
SCIENTIFIC HIGHLIGHT OF THE MONTH

Petascale computing opens new vistas
for quantum Monte Carlo

M.J. Gillan1,2,3, M.D. Towler4,5,6 and D. Alfè1,2,3,4
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Abstract

For many kinds of problem the accuracy of quantum Monte Carlo (QMC) is much better
than that of density functional theory (DFT), and its scaling with number of atoms is much
more favourable than that of high-level quantum chemistry. However, the widespread use of
QMC has been hindered by the fact that it is considerably more expensive than DFT. We
show here that QMC is very well placed to exploit the power of petascale supercomputers
that are now becoming available, and we explain how this is opening up new scientific areas
to investigation with QMC. We describe how we have been able to modify the Cambridge
QMC code CASINO so that it runs with almost perfect parallel efficiency on 100000 cores and
more on the JaguarPF machine at Oak Ridge. We also present illustrative results showing
how QMC calculations run in this way are enabling us to go beyond the limitations of DFT
in three important areas: the surface formation energies of materials, the adsorption energies
of molecules on surfaces, and the energetics of water systems.

1 Introduction

The past twenty years have seen an extraordinary transformation in the ability of computer sim-
ulation to mimic the material world on the atomic scale. The accuracy and realism of simulations
have been raised to completely new heights, partly by huge increases in computer power and
partly by the development of powerful electronic-structure techniques of various kinds, includ-
ing density functional theory (both standard and hybrid) [1, 2], high-level quantum chemistry
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methods such as 2nd-order Møller-Plesset and coupled-cluster methods [3, 4, 5], computational
many-body theory (for example the random-phase approximation) [6, 7], and quantum Monte
Carlo[8, 9]. The power of supercomputers continues to grow at a dizzying rate: the petaflop
barrier (1015 floating point operations per second) was broken in 2008, and exaflop speeds (1018

flops) are projected for sometime around 2016. However, the materials modelling community
faces a daunting challenge. The new increases in computer power are coming almost entirely
from enormous increases in the number of processors, and the practical exploitation of this
power will force a comprehensive reappraisal of how materials modelling is done. In the next
few years, some modelling techniques will benefit more than others from the increase of su-
percomputer power. We will argue here that the techniques of quantum Monte Carlo (QMC)
are particularly well placed to benefit, and we will outline some of the steps we have taken to
implement the casino QMC code [8, 10] on very large parallel computers, including the Jaguar
supercomputer at Oak Ridge National Laboratory. We will also give some illustrations of how
these new implementations of QMC are already allowing us to tackle problems that were out of
reach before.

One way to characterize the growth of supercomputer power is to refer to the publicly available
information on the Top500 website [11], which gives the technical specifications of the 500 most
powerful supercomputers in the world. The data there shows that in the fifteen years from 1993
to 2008 the aggregate computing power of all 500 supercomputers in the list has grown by a
factor of 14221. This implies a doubling time of only a little more than a year. Some of this
vast increase has come from the growth of clock speed of the individual processors, but in recent
years most of it has come from the increasing numbers of processors. In June 1993, the average
number of processors of machines in the Top 500 was 142, but in November 2008 it was 6234.
Today, the JaguarPF machine (currently second in the Top 500 list) has 224256 cores. Since
clock speeds have not increased significantly in the past five years, and are unlikely to increase
much in the future, the push towards exaflops will come almost entirely from further increases
in the core count.

This all means that the materials modelling techniques that are likely to benefit most from the
availability of petascale facilities are those for which the calculations can be broken into a very
large number of separate pieces that can be executed simultaneously, preferably with only simple
communications between the pieces. Quantum Monte Carlo is a technique of this kind, because
it relies on very extensive statistical sampling. Diffusion Monte Carlo (DMC) is at present
the type of QMC most commonly used for high-precision calculations on materials, and DMC
works with large numbers of ‘walkers’ or ‘configurations’, whose job is to explore the electronic
configuration space of the system. These walkers are to quite a large extent independent of
each other, and this means that groups of walkers can be given to individual processors, with
only fairly light communications between them. This is why DMC is particularly well suited to
large parallel machines, and we will describe in this article how we have been able to run such
calculations efficiently on machines having tens of thousands of processors.

We believe that there are strong scientific reasons for taking seriously the capabilities of QMC
on large parallel machines. Although DFT dominates atomic-scale materials modelling and will
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obviously continue to be extremely important, its accuracy is sometimes insufficient. When
people want to comment on failures of DFT, they often like to refer to strongly-correlated
systems, where are there are clear reasons for expecting DFT to struggle. But there are many
other kinds of problems where the accuracy of DFT falls far short of what is needed. An obvious
example is the inclusion of van der Waals dispersion, a crucially important effect in many fields,
including molecular biology, surface science and aqueous systems. Although the generalisation of
DFT to include dispersion has been hugely important (see e.g. Refs. [12, 13, 14]), there are still
unsolved issues. Another important example is the adsorption energy of molecules on surfaces,
where DFT is sometimes unable to give predictions of useful accuracy. DFT values of surface
formation energies of quite simple paradigm materials such as silicon and magnesium oxide also
depend strongly on the assumed exchange-correlation functional, and there is usually no way of
knowing in advance which functional to trust. The well-known problem of calculating electronic
band gaps could also be mentioned. The urgent practical need to do better in these and other
areas is driving current efforts to develop more accurate methods, and the phrase ‘beyond DFT’
has become familiar over the past few years.

There is abundant evidence that there are large classes of problems for which QMC techniques
are considerably more accurate than DFT, and we shall point out some of the evidence in this
article. One of the main factors that has tended to deter researchers from applying QMC to
their problems is that it demands much larger computer resources than DFT. Roughly speaking,
one can expect a DMC calculation of the ground-state energy of a reasonably-sized assembly of
atoms in a given geometry to take about 104 times more CPU time than the same calculation
with standard (as opposed to hybrid) DFT. Obviously, 104 is a large factor, but it happens to
be very similar to the factor by which Top500 supercomputer power grew from 1993 to 2008.
This means that the situation with QMC now is similar to the DFT situation in the early
1990s, which was when the parallelisation of DFT first started to make an impact on materials
modelling. The kinds of DFT calculations that appeared ridiculously daunting then are now
performed routinely on desktop machines, and will presumably be performed by smart-phone
apps in the future. A similar evolution path may well be followed by QMC, and we believe that
now is the time to find out what can be achieved with QMC on petascale machines.

In the next Section, we will sketch the main ideas of QMC, noting the important role played by
variational Monte Carlo, but then focusing mainly on the rather standard methods of diffusion
Monte Carlo, and summarising the features of the casino code. In Section 3 we will outline the
issues that we had to address in implementing casino on large parallel computers, particularly
the UK national supercomputer HECToR, and the Jaguar machine at ORNL. In that Section,
we will present some results of our parallel scaling tests, which show the possibility of running
production calculations on 100000 or more cores. Then in Section 4, we give some illustrations
of the calculations we are performing, including preliminary results that suggest how hitherto
intractable scientific problems can be tackled in the near future. At the end of the article, we
will offer some speculations about further developments that can be expected in the next few
years.
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2 The quantum Monte Carlo method

The fundamental quantum-mechanical object in the QMC method - somewhat unfashionably,
given the emphasis normally and quite understandably placed on reducing the number of vari-
ables in the problem - is the full many-body wave function Ψ(r1, r2, . . . , rN ). This is a function of
3N variables, a complication which compares very unfavourably with the fundamental quantity
in DFT - the electron density - which depends on only three variables. We use it nonetheless
simply because we know the mathematical form of the differential equation which it satisfies,
namely the Schrödinger equation:

ĤΨ = EΨ. (1)

If we wish to reformulate this problem in terms of the density then we face the issue that the
exact equation satisfied by the ground-state density is completely unknown. In DFT, the compli-
cated many-body problem is effectively subsumed in the definition of the exchange-correlation
functional whose correct mathematical expression is unlikely ever to be known exactly. The
inevitable approximations to this quantity, from the simplest LDAs up to the best modern func-
tionals, substantially reduce the attainable accuracy and predictability of the method. This is
an excellent reason for looking further at QMC.

Two alternatives for ‘solving the Schrödinger equation’ using QMC methods are normally used.
First, take the wave function as a given analytic form and evaluate the energy using numerical
integration; if necessary change the shape of the wave function by varying the parameters which
define it until the energy is minimized. This is variational Monte Carlo. A more accurate
alternative is to represent the wave function using a non-analytic method (the distribution in
time and configuration space of an ensemble of diffusing particles) and encourage the particles
to distribute themselves according to the true ground state wave function through the use of
a projection technique. When they have done so, numerically integrate by sampling the wave
function as before. This is diffusion Monte Carlo.

These two techniques will now be described in turn.

2.1 Variational Monte Carlo

Variational Monte Carlo, or VMC, is a relatively straightforward stochastic numerical integration
method. It is in principle capable of computing quantum-mechanical expectation values for any
many-electron wave function whose value can be evaluated at arbitrary points in its configuration
space. Given some trial wave function ΨT satisfying the appropriate boundary conditions one
may, for example, simply calculate the total energy as the expectation value of the many-body
Hamiltonian operator Ĥ,

∫
Ψ∗T (R, {α})ĤΨT (R, {α}) dR∫
Ψ∗T (R, {α})ΨT (R, {α}) dR

= E({α}) ≥ E0 , (2)

where R is a 3N -dimensional vector giving the configuration coordinates (r1, r2, . . . , rN ) of the N
particles in the system (we ignore spin for the moment). The numerical integration is performed
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by sampling the configuration space of the wave function at random points. Now for a wave
function with appropriate properties the usual variational theorem tells us that by evaluating
this integral we obtain an energy which is an upper bound to the exact ground-state energy,
that is, energies for approximate wave functions are always higher than that of the true ground
state. Such wave functions generally depend on some parameters - here collectively denoted by
{α} - and these parameters may thus be varied to minimize an objective function such as the
energy; in so doing the ‘shape’ of the wave function can be optimized.

The reason for sampling the wave function at random points is that the error in the integral
then decreases as the square root of the number M of sampling points - irrespective of the
dimensionality d of the integral. One may contrast this with a standard grid method such as
the trapezoidal rule where the error decreases as O(M−

2
d ). Though Monte Carlo is less efficient

in one dimension, it wins for more than four and as d increases it becomes the only practical
approach. For example, in a system of thirty electrons in three dimensions one must integrate
over the ninety degrees of freedom of the system, and the trapezoidal rule would need ∼ 1067

function evaluations to achieve the same accuracy as the Monte Carlo method with 1000 data
points. When evaluating quantum-mechanical expectation values for N -particle systems we
must do 3N -dimensional integrals and it is clear there is simply no alternative to Monte Carlo
methods.

Now in practice we do not wish to sample the random points from a uniform probability dis-
tribution - as implied above - but rather to group the points in regions where the integrand
is finite, and to do this in such a way as to minimize the sample variance. Such importance
sampling requires us to generate points distributed according to some non-uniform probability
distribution p(R), following which the calculation of the mean proceeds as usual. This sampling
can be accomplished using a random walk moved according to the rules of the Metropolis algo-
rithm [15]. We propose random moves taken from some standard distribution (usually Gaussians
of appropriate width centred on the current points), always accepting moves to points of higher
probability, and occasionally rejecting moves to regions of lower probability according to a par-
ticular formula obeying a detailed balance condition. Assuming ergodicity - that is, any point in
the configuration space can be reached in a finite number of moves - then the distribution of the
moving points will converge to the desired p(R) after some appropriate period of equilibration.

