All posts by Damian Jones

Member of the STFC Scientific Computing Department. Based at STFC Daresbury Laboratory, Warrington, UK.

3rd NOMAD (Novel Materials Discovery) Industry Workshop

3rd NOMAD (Novel Materials Discovery) Industry Workshop
Cumberland Lodge, Windsor, Berkshire, SL4 2HP
February 5, 2018 to February 6, 2018

The objectives of NOMAD Centre of Excellence (CoE) include the creation of a materials encyclopaedia, the development of Big-Data analytics and advanced graphics tools for materials science and engineering. These goals are complementary with those of the other two CoEs supported by the European Commission and active in the field of CECAM activities (E-cam and Max). The NOMAD Researchers are currently creating a large, homogenized materials database, as well as the analytical tools and code developments necessary to extract information from it.

This was the third (and last) of a series of three industry meetings organised annually by NOMAD to get together with industry representatives. The purpose of the meeting is to listen and gather the feedback of industry on their needs and plans concerning materials data, and to in- form/train them on data-analytic tool-usage.  In addition, we share the recent developments NOMAD has carried out. At the end of each meeting, a commission made of NOMAD PI’s and selected Industrial representative discuss the outcome of the meeting and plan in which direction NOMAD development should go in order to meet the industry needs. In particular, the meeting is structured such that in a first instance, invited industry representatives present and discuss the main activities carried out in their company. In second instance, speakers from each NOMAD work package present the most recent developments and features incorporated into the NOMAD’s framework. Below we summarise what has been discussed for each work package.

Read the full workshop report here.

The electrode potential in electrochemistry – A challenge for electronic structure theory calculations

Castle Reisensburg near Ulm/Germany
November 26 – 29, 2017

Organizers: Axel Gro (Ulm University, Germany),
Michiel Sprik (Cambridge University, UK)

Processes at electrochemical electrode-electrolyte interfaces are of tremendous technological importance, in particular in the context of electrochemical energy storage and conversion. Still, atomistic  details of structures and processes at these interfaces are often still not known. This calls for a close collaboration between experiment and theory on an atomistic level. However, quantum chemical  studies addressing atomistic details of electrochemical interfaces face severe fundamental theoretical, computational and numerical
challenges.

Among of the most severe problems is the proper theoretical quantum chemical description of the electrode potential. In electrochemistry, structures and properties at the  electrodeelectrolyte interface are governed by the electrode potential which has to be kept constant along the simulation of electrochemical processes. Yet, almost all of the fi rst-principles electronic structure studies addressing electrochemical systems are performed in the so called constant charge mode which, however, does not correspond to the set up used in electrochemistry experiments. It was the purpose of this purely theoretical workshop, organized by Axel Gro (Ulm University, Germany) and Michiel Sprik (Cambridge University, UK), to bring together experts in the fi eld of theoretical electrochemistry to review the current status of the field, but also to identify promising future developments. Although the main focus of the workshop was the proper theoretical  description of varying electrode potentials, also other issues such as the appropriate modeling of liquid electrolytes were addressed.

Read the full workshop report here.

TSRC TDDFT Summer School and Excited States Workshop

The first US-based summer school and workshop on Time-Dependent Density Functional Theory (TDDFT) was held July 11-21, 2017 in Telluride, CO. TDDFT is increasingly used in
computational molecular and materials science to calculate electronic-excitation spectra and dynamics in a wide variety of applications, including photocatalysis, photo-controlled bond dissociation, and light-induced charge transfer. Software development in this community targets multiple software packages, many of which are open source, such as octopus, NWchem and [email protected], which are the ones our school focused on. The goal of this first iteration was to create a home for a national community of scholars, including users and developers, with a deep understanding of TDDFT, its capabilities, limitations, and high-performance computing context. We used this opportunity to explore interest in such an event in the future and based on overwhelmingly positive feedback from students and teachers, we intend to hold a similar school+workshop every two years in the US, in order to maintain the high level of interest that we witnessed and the enthusiasm amongst participants.

Read the full workshop report here.

Anharmonicity and thermal properties of solids

10-12 January 2018, Paris, Institut Henri Poincaré

Conference organizers
Francois Bottin (CEA-DIF, France)
Johann Bouchet (CEA-DIF, France)
Matthieu Verstraete (University of Liege, Belgium)
Olle Hellman (California Institute of Technology (Caltech, US)

The quantitative prediction of harmonic phonon frequencies and thermodynamical quantities is one of the great successes of atomistic electronic structure in the past 30 years. Reality is however more complex, and vibrations are never purely harmonic. The systematic calculation of all possible anharmonic processes is a daunting task. Anharmonicity influences many important phenomena such as thermal expansion and Fourier’s law or coherent phonon generation. Heat transport is a central pillar of solid state physics and engineering, and influences many devices and properties. Both low and high conductivity materials have their uses, but historically its control has proved elusive. Simple mechanistic (grind it up) or back of the envelope (make it heavy) models reached their limits years ago. But only in the past 10-15 years a full chemically specific and atomistic prediction of lattice thermal properties has become possible. The field has blossomed at the crossroads of Chemistry, Physics, Engineerings (Energy, Mechanical, Electronic etc…), and benefi tted from a positive feedback loop
through re fined experiments and novel theories.

