (5). The structure model is shown in perspective view in Fig. 20(c). The

Ti atom 5, which is above the third layer Ba atom, is located [ 0.53]Å below the bulk truncated

surface to bind to four O atoms in the second layer (7, 8, and equivalent ones) at a distance of
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Figure 20: (a): Structure model of the (2×1) reconstructed unit cell projected along [001].
Atoms within the two top TiO2 layers are labelled from 1-8. O and Ti atoms are represented
by red and grey spheres, respectively. Dashed circles indicate the positions of Ti atom 5 in the
unreconstructed (1×1) structure, which is shifted to the position (1/2, 1/2) as indicated by the
arrow. (b): Perspective side view of the structure. Interatomic distances in Ångstrom units:
1-2:1.82, 1-3:2.01, 2-6:1.88, 8-6:2.00, 5-4:2.30, 5-8:2.29, 7-6:2.01, Ba-O (in-plane): 2.82, Ba-O
(out of plane): 3.09.

[ 2.29]±[ 0.15]Å. The fifth O atom (4) is located on top at [ 2.30]±[ 0.15]Å. In consequence, Ti

atom 5 resides in the center of a tetragonal pyramid. Some interatomic distances are listed in

the caption of Fig. 20(b). An overall expansion of the spacing between the second TiO2 layer

and the third (bulk like) BaO layer was found in the range of 5%.

Further, we investigated the electronic and magnetic properties of the (2×1) BaTi3 surface within

the density functional theory in the local density approximation using a Korringa-Kohn-Rostoker

Green-function method, which is specially designed for semi-infinite layered systems [72]. The

most important result is that the BaTiO3(001)-(2 × 1) surface is metallic and magnetic within

the DFT calculations independent on the choice of the functional. The VASP code provides

similar results.

Fig. 21 compares the spin-resolved density of states (DOS) of (a) TiO2 terminated BaTiO3(001)-

(1×1) and (b) BaTiO3(001)-(2×1) surfaces. The DOS of the BaTiO3(001)-(1×1) surface 21(a)

exhibits a quasimetallic behavior which is in agreement with the previous calculations. This

kind of metallic character might be destroyed by the presence of impurities and imperfections

leading to an insulating surface. The band structure below the Fermi level comprises hybridized

Ti 3d and O 2p states, while bands above the Fermi level in the 3-5 eV range are identified as

antibonding Ti 3d states. Since the DOS of both Ti and O atoms exhibit an almost identical

distribution, a very strong hybridization between Ti 3d and O 2p states is inferred.

The situation is completely different in the case of the BaTiO3(001)-(2×1) surface 21(b), where

a strong metallicity is observed. It is mainly a consequence of the hybridization between the Ti
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Figure 21: Calculated spin resolved density of states for BaTiO3(001)-(1x1) (a) and BaTiO3(001)-
(2x1) (b). Atomic labelling corresponds to the structure model in Fig. 20(a),(b)

atom (5) with the surrounding oxygen atoms involving a shift of the (previously unoccupied) Ti-

3d states to the Fermi level corresponding to a charge transfer to the Ti atom (5). Simultaneously,

we found that, as a result of the low coordination and reduced symmetry, a narrowing of the

DOS occurs involving partially unsaturated 2p states in the case of the O atoms (3) and (4). In

turn this leads to high local magnetic moments.

Fig. 22 shows the calculated spin density contour plot in the plane defined by the [100] and the

[001] direction. In detail, the atoms Ti (5) and O (4) are antiferromagnetically coupled charac-

terized by magnetic moments of [ 1.3]µB and [ 2.0]µB , respectively. The magnetic interaction in

the Ti(5)-O(4) bond is strongly localized. By contrast, O atoms (3) form a magnetic chain along

[010] with local magnetic moments of [ 0.5]µB . The total energy calculations also reveal that the

surface is magnetic with the total magnetic moment of [ 1.5]µB .