To apply this procedure to evaluate an integral like Eq. 2 we need to rewrite the expression so
that the integrand looks like a probability distribution times some appropriate function to be
evaluated at each point (that can later be averaged). The best probability distribution to use
(in the sense of minimizing the sample variance) is pbest(R) = |f(R)|/

∫
|f(R′)| dR′, that is, we

concentrate sampling points in regions where the absolute value of the integrand is large. In
general we do not know the normalization integral in the denominator, so the best one can do
is to make p(R) look as much like this as possible. It is readily seen that in the Schrödinger
case case p(R) = |ΨT (R)|2 and for an approximate eigenstate this is a good approximation to
the above ideal sampling distribution. We may therefore rewrite the expectation value of the
Hamiltonian Ĥ with respect to the trial wave function ΨT as
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〈Ĥ〉 =
∫
|ΨT (R)|2EL(R) dR∫
|ΨT (R)|2 dR

, (3)

where the function to be evaluated - EL(R) = Ĥ(R)ΨT (R)
ΨT (R) - is known as the local energy. If

ΨT were in fact the exact ground state wave function note that, according to Schrödinger’s
equation, the local energy should have a constant value E0 over the whole of configuration
space. For an approximate wave function this is no longer the case; a plot of the local energy for
1000 Metropolis-sampled points in the configuration space of an approximate trial function for
a hydrogen atom (approximate since it is expanded in a finite Gaussian basis set) might look as
in Fig. 1:
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Figure 1: Local energies of points in the random walk for a VMC run with an approximate wave
function. All values are clustered around the true value of −0.5 Ha.

So having used the Metropolis algorithm to generate a sequence of configurations R distributed
according to Ψ2

T (R) we may then compute the desired expectation value by averaging the set
of local energies:

〈Ĥ〉 =
1
M

M∑
i=1

EL(Ri) =
1
M

M∑
i=1

ĤΨT (Ri)
ΨT (Ri)

. (4)

It should be clear from the figure that for hydrogen the energy thus obtained should (correctly)
be −0.5 Ha plus or minus some small error bar. The error bar may need to be refined somewhat
by particular statistical techniques to account for serial correlation of the points along the walk.
Clearly expectation values other than the energy could be calculated in a similar way.
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2.2 Diffusion Monte Carlo

In general, commonly-used expressions for the VMC wave function turn out not to have enough
variational freedom to represent the true wave function - it is simply not possible to write down
an analytic formula for an arbitrarily complex many-electron wave function. Using VMC to
calculate the expectation value of the Hamiltonian therefore gives an energy which is incorrect
(sometimes substantially so) and thus VMC in general is not accurate enough to justify the
bother. It is at this point that diffusion Monte Carlo (DMC) comes to the rescue. This technique
is able to automatically correct the shape of a ‘guessed’ wave function (particularly when given
a good guess, such as the output of a VMC optimization) so that it looks much more like the
exact one before calculating the expectation value.

This is clearly a nice trick, but as one might expect, the DMC algorithm is necessarily rather
more involved than that for VMC. An approachable way of understanding it is to focus on
the properties of quantum-mechanical propagators. Let’s say we wish to integrate the time-
dependent Schrödinger equation,

ih̄
∂Ψ(R, t)

∂t
= − h̄2

2m
∇2Ψ(R, t) + V (R, t)Ψ(R, t) = ĤΨ(R, t) , (5)

where R = {r1, r2, . . . , rN}, V is the potential energy operator, and ∇ = (∇1,∇2, . . . ,∇N ) is
the 3N -dimensional gradient operator. Integrating this is equivalent to wanting a formula for
Ψ and, to find this, we must invert this differential equation. The result is an integral equation
involving the propagator K:

Ψ(R, t) =
∫
K(R, t; R′, t′)Ψ(R′, t′) dR′. (6)

The propagator is interpreted as the probability amplitude for a particle to travel from one place
to another (in this case, from R′ to R) in a given time t − t′. It is a Green’s function for the
Schrödinger equation. We see that the probability amplitude for a particle to be at R sometime
in the future is given by the probability amplitude of it travelling there from R′ - which is just
K(R, t; R′, t′) - weighted by the probability amplitude of it actually starting at R′ in the first
place - which is Ψ(R′, t′) - summed over all possible starting points R′. This is a straightforward
concept.

How might we calculate the propagator? A typical way might be to use the Feynman path-
integral method. For given start and end points R′ and R one gets the overall amplitude
by summing the contributions of the infinite number of all possible ‘histories’ or paths which
include those points. It doesn’t matter why for the moment but the amplitude contributed by
a particular history is proportional to eiScl/h̄ where Scl is the classical action of that history,
i.e. the time integral of the classical Lagrangian 1

2mv
2−V along the corresponding phase space

path of the system. The full expression for the propagator in Feynman’s method may then be
written as

KF (R, t; R′, t′) = N
∑

all paths

exp
[
i

h̄

∫ t

t′
Lcl(t′′) dt′′

]
. (7)
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An alternative way to calculate the propagator is to use the de Broglie-Bohm pilot-wave interpre-
tation of quantum mechanics [16], where the electrons both objectively exist and have the obvious
definite trajectories derived from a straightforward analysis of the streamlines of the quantum-
mechanical probability current. From this perspective we find we can achieve precisely the same
result as the Feynman method by integrating the quantum Lagrangian Lq(t) = 1

2mv
2− (V +Q)

along precisely one path - the path that the electron actually follows - as opposed to linearly su-
perposing amplitudes obtained from the classical Lagrangian associated with the infinite number
of all possible paths. Here Q is the ‘quantum potential’, which is the potential energy function
of the quantum force (the force that the wave field exerts on the electrons). It is easy to show
the equivalent pilot-wave propagator is:

KB(R, t; R′, t′) =
1

J(t)
1
2

exp
[
i

h̄

∫ t

t′
Lq(t′′) dt′′

]
(8)

where J is a simple Jacobian factor. This formula should be contrasted with Eq. 7. One
should also note that because de Broglie-Bohm trajectories do not cross, one need not sum over
all possible starting points R′ to compute Ψ(R, t) - one simply uses the R′ that the unique
trajectory passes through.

What is the connection of all this with DMC? Well, in DMC an arbitrary starting wave function
is evolved using a (Green’s function) propagator just like the ones we have been discussing. The
main difference is that the propagation occurs in imaginary time τ = it as opposed to real time
t. For reasons that will shortly become apparent this has the effect of ‘improving’ the wave
function, i.e. making it look more like the ground state as imaginary time passes. For technical
reasons, it also turns out that the propagation has to take place in a sequence of very short hops
in imaginary time, and so our evolution equation now looks like this:

Ψ(R, τ + δτ) =
∫
KDMC(R,R′, δτ)Ψ(R′, τ) dR′. (9)

The evolving wave function is not represented in terms of a basis set of known analytic func-
tions but by the distribution in space and time of randomly-diffusing electron positions over an
ensemble of copies of the system (‘walkers’ or ‘configurations’). So in other words, the DMC
method is a ‘stochastic projector method’ whose purpose is to evolve/project out the solution
to the imaginary-time Schrödinger equation from an arbitrary starting state. We shall write
this equation - which is simply what you get by taking the regular time-dependent equation and
substituting τ for the time variable it - in atomic units as

−∂ΨDMC(R, τ)
∂τ

= −1
2
∇2Ψ(R, τ) + (V (R)− ET )Ψ(R, τ) . (10)

Here the real variable τ measures the progress in imaginary time and, for purposes to be revealed
presently, we have included a constant ET - an energy offset to the zero of the potential which
only affects the wave function normalization.

How then does propagating our trial function in imaginary time ‘improve’ it? For eigenstates,
the general solution to the usual time-dependent Schrödinger equation is clearly φ(R, t) =
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φ(R, 0)e−i(Ĥ−ET )t. By definition, we may expand an arbitrary ‘guessed’ Ψ(R, t) in terms of a
complete set of these eigenfunctions of the Hamiltonian Ĥ:

Ψ(R, t) =
∞∑
n=0

cnφn(R)e−i(En−ET )t. (11)

On substituting it with imaginary time τ the oscillatory time-dependence of the complex expo-
nential phase factors becomes an exponential decay:

Ψ(R, τ) =
∞∑
n=0

cnφn(R)e−(En−ET )τ (12)

Let us assume our initial guess for the wave function is not orthogonal to the ground state (i.e.
c0 6= 0). Then if we magically choose the constant ET to be the ground state eigenvalue E0 (or,
in practice, keep very tight control of it through some kind of feedback procedure) then it is
clear we should eventually get imaginary-time independence of the probability distribution, in
the sense that as τ → ∞, our initial Ψ(R, 0) comes to look more and more like the stationary
ground state φ0(R) as the contribution of the excited-state eigenfunctions dies away:

Ψ(R, τ) = c0φ0 +
∞∑
n=1

cnφn(R)e−(En−E0)τ . (13)

So now we know why we do this propagation, how in practice do we find an expression for the
propagator K? Consider now the imaginary-time Schrödinger equation in two parts:

∂Ψ(R, τ)
∂τ

=
1
2
∇2Ψ(R, τ) (14)

∂Ψ(R, τ)
∂τ

= −(V (R)− ET )Ψ(R, t). (15)

These two formulae respectively have the form of the usual diffusion equation and of a rate
equation with a position-dependent rate constant. The appropriate propagator for the diffusion
equation is well-known; it is a 3N -dimensional Gaussian with variance δτ in each dimension.
The propagator for the rate equation is also known - it gives a so-called ‘branching factor’ which
can be interpreted as a position-dependent weight for a member of an ensemble. Multiplying
the two together to get the following propagator for the imaginary-time Schrödinger equation is
an approximation - the ‘short time approximation’ - valid only in the limit of small δτ (which
is why we need to do the evolution as a sequence of short hops):

KDMC(R,R′, δτ) =
1

(2πδτ)
3N
2

exp

(
−|R−R′|2

2δτ

)
exp

[
−δτ

(
V (R) + V (R′)− 2ET

2

)]
. (16)

Let us then summarize with a simple example how the DMC algorithm works. If we interpret Ψ
as a probability density, then the diffusion equation ∂Ψ

∂τ = 1
2∇

2Ψ represents the movement of N
diffusing particles. If we turn this around we may decide to represent Ψ(R, τ) by an ensemble
of such sets of particles. Each member of such an ensemble is a ‘configuration’ or ‘walker’. We
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interpret the full propagator KDMC(R,R′, δτ) as the probability of a configuration moving from
R′ to R in a time δτ . The branching factor in the propagator will generally be interpreted as a
stochastic survival probability for a given configuration rather than as a simple weight, as the
latter is prone to numerical instabilities. This means that the configuration population becomes
dynamically variable; walkers that stray into regions of high V have a good chance of being killed
(removed from the calculation); in low V regions walkers have a high probability of multiplying
(i.e. they create copies of themselves which then propagate independently). It is solely this
branching or reweighting that ‘changes the shape of the wave function’ as it evolves. So, as we
have seen, after a sufficiently long period of imaginary-time evolution all the excited states will
decay away leaving only the ground-state wave function, at which point the propagation may
be continued in order to accumulate averages of interesting observables.