The aim of this workshop is to bring together cutting edge researchers in the numerical simulation and experimental determination of anharmonic phonon dynamics, and related properties (transport, ultrafast, electrons), to foster new approaches, new ideas, and give the field a decisive kick forward. We anticipate intense discussions and hotly contested debate about
where to go from here, as the terrain is wide open.

Read the full report here.

International Workshop on Ab initio Description of Iron and Steel: Mechanical Properties (ADIS2016)

The series of ADIS workshops is inspired by the impressive variety of competing mechanisms on the microscopic/atomic scale, which determine the performance of engineering materials such as steels. Accordingly, the main scope of the workshops is a thorough and detailed discussion of this behavior, in order to understand the underlying physics and to contribute to a further systematic improvement of the materials. We are convinced that a truly predictive approach to materials modeling needs to be based on a fundamental ab initio level, rooted in the laws of nature rather than empiricism. This is also the driving force for the collaborative research centre SFB761 Steel ab initio, which is devoted to a quantum-mechanically guided design in high- and medium-Mn steels and funding this workshop. We are grateful that the importance of this development is further recognized by the Psi-k Charity, which is financially supporting ADIS2016. Continue reading International Workshop on Ab initio Description of Iron and Steel: Mechanical Properties (ADIS2016)

Psi-k Volker Heine Young Investigator Award 2018

“For research excellence in all fields involving electronic structure calculations”

Young computational science researchers are invited to put themselves forward for the Psi-k Volker Heine Young Investigator Award 2018.  The finalists will compete at a special session of the joint EPS Condensed Matter Division and German Physical Society (CMD/DPG) Spring Meeting in Berlin, during March 11-16, 2018.

The Volker Heine Award session will be part of the Symposium:
Frontiers of Electronic Structure Theory: Correlated Electron Materials

Purpose: The purpose of the Psi-k Volker Heine Young Investigator Award is to recognize an individual for her or his outstanding computational work in any type of condensed-matter, materials, or nanoscience research involving electronic structure calculations. In 2018 there will be one award of 2500 Euro and four runner-up prizes of 500 Euro each. The prize is sponsored by npj Computational Materials.

Regulations and Procedure:

1) Applicants may be of any nationality working anywhere in the world.

2) The applicant’s PhD certificate must not be dated more than 5 years before the first day of the joint CMD/DPG – EPS Conference (March 11, 2018). Those who have not yet completed a PhD can also apply.

3) Young investigators who wish to compete for the Psi-k Volker Heine Young Investigator Award 2018 must submit:

  • abstract (in the format of the abstracts for the conference)
  • two-page description making the case for her/his outstanding scientific contribution
  • extended CV (incl. list of publications and talks/posters)
  • evidence of satisfying the conditions of regulation (2) above.

These items must be submitted by email, as a pdf attachment, to the chairperson of Psi-k whose address is given below. It must be received not later than December 1, 2017. The abstract must also be submitted as a regular contribution to the CMD/DPG Conference.

4) The candidate must arrange for two confidential support letters to be sent directly by to the Psi-k chairperson (see below). These letters (sent by email) need to be received before December 1, 2017. One of the letters must certify that the candidate meets the requirements of regulations (2) above.

5) The Psi-k Trustees will select five finalists who will get an invitation to present their work at the CMD/DPG Conference (25 min. talk + 5 min. discussion). After these presentations, the award committee will select the award winner.

6) The award winner will receive her or his award of 2500 Euro and the four runner-up their prizes of 500 Euro each, together with a certificate, at a presentation on the Psi-k Scientific Get-Together during the conference.

Award Committee: The award committee will consist of selected invited speakers of the CMD/DPG Conference and three members of the Psi-k Trustees.

Risto Nieminen
Psi-k Chairman
[email protected]

Questaal Hands-On Course

Daresbury Laboratory was pleased to welcome 40 scientists to the “Questaal Hands-On Course” which took place over four days between May 16th and 19th.  The Questaal software suite features the first all-electron GW code and the first implementation of the quasiparticle-self-consistent GW method, which is significantly more accurate and reliable than conventional density-functional methods.  The focus of the course was to introduce these advanced methods to researchers already familiar with electronic structure calculations and to teach them the practical details needed to perform such calculations for materials and systems relevant to their individual research areas.

Read the full workshop report here.

Call For Proposals – 2018 Psi-k Workshops

Herewith we solicit for proposals for activities in the field of electronic-structure theory and calculations to be held  between March 1, 2018  and March 1, 2019, to be partially funded by the Psi-k Network and Charity.

Submission of Proposals:

The deadline for the proposals is Friday, October 13, 2017.

The applications should be submitted on-line using the link

https://www.dropbox.com/request/fHwMtfFwT2tjGITZNF9l

The types of activities that can be sponsored include workshops, small conferences, hands-on tutorials, summer schools and graduate-level university courses. The latter should be given by experienced teachers and be open to students from different universities.

Continue reading Call For Proposals – 2018 Psi-k Workshops