Thus, our structural analysis of the BaTiO3(001)-(2× 1) reconstruction has identified an atomic

arrangement not considered so far for (001) oriented perovskite surfaces. The most remarkable

unit is a Ti atom in a tetragonal pyramidal environment. This unique structural motif causes

symmetry breaking, localization of the electronic states, and charge transfer to the central Ti

atom (5) from surrounding oxygen atoms, the latter being directly related to the shift of the oth-

erwise unoccupied 3d states to the Fermi level. This leads to the metalization and magnetization

which is now identified as an intrinsic property of the surface. We infer that this metalization

also contributes to the stabilization of the reconstruction related to the depolarization of the

surface.
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Figure 22: Spin density and magnetic moments calculated for BaTiO3(001)-(2 × 1).

6 Summary

In this Highlight we presented our approach for a first-principles design of magnetic complex

oxides, which is based on the density functional theory and is appropriate for systems with

itinerant and localized electrons. In this approach, itinerant Bloch electronic states are described

within the local spin density approximation, while strongly localized electrons are treated by

means of the self-interaction correction method. The crystalline structure can be either adopted

from experiments or obtained using pseudopotential codes, which are well designed for total

energy calculations. Further information about the structure and chemical composition can be

elucidated from first-principles simulations of observable properties, e.g. as XAS and XMCD

spectra, and their fit to experimental results. A particular feature of our approach is a proper

description of magnetic properties such as exchange interactions, spin excitations and transition

temperatures. For this, we apply a Green function method within the multiple scattering theory.

The Green function is used to calculate magnetic and paramagnetic susceptibility, which provides

spin excitations, their lifetime and the strength of magnetic interactions. In this Highlight, we

demonstrated the efficiency of our approach for a study of electronic and magnetic properties of

several complex magnetic systems such as transition metal oxides, diluted magnetic oxides and

spin-polarized surfaces of non-magnetic oxidic materials. According to our study, the TMO’s

can be adequately described within the self-interaction correction method, which provides a

proper description of strongly correlated 3d electrons of transition metals in these materials.

The calculated exchange constants, magnons and transition temperatures of TMO’S are found

to be in a good agreement with experiment. Moreover our description of the paramagnetic state

of these materials in terms of disordered local moments shows how the band gap persists as the

antiferromagnetic order is lost above the Néel temperature.
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Our approach works well for diluted magnetic oxides. In particular we described magnetic

properties of zirconia doped with manganese and predicted a high transition temperature in

this system, which was later confirmed experimentally. For (Zn,V)O diluted magnetic oxides we

were able to fit experimental XAS and XMCD spectra and, by doing so, identify the chemical

composition of the alloy. Using the elucidated structure, we explained the electronic and magnetic

properties of these compounds.

Another field of applications for our approach concerned so-called p magnetism, which can occur

due to broken p bonds in oxides. The broken bonds can arise because of defects or surface

termination and promote the formation of magnetic moments. This can lead to magnetic ordering

on the surface provided that long-ranged exchange interactions between these moments occur.

The future progress in the theoretical design of oxides will require a substantial development both

in the formal and corresponding numerical areas. One of the promising ways to take is the so

called GW method of Hedin [8]. In this context, even the simplest random phase approximation

yields a substantial improvement of the values of the band gaps in simple semiconductors (Si,

Ge), and one expects that also the values for oxides could be correctly predicted along this

line. Such development would constitute the desired first-principles description of the problem

not involving adjustable parameters as in the case of the LDA+U. One could mention that

the first-principles SIC corrected ground state could be taken as a better starting point for

the subsequent GW treatment. However, the GW of oxides is a more complex one that for

simple semiconductors, as the primitive cells feature normally many more atoms. In addition,

a proper treatment of crystal imperfections (surfaces, interfaces, defects, etc.) would require a

routine treatment of systems involving tens to hundred non-equivalent atoms. At the moment

the associated computational cost excludes a direct GW application for many systems of interest

mentioned in the summary. The main bottleneck here is primarily the computation and memory

storage of dielectric matrices. With our experience in the linear response theory, the problem is

currently being addressed. Finally, it would be desirable to include in the GW formalism physics

beyond the simple RPA, i.e. to include the so-called vertex corrections. An example of such

an effect is the magnon-electron scattering which is believed to influence strongly properties of

magnetic materials. It is, at the moment, another area of intensive research.
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