As a simple example, consider Fig 3. Here a deliberately bad guess is made for the trial function:
the ground-state wave function for a single electron in a harmonic potential well is assumed to be
a constant in the vicinity of the well and zero everywhere else. The calculation begins with seven
copies of the system or configurations in our ensemble; the electrons in this ensemble are initially
randomly distributed according to the uniform probability distribution in the region where the
trial function is finite. The particle distribution is then evolved in imaginary time according
to the scheme developed above. The electrons are subsequently seen to become distributed
according to the proper Gaussian shape of the exact ground-state wave function. It is evident
from the figure that the change in shape is produced by the branching factor occasionally
eliminating walkers in high V regions and duplicating them in low V regions.

V(x)

Ψinit
(x)

Ψ0
(x)

t

τ {

x

Figure 2: Schematic illustration of the DMC algorithm for a single electron in a harmonic
potential well, showing the evolution of the shape of the wave function due to propagation in
imaginary time. Figure taken from Ref. [18].

This ‘pure DMC’ algorithm works very well in a single-particle system with a nicely-behaved
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potential, as in the example. Unfortunately it suffers from two very serious drawbacks which
become evident in multi-particle systems with divergent Coulomb potentials.

The first problem arises due to our assumption that Ψ is a probability distribution - necessarily
positive everywhere - even though the antisymmetric nature of multi-particle fermionic wave
functions means that it must have both positive and negative parts separated by a ‘nodal
surface’, that is, a 3N − 1-dimensional hypersurface on which it has the value zero. One might
think that two separate populations of walkers with attached positive and negative weights might
get round this problem (essentially the well-known ’fermion sign problem’) but in practice there
is a severe signal-to-noise issue. It is possible to construct formally-exact algorithms of this
nature which overcome some of the worst practical problems [19] but to date all seem highly
inefficient with poor system size scaling.

The second problem is less fundamental but in practice very severe. The required rate of
removing or duplicating walkers diverges when the potential energy diverges (which occurs
whenever two particles are coincident) due to the presence of V in the branching factor of
Eq. 16. This leads to stability problems and poor statistical behaviour.

These problems may be dealt with at the cost of introducing the most important approximation
in the DMC algorithm: the fixed-node approximation [20]. We say, in effect, that particles
may not cross the nodal surface of the trial wave function ΨT , that is, there is an infinite
repulsive potential barrier on the nodes. This forces the DMC wave function Ψ to be zero
on that hypersurface. If the nodes of the trial function coincide with the exact ones, then
such an algorithm will give the exact ground-state energy (it is of course well-known that the
exact de Broglie-Bohm particle trajectories cannot pass through the nodal surface). If the trial
function nodes do not coincide with the exact ones then the DMC energy will be higher than
the ground-state energy (but less than or equal to the VMC energy). The variational principle
thus applies.

To make such an algorithm efficient we must introduce importance sampling, and this is done
in the following way. We require that the imaginary-time evolution produces the mixed distri-
bution f = ΨTΨ, rather than the pure distribution. Substituting this into the imaginary time
Schrödinger equation Eq. 10 we obtain

−∂f(R, τ)
∂τ

= −1
2
∇2f(R, τ) +∇ · [vD(R)f(R, τ)] + (EL(R)− ET )f(R, τ) , (17)

where vD(R) is the 3N -dimensional drift velocity vector defined by

vD(R) = ∇ ln |ΨT (R)| = ∇ΨT (R)
ΨT (R)

, (18)

and

EL(R) = Ψ−1
T

(
−1

2
∇2 + V (R)

)
ΨT , (19)
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is the usual local energy. The propagator from R′ to R for the importance sampled algorithm
now looks like this:

KDMC(R,R′, δτ) =
1

(2πδτ)
3N
2

exp

[
−(R−R′ − δτF(R′))2

2δτ

]
exp

[
−δτ

2
(
EL(R) + EL(R′)− 2ET

)]
.

(20)

Because the nodal surface of Ψ is constrained to be that of ΨT then their product f is positive
everywhere and can now be properly interpreted as a probability distribution. The time evolution
generates the distribution f = ΨTΨ, where Ψ is now the lowest energy wave function with the
same nodes as ΨT . This solves the first of our two problems. The second problem of the poor
statistical behaviour due to the divergences in the potential energy is also solved because the
term (V (R) − ET ) in Eq. 10 has been replaced by (EL(R) − ET ) in Eq. 17 which is much
smoother. Indeed, if ΨT was an exact eigenstate then (EL(R) − ET ) would be independent of
position in configuration space. Although we cannot in practice find the exact ΨT it is possible
to eliminate the local energy divergences due to coincident particles by choosing a trial function
which has the correct cusp-like behaviour at the relevant points in the configuration space [21].
Note that this is all reflected in the branching factor of the new propagator of Eq. 20.

The nodal surface partitions the configuration space into regions that we call ‘nodal pockets’.
The fixed-node approximation implies that we are restricted to sampling only those nodal pockets
that are occupied by the initial set of walkers, and this appears to introduce some kind of
ergodicity concern since at first sight it seems that we ought to sample every nodal pocket.
This would be an impossible task in large systems. However, the tiling theorem for exact
fermion ground states [22, 23] asserts that all nodal pockets are in fact equivalent and related by
permutation symmetry; one need therefore only sample one of them. This theorem is intimately
connected with the existence of a variational principle for the DMC ground state energy [23].
Other interesting investigations of properties of nodal surfaces have been published. [24, 25, 26]

A practical importance-sampled DMC simulation proceeds as follows. First we pick an ensemble
of a few hundred walkers chosen from the distribution |ΨT |2 using VMC and the standard
Metropolis algorithm. This ensemble is then evolved according to the short-time approximation
to the Green function of the importance-sampled imaginary-time Schrödinger equation (Eq. 17),
which involves repeated steps of biased diffusion followed by the deletion and/or duplication of
walkers. The bias in the diffusion is caused by the drift vector arising out of the importance
sampling which directs the sampling towards parts of configuration space where |ΨT | is large
(i.e. it plays the role of an Einsteinian osmotic velocity). This drift step is always directed away
from the node, and ∇ΨT is in fact a normal vector of the nodal hypersurface. After a period
of equilibration the excited state contributions will have largely died out and the walkers start
to trace out the probability distribution f(R)/

∫
f(R) dR. We can then start to accumulate

averages, in particular the DMC energy. Note that throughout this process the reference energy
ET is varied to keep the walker population under control through a specific feedback mechanism.
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The DMC energy is given by

EDMC =
∫
f(R)EL(R) dR∫

f(R) dR
≈
∑
i

EL(Ri) . (21)

This energy expression would be exact if the nodal surface of ΨT were exact, and the fixed-
node error is second order in the error in the ΨT nodal surface (when a variational theorem
exists [23]). The accuracy of the fixed-node approximation can be tested on small systems and
normally leads to very satisfactory results. The trial wave function thus limits the final accuracy
that can be obtained and it also controls the statistical efficiency of the algorithm. Like VMC,
the DMC algorithm satisfies a zero-variance principle, i.e. the variance of the energy goes to zero
as the trial wave function goes to an exact eigenstate. For other expectation values of operators
that do not commute with the Hamiltonian then the DMC mixed estimator is biased and other
techniques are required in order to sample the pure distribution [27, 28, 29].

A final point: the necessity of using the fixed-node approximation suggests that the best way
of optimizing wave functions would be to do it in DMC directly. The nodal surface could
then in principle be optimized to the shape which minimizes the DMC energy. The backflow
technique [32] has some bearing on the problem, but the usual procedure involving optimization
of the energy or variance in VMC will not usually lead to the optimal nodes in the sense that
the fixed-node DMC energy is minimal. The large number of parameters - up to a few hundred
- in your typical Slater-Jastrow(-backflow) wave function means that direct variation of the
parameters in DMC is too expensive. Furthermore, we note that optimizing the energy in DMC
is tricky for the nodal surface as the contribution of the region near the nodes to the energy is
small. More exotic ways of optimizing the nodes are still being actively developed [30, 31].

2.3 The CASINO code

The CASINO quantum Monte Carlo program [8, 10] has been developed in Cambridge by
Richard Needs, Mike Towler, Neil Drummond, Pablo López Ŕıos and their collaborators since
the mid-1990s, and is freely available to the academic community. It is able to do variational
and diffusion Monte Carlo calculations for finite systems such as atoms and molecules, for real
materials periodic in one, two or three dimensions, and for various model systems such as
homogeneous and inhomogeneous electron gases [35, 36, 37], Wigner crystals [38], and excitonic
bilayers [39].

A general problem for QMC programs arises from the need to interact with other electronic
structure codes for the purpose of importing trial wave functions. The basic form of many-body
wave function used by CASINO is the common Slater-Jastrow type. This consists of a single
Slater determinant of orbitals (or sometimes a linear combination of a small number of them)
multiplied by an optimizable positive-definite Jastrow correlation function which is symmetric
in the electron coordinates and depends on the inter-particle distances. The Jastrow function,
through its explicit dependence on interparticle separations, allows efficient inclusion of both long
and short range correlation effects. As we have observed, the final DMC answer depends only
on the nodal surface of the wave function and this cannot be affected by the nodeless positive-
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definite Jastrow, and in DMC it serves mainly to decrease the amount of computer time required
to achieve a given statistical error bar and to improve the stability of the algorithm. The basic
form of the Slater-Jastrow wave function may thus be written as:

Ψ(X) = eJ(X)
∑
n

cnDn(X) , (22)

where X = (x1,x2, . . . ,xN ) and xi = {ri, σi} denotes the space-spin coordinates of electron
i, eJ(X) is the Jastrow factor, the cn are determinant coefficients, and the Dn(X) are Slater
determinants of single-particle orbitals φj . Orbitals for realistic atomic systems are generally
obtained from self-consistent DFT or Hartree-Fock calculations, and CASINO has interfaces to
many codes capable of producing these, including GAUSSIAN [40], CRYSTAL [41], TURBO-

MOLE [42], GAMESS-US [43], PWSCF [44], ABINIT [45], CASTEP [46],and ADF [47], Of
course the exact degree of support for each can vary as the programs evolve, as the developers
forget that the interface exists, and as the relevant expertise moves in and out of the Cambridge
group. This set of codes requires CASINO to work with orbitals expanded in a variety of basis
sets, including Gaussians, Slater functions, plane-waves, and blip functions [50], in addition to
orbitals tabulated on grids.

CASINO has been designed to run on essentially any hardware with minimal setup, but it is
particularly effective on machines with large numbers of processors. This is the principal topic
of this article to which we now turn.

3 DMC on massively parallel computers

3.1 Introduction

Quantum Monte Carlo is in general an intrinsically parallel technique, and as such is ideally
placed to exploit new and future generations of massively parallel computers. This is trivially
realized in the case of VMC and in the various associated techniques for carrying out VMC wave
function optimization. In the pure VMC case, essentially no interprocessor communication is
required during a simulation. Each processor carries out an independent random walk using
a fixed wave function and a different random number sequence. The resulting energies are
then averaged over the processors at the end. Assuming the equilibration time to be negligible,
running for a length of time T on Np processors generates the same amount of data as running
for time NpT on a single processor (though of course the results will only agree within statistical
error bars since the random walks are different in the two cases). VMC should therefore scale
to an arbitrarily large number of processors.

We have not spoken in detail about the various techniques used to optimize wave functions
in VMC, nor is this necessary for our purposes. In general, one is required to minimize an
objective function (usually the variance or the energy) with respect to a set of parameters in
the wave function. In the basic variance minimization algorithm we run a sequence of short
VMC runs to generate sets of walkers distributed according to the current wave function, and
each of these is followed by an optimization (Levenberg-Marquardt non-linear least squares or
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similar). The VMC stages are perfectly parallel, as described above. In the optimization stages,
the set of configurations is distributed evenly between the processors. The master processor
broadcasts the current set of optimizable parameters, then each processor calculates the local
energy of each of its configurations and reports the energies (and weights, if required) to the
master. The CPU time required to evaluate the local energies of the configuration set usually
far exceeds the time spent communicating (reporting one or two numbers per configuration to
the master and receiving a handful of parameter values at each iteration). In particular the
time spent evaluating the local energies increases with system size, whereas the time spent on
interprocessor communication is independent of system size.

For the case of energy minimization, the VMC stages are perfectly parallel as described above.
The optimization stages involve various matrix algebra operations. In this scheme the walkers are
divided evenly between the processors, each of which separately generates one section of the full
matrices. The full matrices are then gathered on the master processor, where the matrix algebra
is done. The time taken to do the matrix algebra is usually insignificant in comparison to the
time taken in VMC and matrix generation. The time taken in interprocessor communication
is recorded and written out during energy minimization, and is typically at maximum a few
percent of the total time spent in an iteration (and often much less than one percent). Overall,
energy minimization is very nearly perfectly parallel.

The problem - if there is a problem - therefore lies in the DMC algorithm, and this is largely to do
with load balancing. DMC is parallelized in a similar way to VMC - by assigning separate walkers
to different processors - but in DMC by contrast the processors are required to communicate.
The branching algorithm explained in Section 2.2 leads to a dynamically variable population of
walkers, that is, the population fluctuates during the run as walkers are killed or duplicated to
‘change the shape of the wave function’. One of the reasons that this leads to interprocessor
communication is that the population must be adjusted dynamically to some initial target via
a kind of feedback mechanism as the simulation proceeds. This relies on a knowledge of the
instantaneous total energy, which must be calculated and averaged over all processors after
each time step. The most important problem, however, is the necessity to transfer walkers
between the cores (a walker, in this sense, being the list of current electron positions for the
configuration, along with various associated quantities related to the energy and wave function).
These transfers are purely for efficiency; in order to maintain load balance it is important to
ensure that each core has roughly the same number of walkers, since the cost of each time
step is determined by the processor with the largest population. The total number of walkers
communicated between processors increases with the number of cores and ends up being the
single greatest cause of inefficiency for runs on massively parallel machines. A rough theoretical
analysis of the expected scaling behaviour might run as follows [17].

The time tmove required to propagate each walker scales as Nα
e , where Ne is the number of

particles, and α is an integer power. For typical systems, where extended orbitals represented in
a localized basis are used and the CPU time is dominated by the evaluation of the orbitals, α =
2 [18]. The use of localized orbitals can improve this to α = 1 [33, 34]. For very large systems,
or systems in which the orbitals are trivial to evaluate, the cost of updating the determinants
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will start to dominate: this gives α = 3 with extended orbitals and α = 2 with localized orbitals.
Hence the average cost of propagating all the walkers over one time step, which is approximately
the same on each processor, is

TCPU ≈ a
Nα
e Ntarget

Nproc
, (23)

where a is a constant which depends on both the system being studied and the details of the
hardware, Ntarget is the target population, and Nproc is the number of processors.

So now the population varies on each processor. How? Let nredistτ be the redistribution pe-
riod, that is, we redistribute the walker population after every nredist time steps τ . Given the
form of the branching factor (the second exponential in Eqn. 20), the population on a processor
p at any given time must be increasing or decreasing exponentially, because the mean energy
E(p) of the walker population on that processor is unlikely to be exactly equal to the refer-
ence energy ET in the argument of the branching factor. We assume that E(p) − ET remains
roughly constant over the redistribution period. At the start of the redistribution period the
population Nw(p, 0) on each processor is the same. At the end of the redistribution period, the
expected population on processor p is Nw(p, nredist) = Nw(p, 0) exp[−(E(p)−ET )nredistτ ]. Hence
N̄w(nredist) ≈ N̄w(0) exp[−(Ē − ET )nredistτ ] + O(n2

redistτ
2), where the bar denotes an average

over the processors, and so the average growth or decay of the population is the same as that
of the entire population (which should be small, because ET is chosen so as to ensure this).

What is the optimal redistribution period? Recall tmove is the cost of propagating a single walker
over one time step. Let ttrans be the cost of transferring a single walker between processors. Let
q be the processor with the largest number of walkers, i.e., the one with the lowest energy
E(q) ≡ min{E(p)}. Both the cost of propagating walkers and the cost of transferring them
are determined by processor q. The expected number of walkers on processor q at the end of
the redistribution period (i.e., after nredist time steps) is max{Nw(p, nredist)} ≈ N̄w(nredist) +
cnredist +O(n2

redist), where c = N̄w(1)(Ē−min{E(p)})τ . Here 〈N̄w(0)〉 = Ntarget/Nproc and 〈c〉 is
a positive constant. At the end of the redistribution period, cnredist walkers are to be transferred
from processor q. Hence the average cost of transferring walkers per time step is ttrans〈c〉, which
is independent of nredist.

The average cost per time step of waiting for the processor q with the greatest number of walkers
to finish propagating all its excess walkers is

tmove〈c〉 [0 + 1 + . . .+ (nredist − 1)]
nredist

=
tmove〈c〉(nredist − 1)

2
. (24)

So the total average cost per time step in DMC is

T =
tmoveNtarget

Nproc
+
tmove〈c〉(nredist − 1)

2
+ ttrans〈c〉. (25)

Clearly the redistribution period should be chosen to be as small as possible to minimize T .
Numerical tests confirm that increasing the redistribution period only acts to slow down calcu-
lations. One should therefore choose nredist = 1, i.e., redistribution should take place after every
time step. We assume this to be the case henceforth.
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What, then, is the cost of load balancing? Let σE(p) be the standard deviation of the set of

processor energies. We assume that 〈E(p)〉 − 〈min{E(p)}〉 ∝ σE(p) ∝
√
NeNproc/Ntarget. Hence

〈c〉 ∝
√
NeNtarget/Nproc. The cost ttrans of transferring a single walker is proportional to the

system size Ne. Hence the cost of load balancing is

Tcomm ≈ b
√
NtargetN3

e

Nproc
, (26)

where the constant b depends on the system being studied, the wave-function quality and the
computer architecture. Note that good trial wave functions will lead to smaller population
fluctuations and therefore less time spent load-balancing.

Clearly one would like to have TCPU � Tcomm, as the DMC algorithm would in theory be
perfectly parallel in this limit. The ratio of the cost of load balancing to the cost of propagating
the walkers is

Tcomm

TCPU
=
b

a

(
Nproc

Ntarget

)1/2

N3/2−α
e . (27)

It is immediately clear that by increasing the number of walkers per processor Ntarget/Nproc

the fraction of time spent on interprocessor communication can be made arbitrarily small. In
practice the number of walkers per processor is limited by the available memory, and by the
fact that carrying out DMC equilibration takes longer if more walkers are used. Increasing the
number of walkers does not affect the efficiency of DMC statistics accumulation, so, assuming
that equilibration remains a small fraction of the total CPU time, the walker population should
be made as large as memory constraints will allow.

For α > 3/2 (which is always the case except in the regime where the cost of evaluating localized
orbitals dominates), the fraction of time spent on interprocessor communication falls off with
system size. Hence processor-scaling tests on small systems may significantly underestimate the
maximum usable number of processors for larger problems.

So that’s the theory; how does this work in practice? In analyzing scaling behaviour one normally
distinguishes between ‘strong scaling’ - where we ask how the time to solution for a fixed system
size varies with the number of processors - and ‘weak scaling’ where we ask how the time to a
solution varies for a fixed system size per processor (i.e. if we double the number of processors).
Perfect weak scaling is thus a constant time to solution, independent of processor count.

What is the appropriate definition of ‘system size’ in this context? One would think that QMC
is different from DFT, of course, since if we double what we normally consider to be the size
of the system (the number of electrons in the molecule, or whatever) then we must double the
number of samples of the wave function in order to get the same error bar. So our criterion
for the system size, is something like ‘the number of samples of the wave function configuration
space required to get a fixed error bar’. In all the scaling calculations reported here, we report
the time taken to sample the wave function N times, where N is the number of walkers times
the number of moves. N is constant for all core counts, therefore we are looking at the strong
scaling.
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Two ways of doing this have been considered. The first way is to consider both a fixed total
target population of walkers and a fixed number of moves, neither of which varies with the
number of processors. For a code that scaled ideally one would then expect the time taken to
halve if we double the number of processors since each individual processor will have half the
number of walkers to deal with. This is usually not the best way to exploit QMC on a parallel
machine, but it serves to illustrate several important points.
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Figure 3: Scaled CPU time required by various numbers of cores of the JaguarPF machine to
carry out one ten-move DMC statistics accumulation block for a water molecule adsorbed on
a two-dimensionally periodic graphene sheet containing fifty carbon atoms per cell, using both
the September 2010 version of CASINO 2.6 (solid-red line) and our newly modified version of
CASINO (dotted blue line). For comparative purposes ‘ideal linear scaling’ is shown by the solid
black line. Fixed target of 486000 for total walker population. Note that fixing the total target
population can introduce considerable inefficiency at higher core counts and this graph should
not be looked on as representing the general scaling behaviour of the CASINO program. This
inefficiency can generally be decreased by increasing the number of walkers per core.

In Fig. 3 we display timing data of this nature obtained with the Cambridge QMC program
CASINO [8, 10] in a typical DMC simulation for a system of one water molecule adsorbed on
a graphene sheet represented by a 2D periodic cell containing fifty carbon atoms. The initial
number of walkers and the subsequent target population is fixed at 486000. The graph shows the
parallel performance of CASINO on the JaguarPF machine (a Cray XT5 machine with 224256
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cores, at Oak Ridge National Laboratory, U.S.A. currently - that is, Jan 2011 - listed in second
position on the Top 500 supercomputer list). Because of the nature of the multi-core processors
on this machine the core count must be a multiple of twelve. We therefore start with 684 cores,
and progressively double it seven times. The CPU time taken on 648, 1296, 2592, 5184, 10368,
20736, 41472 and 82944 cores to do one block of ten DMC statistics accumulation moves for
486000 configurations was, respectively, 5787, 2867, 1452, 742, 389, 230, 159, 216 seconds. In
plotting the data we have rescaled it (by dividing by the time taken for the 1296-core case and
multiplying by 1296) in order to display the deviation from linear scaling. Focussing on the red
solid line for CASINO 2.6 in the diagram, one can see that that pretty good scaling is obtained
up to around 20000 cores, but beyond that the performance starts to fall away, and the code is
actually slower the more processors are used beyond around 50000 cores.

Is it possible to improve this behaviour? One of us (MDT) - having finally been allowed near a
computer where he can routinely use more than 500 processors - has recently investigated this
problem [49]. It turns out to be possible to substantially improve the performance, and even
to effectively eliminate the cost of walker redistribution completely. The improved performance
was obtained via the following strategies:

(1) The use of asynchronous, non-blocking communications. CASINO uses the standard Message
Passing Interface (MPI) [48] to handle interprocessor communication. Using this software to
send a message from one processor to another, one might typically call blocking MPI SEND and
MPI RECV routines on a pair of communicating processors. All other work will halt until the
transfer completes. However, one may also use non-blocking MPI calls, which allow processors
to continue doing computations while communication with another processor is still pending.
Another advantage is that if used correctly, some internal MPI buffers may be bypassed with
a dramatic increase in the communication bandwidth. On calling the non-blocking MPI ISEND

routine, for example, the function will return immediately, usually before the data has finished
being sent.

Bearing this in mind, the CASINO DMC algorithm has now been modified to do something like
the following:

MOVE 1

- Move all currently existing walkers forward by one time step

- Compute the multiplicities for each walker (the number of copies of each

config to continue in the next move).

- Looking at the current populations of walkers on each processor, and at the

current multiplicities, decide which walkers to send between which pairs of

processors, and how many copies of each are to be created when they reach

their destination.
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- Sending processors initiate the sends using non-blocking MPI_ISENDs; receiving

processors initiate the receives using non-blocking MPI_IRECVs. All continue

without waiting for the operations to complete.

- Perform on-site branching (kill or duplicate walkers which require it on any

given processor).

MOVE 2 AND SUBSEQUENT MOVES

- Move all currently existing walkers on a given processor by one time step (not

including walkers which may have been sent to this processor at the end of the

previous move).

- Check that the non-blocking sends and receives have completed (they will

almost certainly have done so) using MPI_WAITALL. When they have, duplicate

newly-arrived walkers according to their multiplicities and move by one time

step.

- Compute the multiplicities for each moved walker.

- Continue as before

It was also found necessary to:

(2) Parallelize the procedure for deciding which walkers to send between which pairs of proces-
sors, as follows.

Having received a report of the current population of walkers on each core, the master computes
a set of instructions for the walker transfers. The algorithm aims to produce the fewest possible
number of transfers by carefully matching the requirements of receiving processors (those with
a population less than the target) and the availability and multiplicity of surplus walkers on
sending processors (those with a population greater than the target). For example, if processor
A had a deficit of five walkers and processor B had a surplus of one walker with a multiplicity
of four, then both target populations could be satisfied by the transfer of one walker (which
would duplicate itself four times on arriving at the destination processor). This is quite clearly
more efficient than having five separate processors transfer one walker each to processor A, or
by processor C sending five separate walkers each with a multiplicity of one to processor A.

Unfortunately doing this process carefully and exactly (working out on the master a set of
optimally-efficient instructions for each processor, and sending the instructions from the master
to the slaves) scales linearly with the number of processors, and eventually the cost of working
out the most efficient transfers becomes more expensive than doing the transfers themselves.
This is the sort of thing that is easily missed in formal analyses, but for very large numbers of
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processors this was the rate limiting step in CASINO. It is quite easy to fix, for example, by only
considering transfers in small ‘redistribution groups’ of around 500 cores which are large enough
for a full set of ‘good matches’ to be made. Having done this for our test case the time taken
to create and broadcast the whole set of transfer instructions for the ten-move block was only a
second or two, independent of the number of processors, rather than a few hundred seconds as
was the case on 82944 processors of the JaguarPF machine.

Taken together, these improvements (together with some other more minor refinements) have
effectively removed the cost of redistributing and branching in CASINO, as shown by the timings
in Table 1. For the largest number of cores studied, the new redistribution algorithm was over
270 times faster. The improvements to the scaled timing data are also shown in Fig. 3 as the
dashed blue line (in terms of raw data, the CPU time required for a ten move block of DMC
statistics accumulation moves on 648, 1296, 2592, 5184, 10368, 20736, 41472 and 82944 cores
was, respectively, 5767, 2883, 1462, 743, 382, 221, 115, and 68 seconds).

Number of cores Time, CASINO 2.6 (s.) Time, Modified CASINO (s.)

648 1.00 1.05
1296 3.61 1.27
2592 7.02 1.52
5184 18.80 3.06
10368 37.19 3.79
20736 75.32 1.32
41472 138.96 3.62
82944 283.77 1.04

Table 1: CPU time taken to carry out operations associated with redistribution of walkers between
processors in the original version of CASINO and in the newly-modified version, during one ten-
move DMC block for a water molecule adsorbed on a 2d graphene sheet (these numbers include
ten moves of DMC equilibration, and should be roughly halved to compare with the times quoted
in the text).

So while this represents a great improvement for large core counts (the total CPU time required
for the calculation on 82944 cores was over three times faster than before) the scaling is still
not linear with the number of processors. Why? We shall use an alternative way of doing the
scaling calculations to illustrate. Previously we used a fixed target number of walkers and a
fixed number of DMC moves for all the calculations. Every time the core count was doubled,
the number of configs per processor was halved, and by 82944 cores there are only five or so
walkers per processor (down from 750 per processor in the 684-core case). Each processor was
able to move these five walkers so quickly that the time taken for various minor tasks normally
considered unimportant became significant in determining the scaling. The rate limiting step
in the 82944-core case turned out to be the summing of the energies and associated quantities
over all the processors using an MPI REDUCE operation, in preparation for computing averages
over the nodes, an operation which is difficult to make any more efficient than it already is.
Interestingly, the cost of walker transfers using the new algorithm was negligible by comparison.
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It is vital therefore to ensure that each processor has enough to do during each move of the entire
ensemble of configurations, and a much better way of utilizing a massively parallel machine (if
it turns out to be possible) is to consider a large-enough fixed target number of walkers per
processor, rather than a fixed total target population. If we start with N walkers we can, at
least in principle, decrease the error bar on the answer by the same amount either by doubling
the number of walkers to 2N or by moving the N walkers for twice as many moves. Only
in the latter case do we double the amount of interprocessor communication required. We
have therefore redone the calculations using a fixed target of 100 walkers per processor. Every
time we double the processor count the total number of walkers doubles and, in order that we
maintain the ‘system size’ - defined earlier as the total number of sampling configurations of
the configuration space to get a fixed error bar - we halve the number of moves (one cannot
of course do this indefinitely!). In such a case doubling the number of processors should halve
the required CPU time as before. Note that all we are really doing here is changing how many
samples we do on each core between each global communication; we are exploiting the freedom
that we are allowed in choosing the number of moves and walkers to make sure that there is
enough work for the processors to do during a move. We are, in effect, improving the ratio in
Eq. 27 in the way suggested. So, the resulting graph is shown in Fig. 4, and we see that now the
processors have enough to do, the scaling is essentially linear with our new, updated algorithm.
Our modifications have also significantly improved the behaviour of CASINO relative to the
current 2.6 version. For the 82944-core case, the modified version was more than 30% faster and
the total cost of redistributing walkers (including the DMC equilibration) went down from 412
seconds to 1 second, demonstrating that the overhead from this process has now been essentially
eliminated. Clearly, these results imply that it will be possible in the future to use CASINO

on machines with numbers of cores well in excess of 100000.

3.2 Other considerations for large parallel QMC computations

The moral of the previous Section appears to be to use as many walkers as we can on each
processor in order to maximize the efficiency on a parallel machine. This leads us to other
considerations since, as we have already stated, the number of walkers per processor will be
constrained by the available memory. Furthermore, the memory architecture of modern multi-
core processors can be somewhat complicated and it is important to ensure that CASINO can
take full advantage of this. How can the memory best be utilized on a massively parallel machine?

Moving the walkers requires repeated evaluation of the wave function Ψ(R1 . . .RN ), that is, the
values of the single particle orbitals φj , various determinants of these orbitals, and the many-
particle Jastrow factor. The information required to evaluate these must be held in memory.
The largest block of data to store is generally the orbital coefficients (the coefficients in the linear
expansion over basis functions used to construct the orbitals) and, as we have seen, there is a
choice of various different basis set to represent the orbitals in CASINO including Gaussians,
Slater functions, blips (B-splines), and plane waves.

Plane waves are generally obsolete in QMC; although CASINO supports them for historical
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Figure 4: Scaled CPU time required by various numbers of cores of the JaguarPF machine to
carry out one ten-move DMC statistics accumulation block for a water molecule adsorbed on
a two-dimensionally-periodic graphene sheet containing fifty carbon atoms per cell, using both
the September 2010 version of CASINO 2.6 (solid-red line) and our newly modified version of
CASINO (dotted blue line). For comparative purposes ‘ideal linear scaling’ is shown by the solid
black line. Fixed target of 100 per core for total walker population.

reasons, their use is not recommended since the number of delocalized plane waves to evaluate
at a point is proportional to system size and this multiplies an extra factor of N into the scaling
of CPU time with the number of particles. Physicists who refuse to use anything else in DFT
calculations - of which there are many - need not worry, since the output of plane-wave DFT
codes such as CASTEP, PWSCF and ABINIT can be easily transformed into a basis of localized
functions which CASINO also supports.

In QMC, therefore, we prefer to use strictly-localized basis functions since then only a fixed
number of them are non-zero at any randomly-chosen point, no matter what the size of the
system. We may choose atom-centred functions such as the Gaussians and Slater functions
widely-used in quantum chemistry, or functions localized on a three-dimensional grid which are
unaware of the existence of atoms. Blips, which are 3rd-order polynomials strictly localized in
particular boxes surrounding each grid point, are an example of the latter type [50]. In terms of
memory use Gaussians and Slaters provide a very compact representation (Slaters slightly more
so) since the total number of basis functions is relatively small. They are, however, somewhat
less efficient to evaluate than blips. This is because they require the evaluation of exponential
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functions as well as polynomials, and because at any random point where an electron may end
up it is not known in advance which functions are non-zero there, and one ends up having to
dynamically screen them.

Blips, like plane waves, have the advantage of being systematically improvable, universal, and
unbiased. They are in fact closely related to plane waves: each single particle orbital φj expressed
as a linear combination of plane waves (that is, as φj =

∑
G ciG exp(iG · r) where G is a wave

vector and ciG are complex orbital coefficients) can also be approximately expressed as a linear
combination of blip basis functions, that is, as φj ∼

∑
n ainbn, where bn is the blip function

sitting on grid point n. The grid spacing is closely related to the plane-wave cutoff, and the set
of coefficients ain can be obtained from the set of coefficients ciG using Fast Fourier Transform
routines [50].

For most purposes, blips are probably our preferred basis set in QMC. The only problem is
that there are generally a hell of a lot of them, and the orbitals coefficients ain can require a
great deal of memory to store. The number of these coefficients is in fact proportional to the
square of the number of electrons in the system, with a pre-factor that depends on the fineness
of the grid (fine grids are required in particular for hard pseudopotentials). For large enough
systems the memory needed to store the coefficients can be of the order of several Gb, which
often exceeds the memory available on a single core. This problem has recently been alleviated
by allowing CASINO to exploit the architecture of modern multi-core processors which share
a common memory on a node (currently JaguarPF has twelve cores per node, and the UK
national supercomputer HECToR twenty-four cores per node, with sixteen and thirty-two Gb
of memory per node respectively). This is done by having only one of the cores on the node
allocate the required memory to store the wave functions, while allowing all cores access to the
shared memory area. This modification is now allowing simulations of systems more than one
order of magnitude bigger than previously possible.

In our scaling experiments we have not concerned ourselves with aspects of real practical calcu-
lations, such as whether the error bar on the result is small enough. Furthermore, in repeatedly
doubling the number of walkers we have blithely and repeatedly halved the number of moves
without considering whether the number of moves left is great enough that we can perform a
proper statistical analysis of the sampled data (a procedure called ‘reblocking’ [51] is normally
applied to the sampled data in order to compute an accurate statistical error bar on the DMC
energy). Under certain circumstances (say, if we fix in advance a required error bar and demand
at least a given number of moves are performed) then our ability to use the maximum number
of walkers allowed by the available memory will be reduced.

Consider that for a pure-MPI QMC calculation with Nproc processors, the total CPU time t is
roughly given by t ≈ NtargetNmovetmove/Nproc, where Nmove is the number of moves, Ntarget is
the target walker population and tmove is the average time to move one walker at each step. On
very large machines one can easily be in a situation where Nproc is great than the required Nmove

which means that there will be processors with no associated walkers at all; they are therefore
forced to be idle and this is a waste of resources. An additional refinement is suggested for
such cases where it is unnecessary to use as many walkers per processor as possible, namely the
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adding of a second level of parallelisation, capable of splitting each walker over more than one
core, over and above the MPI parallelism. In CASINO this has been realized using OpenMP
directives; OpenMP [53] is an implementation of multithreading, a method of parallelization
whereby the master ‘thread’ (a series of instructions executed consecutively) forks a specified
number of slave threads and a task is divided among them. The threads then run concurrently,
with the runtime environment allocating threads to different processors. This second level of
parallelism becomes useful when Nproc > Ntarget. Running multiple threads on multiple cores
allows keeping Ntarget small, effectively reducing tmove in the cost formula above.

The general strategy of this implementation is to use OpenMP parallelism for the loops whose
trip counts scale with the number of electrons or atoms. In the QMC algorithm the basic logical
units that need to be parallelized are functions like orbital evaluation, Jastrow factor evaluation,
inverse Slater matrix updating, potential energy evaluation, and electron-electron and electron-
nucleus distance evaluation. In practice this is done by defining subgroups or ‘pools’ of small
numbers of cores. Parallelisation over walkers is maintained over pools, but inside each pool the
work to be performed by each walker is parallelised by splitting the number of orbitals over the
pools (this of course helps to address the memory problem in general). Then, each core in the
pool will only evaluate, for example, the value of a subset of orbitals. When this is done, all the
cores within the pool communicate to construct the Slater determinants, which are evaluated
again in parallel using the cores in the pool. This turns out to be efficient only if the walkers
are split among a small number of cores (typically two, and not more than four).

A good example of when this might be important is when calculating the total energy of solids.
In QMC one cannot reduce this problem to the primitive cell as in DFT calculations, and
one must in general try to eliminate finite-size effects by extrapolating to the infinite system
size limit; this is done through calculations on supercells formed by periodically repeating a
number of primitive cells. In these types of calculations one is obviously interested in the energy
per primitive cell, and therefore the many primitive cells that build the supercells used in the
simulations all contribute to reduce the statistical errors on the energy per primitive cell. A
consequence of this is that with large supercells the number of necessary walkers is reduced, and
therefore parallelisation over walkers becomes less efficient.

We discuss finally an additional bottleneck related to DMC equilibration. Having first computed
an initial set of walkers distributed according to the chosen VMC trial function, we must propa-
gate the walkers for a certain amount of imaginary time until the ensemble becomes distributed
according to the ground-state DMC wave function, that is, it becomes ‘equilibrated’. Once this is
the case the DMC statistics accumulation phase begins and we begin to average data to compute
the final answer and its error bar. As we have already mentioned, the total number of walkers
per processor is limited not only by the available memory, but also by the fact that carrying
out DMC equilibration takes longer if more walkers are used. An interesting idea suggested by
Neil Drummond [52] and recently implemented by him in CASINO shows us how to greatly
alleviate this problem. Having decided on a target walker population Ntarget for the statistics
accumulation phase one can initially generate and equilibrate a much smaller number of walk-
ers than the target. This can be done very rapidly and once equilibration is achieved, rather
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than beginning the usual immediate accumulation of statistics, one does a quick ‘configuration
generation DMC run’ with this small population. That is to say, widely-spaced configurations
distributed according to the equilibrated ground state DMC wave function are saved for use as
the initial population in the subsequent big DMC statistics accumulation run. There is then
relatively little correlation between the walkers in the initial large population. This would of
course not be the case if the target population were simply increased to Ntarget after a small
population equilibration; large numbers of the initial walkers would be highly correlated. Pre-
liminary results indicate that the answer is the same to within error bars but the time taken for
DMC equilibration can be reduced by an order of magnitude or more.

3.3 Conclusions about QMC scaling on massively parallel machines

Which of our two scaling graphs produced by our modified CASINO (Fig. 3 or Fig. 4) most
accurately represents what will happen in real-world simulations? In answering this, we have to
remind ourselves what million-core machines are actually for.

Note first that because QMC is a sampling technique, then for any given system, there is a
maximum number of processors you can exploit if you insist that your answer has no less than
some required error bar and that it has a minimum number of moves (so that we can perform
a reblocking statistical analysis of the result and its error bar).

For example, let’s say that your system requires 1000000 random samples of the wave function
configuration space to get the required error bar ε. Let’s say we need at least 1000 sampling
moves to accurately reblock the results. And let’s say we have a 1000 processor computer. In
that case only one walker per node is required to get the error bar ε (even though the available
memory may be able to accommodate many more than this).

Let’s say we now buy a 2000 processor machine. How do we exploit it to speedup the calculation?
We can’t decrease the number of moves, since then we can’t reblock. It is wasteful to just run
the calculation anyway, since then the error bar will become smaller than we require. We can
split each walker over two nodes, and use OpenMP to halve the time taken to propagate the
walkers, but let’s say we find that OpenMP doesn’t really work very well over more than two
processors.

How then do we exploit a 4000 processor machine? Answer - we can’t. The computer is simply
too big for the problem if you don’t need the error bar to be any smaller.

Now it is possible to imply that our first graph in Fig. 3 (which is not linear scaling with the
number of processors, even for the modified CASINO) is more representative of real calculations
than our second graph in Fig. 4 (which is linear scaling for the modified version), but a more
fundamental observation is that Fig. 3 is just running into the limitations of the method. In
the example above, one could not talk about the scaling of the problem to 100000 cores, in the
same way as it would be silly to use a 100000 core machine to do a Hartree-Fock calculation of
a hydrogen atom, but it doesn’t mean we can’t talk about the theoretical scaling of CASINO on
that many processors for a general system, and in general it seems to be the case that, following
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our modifications, CASINO is now linear scaling with the number of processors providing the
problem is large enough to give the processors enough work to do. This should normally be easy
enough to arrange, and if you find yourself unable to do this, then you don’t need a computer
that big. One may conclude that massively parallel machines are now increasingly capable
of performing highly accurate QMC simulations of the properties of materials that are of the
greatest interest scientifically and technologically. In the next Section, we therefore turn to some
examples of how these techniques may be applied in practice.

4 Examples of current QMC work

In choosing examples of current QMC work to illustrate the importance of petascale computing,
we naturally concentrate on work that we know best, in other words the work that we are
involved in. The illustrations that follow are all based on calculations that are being performed
on machines such as HECToR and JaguarPF, and we choose these illustrations because we
believe them to be scientifically important, and because they are known to be difficult for DFT.
We start with the surface formation energy of materials, focusing particularly on ionic and
semi-ionic materials. We then turn to the problem of predicting the adsorption energies of
molecules on surfaces, with particular reference to water on the surface of ionic materials and
on graphene. Our final example concerns water and ice, where the difficulties encountered by
DFT are notorious.

4.1 Surface energy of materials

When a macroscopic sample of a material is separated into two pieces, new surfaces are created.
The work done in creating the new surfaces divided by their area is the surface formation
energy, usually denoted by σ. For a crystal, σ depends on the orientation of the surface. Surface
formation energies are important in fields as far apart as geology and fracture mechanics. They
are particularly important in nanoscience, because in particles a few nm across a significant
fraction of the atoms are at or near the surface. One of the consequences is that the crystal
structures of nano-particles are sometimes not those of the bulk material, because it may be
advantageous to adopt a less stable bulk structure if the energies of the surfaces are lowered [54].
For nano-particles supported on substrates, the equilibrium form of the nano-particles is often
determined by the balance between and surface and interfacial energies.

DFT has quite serious problems in predicting σ, and it has been known for a long time that
predicted σ values can depend strongly on the exchange-correlation functional [55]. For example,
as a broad generalisation, it seems that GGA approximations tend to give σ values that are about
30 % less than LDA values [56]. Even more surprising is that LDA values sometimes seem to
agree better with experiment than their GGA counterparts [57]. This is unexpected, because
common sense suggests that the formation of a surface involves the breaking of bonds, and GGA
is usually much better than LDA for bond formation energies. The problem is that σ values are
not easy to measure experimentally, and those that have been measured are sometimes subject
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to large errors. In this unsatisfactory situation, there is an obvious need for accurate computed
benchmarks for σ, which can be used to assess both DFT predictions and experimental values.

In our first attempt to compute the surface formation energy of a real material using DMC, we
studied the MgO(001) surface [58]. This is one of the few ionic materials for which σ has been
measured experimentally, though there are considerable differences between different measure-
ments. For what it is worth, the experiments tend to support the LDA value of 1.24 J m−2,
rather than the PBE value of 0.87 J m−2. Five years ago, we were able to show the feasibility of
computing σ to good accuracy in slab geometry, using slabs of different thicknesses and attempt-
ing to extrapolate to the limit of infinite thickness. The DMC value of σ of 1.19 J −2 supported
the correctness of LDA, but at that time there were still uncertainties about pseudopotential
errors. Since that time, the ability to run calculations using large numbers of cores on machines
such as the HECToR and JaguarPF supercomputers has made the DMC calculation of surface
energies much easier, and it is already clear that such calculations will become fairly routine in
the near future.

Very recently, a technique has been developed that in some cases allows the cohesive energy,
equilibrium structure and elastic properties of perfect crystals and the surface formation energies
of crystals to be calculated using wave function-based quantum chemistry at the CCSD(T)
level [59, 60]. This so-called ‘hierarchical method’ offers for the first time the possibility of
testing high-level quantum chemistry and DMC against each other for surface formation energies.
Using casino on HECToR and JaguarPF, we have recently made comparisons of this kind for
the LiH and LiF crystals, both of which have the rock-salt structure and are well suited to the
‘hierarchical’ quantum chemistry approach. In the case of LiH, we have been able to perform
all the DMC calculations both with pseudopotentials and at the all-electron level [60]. With
all-electron calculations, the only remaining error is fixed-node error (and, of course, system-size
errors – but these can be systematically eliminated).

Before discussing the calculations of σ, it is worth commenting on the outstanding agreement
with experiment given by all-electron DMC for the properties of the LiH crystal [60]. The equi-
librium lattice parameter a0 agrees to within 10−3 Å (both experiment and DMC give 4.061 Å
at T = 0 K, once corrections for zero-point effects are made). The cohesive energy agrees with
the experimental value to within 20 meV per formula unit, which is comparable with the exper-
imental uncertainty (once again, zero-point corrections are crucial). The hierarchical quantum
chemistry approach gives similar accuracy – possibly even slightly better for the cohesive en-
ergy [59]. Needless to say, there are no adjustable parameters in either method. This gives us
every reason to expect excellent values of the surface formation energy.

The DMC slab calculations on LiH went up to slab thicknesses of 6 ionic layers, with 18 ions
per layer in the repeating cell (the total number of ions per repeating cell thus went up to 108),
and these slab thicknesses are more than enough to give convergence of σ to within ∼ 1 %.
We reproduce in Table 2 our final σ values from both DMC and quantum chemistry, compared
with the values from various DFT approaches [60]. The agreement between all-electron DMC
and high-level quantum chemistry is extremely close, as it should be, and the σ values appear
to provide robust benchmarks against which to judge DFT. Just as we found for MgO, LDA
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Method σ / J m−2

DMC pseudo 0.373(3)
DMC all-elec 0.44(1)
Quantum chem (frozen core) 0.402
Quantum chem (with core) 0.434
DFT(LDA) 0.466
DFT(PBE) 0.337
DFT(rPBE) 0.272

Table 2: Calculated formation energy of the LiH (001) surface with both pseudopotential and
all-electron DMC, with hierarchical quantum chemistry with and without core correlation, and
with DFT approximations. For details, see Ref. [60].

performs rather well, the PBE value is about 30 % lower and is considerably less good, while
the revised PBE value (rPBE) is ∼ 40 % below the correct value.

We have recently completed similar calculations on σ for LiF (001) [61], and once again we find
values that support LDA, with PBE as usual underestimating by ∼ 30 %. There now appears
to be no reason why DMC calculations of this kind cannot be run for a range of other materials,
including semiconductors and metals. This would be valuable, because it would allow a much
more systematic appraisal of DFT approximations for surface formation energies than has been
possible hitherto.

4.2 Molecular adsorption on surfaces

The adsorption energies of molecules on surfaces are important for innumerable reasons. A good
example is the process of gas sensing, in which a trace concentration of a substance (for example a
pollutant) in the atmosphere is in thermal equilibrium with molecules of the substance adsorbed
on the surface of a material (for example tin oxide), the change of whose electrical properties
is used to monitor the atmospheric concentration. One of the main quantities determining
the concentration of absorbed molecules is the adsorption energy: the binding energy of the
molecule to the surface. Adsorption energies are important in many other fields, including
catalysis, corrosion, gas purification, chemical reactions in interstellar space, and atmospheric
processes. But in spite of their widespread importance, our quantitative knowledge of adsorption
energies remains rather poor. One of the major obstacles to progress is that DFT has rather
poor predictive power for the energetics of adsorption.

A famous example of DFT failing to give the right answer is the adsorption of CO on the
Pt(111) surface, where it is known experimentally that the most stable adsorption site is the
atop sites but most DFT approximations predict the hollow site to be most stable [62]. An
equally severe problem is that DFT values of molecular adsorption on transition metals can be
seriously in error, sometimes by as much as 0.5 eV [63]. But the difficulties are not confined to
transition metals. For some problems, van der Waals dispersion can play a large role in binding
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the molecule to the surface, and here the well known difficulties of DFT in accurately treating
dispersion can cause major problems. The adsorption of water on graphene is a famous example
of this kind, but non-local electronic correlation appears to be important for many other systems,
including molecular adsorbates on metal surfaces [64]. Even for apparently simple systems such
as the adsorption of water on oxide surfaces, where one might imagine electrostatics to be the
dominant mechanism, DFT values of adsorption energies can easily shift by a factor of two when
the exchange-correlation functional is changed [65].

In some cases, good experimental values of adsorption energies may be available, but often the
experiments are too difficult, or too difficult to interpret, perhaps because of surface defects
or because of interactions between the adsorbate molecules. There is clearly an urgent need
for reliable and accurate benchmark values of adsorption energies for selected systems, just
as for surface formation energies. There has recently been important progress in the use of
wave-function-based correlated quantum chemistry techniques for the calculation of adsorption
energies on extended surfaces [66, 67]. But quantum Monte Carlo certainly offers another way
of getting these benchmarks [68], and we have recently started investigating how to do this.

An important paradigm example for benchmark purposes is the adsorption of H2O on the
LiH(001) surface. So far as we know, there is no experimental data on the adsorption energy
in this case, and indeed it seems unlikely that that there will be any, because water reacts very
exothermically with LiH to form the hydroxide. Nevertheless, the system is an important test-
bed for the development of techniques, because of its simplicity (there are only four electrons per
formula unit in LiH, and the crystal has the very simple rock-salt structure), and because there
is every reason to expect that very accurate calculations of the energetics of H2O adsorption
can be achieved using wave-function-based correlated quantum chemistry via the incremental
approach [66, 67].

The H2O/LiH system is also a fascinating target for calculations, because DFT predictions of the
binding energy depend very strongly on the exchange-correlation functional. To illustrate this,
we show in Fig. 5 the binding-energy curves computed with a number of different functionals,
including the widely used PBE functional, as well as the BLYP and revPBE (revised PBE)
functionals. None of these functionals accounts for van der Waals dispersion, so to get an
indication of the likely effect of this, we also include some results obtained with long-range
correlation included using the scheme of Grimme [69], which has come into quite common use
in the past few years. Following the usual practice, we refer to the schemes where dispersion
is added to PBE, BLYP and revPBE as PBE-D, BLYP-D and revPBE-D. The binding energy
curves were computed by holding the geometry of the H2O molecule rigid and moving it along the
surface normal, with the water-O nearly above a surface Li ion. The spread of DFT predictions
is surprisingly large, with the calculated adsorption energies at the minimum ranging from 0.1
to 0.3 eV. This illustrates our comment about the poor predictive power of DFT for some
adsorption problems.

With casino running on HECToR and Jaguar, we have found it possible to compute the cor-
responding binding-energy curve with DMC with very small statistical error bars of less than
10 meV and with thick enough slabs and large enough repeating surface units cells to reduce
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Figure 5: Binding-energy of the H2O molecule with the LiH (001) surface. Preliminary DMC
results (yellow symbols with statistical error bars) are compared with DFT predictions using
a variety of exchange-correlation functionals. The H2O molecule has exactly the same (fixed)
geometry and the same (fixed) orientation in all the calculations, and only the molecule-surface
distance is changed.

the size errors to a similar size. Technical details of the calculations, together with final results
will be reported in a journal publication, but we compare our preliminary results with the DFT
binding-energy curves in Fig. 5. The comparisons indicate that the PBE approximation is quite
accurate, so long as no attempt is made to include dispersion, but the agreement becomes rather
poor once dispersion is included. Fortuitously or otherwise, approximations such as revPBE that
are seriously in error without dispersion are greatly improved with it. These comments assume,
of course, that pseudopotential and fixed-node errors in DMC are negligible. Fortunately, as
we shall report elsewhere, we have been able to demonstrate with high-level quantum chem-
istry calculations based on the incremental scheme that these DMC errors probably amount
to no more than ∼ 10 meV over the range shown in the figure, except perhaps at very short
distances [70]. This implies that the accuracy of DMC for the adsorption energy in this system
exceeds chemical accuracy by a very large factor.
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Figure 6: Shows binding-energy curve for H2O molecule on graphene calculated with various
DFT approximations.

Can adsorption energies for other systems be calculated beyond chemical accuracy using DMC?
For water on the surfaces of other ionic materials, including MgO, our tests suggest that the
answer to this question is ‘yes’, in the sense that DMC statistical errors and system size errors
can be reduced well below the threshold of chemical accuracy, and our comparisons with high-
level quantum chemistry on appropriate clusters indicate that pseudopotential and fixed-node
errors also fall below this threshold. Large-scale calculations are now underway, and we hope to
present results very soon.

Our work on the water-graphene interaction is motivated by the huge contemporary activity on
carbon systems. The extraordinary variety of carbon structures, from graphite to buckyballs
to single- or multi-walled nanotubes to graphene has inspired a vast range of scientific studies,
as well as ideas for practical applications. The award of the 2010 Nobel Prize in Physics to
Geim and Novoselov for their work on graphene recognises the importance of the field. The
interaction of water and other molecules with these structures is often vital. Remarkably, it has
been shown that small changes in the H2O-carbon interaction can make all the difference to
whether a nanotube fills with water or not [71]. Recent work shows that a small variation in
the strength of the water-carbon bond leads graphite surfaces to switch between hydrophobic
and hydrophilic behaviour [72]. Technological applications where the H2O-carbon interaction is
crucial include device biosensing and nanofiltration.
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Figure 7: Shows binding-energy curve for H2O molecule interacting with the benzene molecule:
comparison of DMC with CCSD(T).

For all these reasons, an accurate quantitative understanding of the water-graphite (or water-
graphene) interaction has been sought for many years. Unfortunately, this is a problem where
DFT calculations have so far proved virtually useless, because an accurate description of van
der Waals dispersion is absolutely essential. To illustrate the problem, we show in Fig. 6 a
comparison of the H2O-graphene binding-energy curve (H2O geometry fixed, H2O-graphene dis-
tance only is varied) obtained with different DFT functionals. Most of the standard functionals,
including ‘expensive’ hybrid functionals such as B3LYP wrongly give almost no binding (the
‘correct’ binding energy is believed to be somewhere between 50 and 150 meV). Up to now,
the only theoretical approach that has any credibility at all has been high-level quantum chem-
istry [73], but the difficulty here is that it has not so far been possible to perform calculations
with a sufficiently good description of electron correlation in periodic boundary conditions. For
want of anything better, the approach taken has been to start with the H2O-benzene interaction,
and then to go to the interaction of H2O with coronene and larger acenes, and to attempt to
extrapolate to the graphene limit [74]. For the interaction of H2O with large acenes, the direct
application of CCSD(T) is not possible, but there are good reasons for believing that the SAPT
approximation (Symmetry-Adapted Perturbation Theory) [75] gives an accuracy that is close
to that of CCSD(T), so that in practice the calculations have been based on SAPT.

In this challenging situation, the ability to establish accurate benchmarks for the H2O interaction
would be enormously important. But does DMC have the required accuracy, and can it be
applied with small enough statistical errors to large enough periodic systems of H2O-graphene?

To test the accuracy of DMC, one of us in collaboration with other groups has recently compared
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DMC with high-level quantum chemistry for the interaction of the water molecule with the
benzene molecule [76]. This interaction is relatively weak, and it was crucially important on the
quantum chemistry side to employ the ‘gold-standard’ CCSD(T) technique extrapolated very
close to the basis-set limit. For the DMC calculations, the system is small enough that statistical
errors can be reduced to the level of ∼ 3 meV with fairly modest computational resources. The
comparison of the binding-energy curves is shown in Fig. 7, the calculations being done with
the geometry of the H2O molecule and the orientation of the molecule held fixed, with only the
H2O-benzene separation being varied. The agreement of the two curves is outstandingly good,
with discrepancies being no more than ∼ 3 meV except at the smallest separations, and this
suggests that the DMC description of van der Waals dispersion and of the weak electrostatic
interaction of the water multipole moments with the small quadrupole moments of the carbon
atoms is being very accurately described. It also suggests that if the DMC calculations can be
scaled up to treat the H2O molecule interacting with a graphene sheet in periodic boundary
conditions, then the accuracy of the computed adsorption energy should be very good, provided
the DMC statistical errors can be sufficiently reduced.

We have tested the feasibility of DMC calculations on the periodic H2O-graphene system using
JaguarPF. We find that we can simulate the system by representing the graphene sheet with a
5x5 supercell (50 atoms), which should be large enough to give small finite size errors (k-point
errors on the binding energy are less than 1 meV with this cell size within DFT). The simulations
can be carried out on JaguarPF on more than 80000 cores, and each single point calculation
with a statistical error of ∼ 10 meV has a cost of around 200000 core hours.

4.3 Water systems

Water in its different fluid and solid forms is an outstandingly important substance, because
it is crucial in so many different fields, ranging from biology to the earth sciences, through
chemical engineering, surface science and environmental sciences and medicine. It is also been
the source of many controversies, some of which continue to this day [77], and has certainly
proved a major challenge to the capabilities of DFT. Because it is so important, attempts to
develop empirical intermolecular potentials for water go back nearly eighty years [78], and the
creation of new model potentials remains a thriving industry [79]. Nevertheless, the need for
descriptions based on electronic structure theory was recognised many years ago, starting with
the efforts of Clementi and others in the 1970s [80]. A major landmark was the publication in the
early 1990s of the first simulations of liquid water based on DFT [81]. At that time, it seemed
possible that quite good accuracy might be achieved using fairly simple exchange-correlation
functionals, but it has since became apparent that the early optimism was somewhat misplaced.
It is now clear that the predicted properties of liquid water depends strongly on the assumed
functional and there is still no general consensus about how the properties of liquid water and
the various crystal structures of ice can best be described by DFT [82].

There is, however, one standard electronic structure technique that is generally agreed to provide
more than enough accuracy for a fully realistic description of water in all its phases. This is the
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CCSD(T) technique (coupled cluster with single, double and perturbative triple excitations),
often regarded as the ‘gold standard’ for the accurate description of the interactions between
closed-shell molecules. Benchmark calculations on the energetics of the water dimer, essentially
at the basis-set limit [83], have been compared with calculations beyond the CCSD(T) level,
and the evidence suggests that the intermolecular interaction energies are correct to within
∼ 1 meV. It is also well established that CCSD(T) gives a very accurate account of long-range
dispersion for water and other similar molecular systems. There is just one major problem:
the computational effort needed scales as N7, where N is the number of water molecules. This
ferocious scaling has so far prevented the application of CCSD(T) with well converged basis
sets to bulk water systems. (The feasibility of directly applying the 2nd-order Møller-Plesset
approximation to bulk water in periodic boundary conditions was reported recently [84]. It is
also interesting to note that CCSD(T) calculations on clusters of up to ∼ 20 water molecules
have recently been reported using the NWChem code on large parallel computers [85]. These
developments suggest that the future use of CCSD(T) for extended water systems may not be
completely fanciful.)

In the current unsatisfactory situation, there is a strong need for techniques that can deliver
the required accuracy, that can be directly used in periodic boundary conditions, and that do
not scale too harshly with N . Quantum Monte Carlo clearly satisfies the second and third
conditions, so that, provided its accuracy is good enough, direct QMC simulations on water
and ice are likely to be very useful. It was shown several years ago that DMC gives excellent
values of the binding energy of the H2O dimer [86]. A particularly interesting test of DMC is
provided by the competing structures of the H2O hexamer. What makes this interesting is that
the hexamer occupies a transitional position between smaller H2O clusters, whose most stable
structures have cyclic geometries, and larger clusters, which are more highly coordinated. The
hexamer has stable structures of both kinds, and the energy differences between them are very
small (on the order of 5 meV/H2O), so that the ability to separate them is a stringent test of any
technique. The consensus from the best high-level quantum chemistry calculations is that the
so-called ‘prism’ structure is most stable [87], but all DFT approximation that omit dispersion
predict the wrong energy ordering for the competing structures [88]. The predictions of DMC,
however, agree closely with high-level quantum chemistry, and predict accurate values of the
energy differences [88].

Recently, we have made our own systematic tests of DMC against quantum chemistry bench-
marks for a wide range of geometries of H2O clusters from the dimer to the hexamer, some of
the geometry sets being obtained by extracting configurations from an MD simulation of bulk
liquid water generated using the flexible amoeba interaction model. These tests support the
high accuracy of DMC. As an example, we show in Fig. 8 the comparison for a thermal sample
of 50 geometries of the H2O trimer. The rms fluctuation of the difference between DMC and
benchmark total energies is 130 µHartree (about 3.5 meV). To put this in context, we show the
analogous comparison for the DFT(PBE) total energy; the very much larger rms deviation is
not too surprising, given the well known rather poor performance of PBE for liquid water.

The evidence that DMC can deliver much better accuracy and reliability than DFT for water
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Figure 8: Comparison of DMC total energies (filled squares) with accurate quantum chemistry
benchmarks at CCSD(T) level for a sample of 50 geometries of the H2O trimer drawn from
an MD simulation of liquid water. Horizontal axis shows CCSD(T) energy, vertical axis shows
deviation of DMC energy from CCSD(T) energy. Filled circles show the same comparison for
DFT(PBE).

systems is thus strong. But what is the most useful way of applying DMC to improve the atomic-
scale understanding of water? Perhaps the most straightforward application is to the energetics
of ice structures, since useful things can be done using only static calculations, without the need
to compute forces. Our preliminary tests on various ice structures with casino on the HECToR
and Jaguar machines show that it is possible to achieve very good statistical accuracy (statistical
errors of ∼ 5 meV per water molecule or better) on the periodically repeated systems of sixty-
four to ninety-six molecules or more that are needed to reduce size errors to an acceptable level.
We expect to report detailed DMC calculations on the relative energetics of both perfect and
defective ice structures in the near future.

A further, but more challenging possibility for the future is the DMC simulation of liquid water
itself. The major difficulty here is in the calculation of the forces that would be needed for MD
simulation. Recent important progress in the calculation of DMC forces [89] demonstrates that
this will eventually be feasible. However, DMC calculations on bulk liquid water in periodic
boundary conditions have already been reported, without the calculation of DMC forces. Gross-
man and Mitas [90] showed several years ago how to compute the DMC energy of bulk water on
an MD trajectory generated using conventional DFT. The key idea is that the efficiency of the
DMC calculations is improved by exploiting the quasi-adiabatic evolution of the DMC ground
state as the nuclear coordinates change with time. This approach does not allow the direct
computation of the thermal equilibrium structure and dynamics of the liquid associated with
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the DMC ground state energy. Nevertheless, it yields benchmark energetics that could be used
to calibrate and ‘tune’ DFT functionals, in much the same way as DFT molecular dynamics
simulations have often been used in the past to test and ‘tune’ empirical interaction potentials.
We plan to explore this possibility with casino and the large parallel computers to which we
have access.

5 Future prospects

We have tried to show how the availability of petascale computers having tens or hundreds of
thousands of cores is opening up completely new possibilities for the techniques of quantum
Monte Carlo. The basic reason for this is that diffusion Monte Carlo, operating typically with
thousands of semi-independent walkers, lends itself very readily to massive parallelism. We have
demonstrated this idea in action by showing how the casino code implemented on machines
such as the UK national HECToR supercomputer and the US Jaguar supercomputer gives very
good parallel scaling up to at least 100000 cores. We have argued that these developments
are scientifically important, because for important types of problems QMC gives much greater
accuracy than standard DFT methods, so that some of the well known deficiencies of DFT can
be overcome. We have illustrated some of the new science that is now becoming possible using
examples from three areas: the surface formation energies of materials, the adsorption energies
of molecules on surfaces, and aqueous systems, all of these being areas where DFT struggles
to deliver trustworthy results. We have also explained our belief that in these and other areas
there is a pressing need for accurate benchmarks which can be used to test and calibrate DFT
approximations, and we have shown how DMC can deliver these benchmarks in practice.

Until fairly recently, QMC has sometimes been regarded as a bit of a minority interest, because it
demands computational resources that are typically 104 times those needed by DFT. However,
we believe that the arrival of petascale computing, and the prospect of exascale computing
in the next five to ten years will change all this. One has to remember that when the Car-
Parrinello paper was published over twenty-five years ago, it was sometimes commented that
the computational requirements of DFT were completely prohibitive and that the technique
would never be widely used for practical problems. Obviously, the critics have been proved
wrong. Given that supercomputer power has increased by at least a factor of 10000 over the
past fifteen years, it takes little imagination to see that QMC may follow the same kind of
evolution. However, a shift of thinking is needed. Today, it is quite common to run atomic-scale
materials simulations needing a few thousand core-hours on cheap clusters. But with calculations
running on, let’s say, 100000 cores, individual jobs consuming several million core-hours become
feasible. In fact, from our experience on Jaguar, we know of research groups (not our own) that
have run jobs of this size.

It is still not completely straightforward to obtain petascale resources. However, the INCITE
Program, which gives access to Jaguar and other ‘leadership-class’ resources in the US has
welcomed applications from international groups for several years now. The European DEISA
programme (www.deisa.eu) is a good source of computational resources in Europe. It is de-
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signed to make use of a Europe wide distributed super-computing environment, and can grant
access to resources of the order of millions of core hours. Indeed, part of our work of water
on graphene benefited from a DEISA grant. The rapidly evolving situation in China, currently
home to the fastest supercomputer in the world, is also well worth watching.

Given the developments that are underway, we believe it is now very timely for more research
groups to consider becoming involved in the QMC enterprise. But what is the right way to do
this? Here are our personal suggestions about how to think about this:

• Start small and work upwards: Clearly, one should gain experience first with small prob-
lems (for example, problems involving small molecules), which can easily be run on modest
local resources. Work up from there to more ambitious problems that need large machines.

• Use standard codes: A large development effort has gone into CASINO and other QMC
codes, and it makes sense to work with a code that already has a substantial publication
record.

• Collaborate: Even more than DFT, there is much that you need to know about QMC
before trying calculations. No QMC code can (yet) be treated as a black box, and it is
wise to learn from experienced practitioners. To this end, one of us (MDT, with Pablo
López Ŕıos and Neil Drummond) has for the last six years been running the annual ‘QMC
and the CASINO program’ summer school at his monastery in Tuscany, Italy, to which
the interested reader is cordially invited [91].

• Choose your problem well: Just like DFT, QMC cannot solve all the world’s problems,
and it is important to play to the strengths of the techniques and to be aware of their
weaknesses (fixed-node error and pseudopotential non-locality are potential weaknesses of
DMC in its present form).

Our hope for the future is that more researchers will discover for themselves the possibilities
offered by QMC on machines ranging all the way from local clusters to the national and inter-
national petascale services now becoming available.
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[64] J. Carrasco, B. Santra, J. Klimeš and A. Michaelides, Phys. Rev. Lett. 106, 026101 (2011).
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